Search results for: marker-controlled watershed segmentation
576 Hydro-Climatological, Geological, Hydrogeological and Geochemical Study of the Coastal Aquifer System of Chiba Watershed (Cape Bon Peninsula)
Authors: Khawla Askri, Mohamed Haythem Msaddek, AbdelAziz Sebei
Abstract:
Climate change combined with the increase in anthropogenic activities will affect coastal groundwater systems around the world and, more particularly, the Cap Bon region in the North East of Tunisia. This study aims to study the impact of climate change and human stress on the salinization and quantification of groundwater in the Wadi Chiba watershed. In this regard, a hydro-climatological study and a hydrogeological study were carried out based on the characterization of the aquifer system of the eastern coast at the level of the watershed of Wadi Chiba in order to seek to identify, first of all, the degradation of the state of the aquifer on the quantitative level by the study of the piezometric and its evolution over time. Secondly, we sought to identify the degradation of the state of the aquifer qualitatively by using the geochemical method, in particular the major elements, to assess the mineralization of the aquifer water and understand its hydrogeochemical functioning. The study of the Na + / Cl- and Ca2 + / Mg2 + chemical relationships confirmed the presence of a marine intrusion downstream of the Wadi Chiba watershed northeast of Cap-Bon accompanied by a piezometric depression. For this purpose, we proceeded to: 1) Mapping of both piezometric data and salinity. 2) The interpretation of the mapping results. 3)Identification of the origin of the localized deterioration in the quality of the aquifer water. Finally, the analysis of the results showed that the scarcity of water is already forcing human actions in the Chiba watershed due to the irrigation of agricultural lands and the overexploitation of the water table in the study area.Keywords: climate change, human activities, water table, Wadi Chiba watershed, piezometric depression, marine intrusion
Procedia PDF Downloads 92575 Demographics Are Not Enough! Targeting and Segmentation of Anti-Obesity Campaigns in Mexico
Authors: Dagmara Wrzecionkowska
Abstract:
Mass media campaigns against obesity are often designed to impact large audiences. This usually means that their audience is defined based on general demographic characteristics like age, gender, occupation etc., not taking into account psychographics like behavior, motivations, wants, etc. Using psychographics, as the base for the audience segmentation, is a common practice in case of successful campaigns, as it allows developing more relevant messages. It also serves a purpose of identifying key segments, those that generate the best return on investment. For a health campaign, that would be segments that have the best chance of being converted into healthy lifestyle at the lowest cost. This paper presents the limitations of the demographic targeting, based on the findings from the reception study of IMSS anti-obesity TV commercials and proposes mothers as the first level of segmentation, in the process of identifying the key segment for these campaigns.Keywords: anti-obesity campaigns, mothers, segmentation, targeting
Procedia PDF Downloads 400574 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 173573 Automatic Segmentation of the Clean Speech Signal
Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze
Abstract:
Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The multi-scale product is based on making the product of the speech wavelet transform coefficients at three successive dyadic scales. We have evaluated our method on the Keele database. Experimental results show the effectiveness of our method presenting a good performance. It shows that the two simple features can find word boundaries, and extracted the segments of the clean speech.Keywords: multiscale product, spectral centroid, speech segmentation, zero crossings rate
Procedia PDF Downloads 499572 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments
Authors: Aileen F. Wang
Abstract:
Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square
Procedia PDF Downloads 453571 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length
Procedia PDF Downloads 178570 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images
Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara
Abstract:
Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases
Procedia PDF Downloads 142569 Presenting the Mathematical Model to Determine Retention in the Watersheds
Authors: S. Shamohammadi, L. Razavi
Abstract:
This paper based on the principle concepts of SCS-CN model, a new mathematical model for computation of retention potential (S) presented. In the mathematical model, not only precipitation-runoff concepts in SCS-CN model are precisely represented in a mathematical form, but also new concepts, called “maximum retention” and “total retention” is introduced, and concepts of potential retention capacity, maximum retention, and total retention have been separated from each other. In the proposed model, actual retention (F), maximum actual retention (Fmax), total retention (S), maximum retention (Smax), and potential retention (Sp), for the first time clearly defined, so that Sp is not variable, but a function of morphological characteristics of the watershed. Indeed, based on the mathematical relation of the conceptual curve of SCS-CN model, the proposed model provides a new method for the computation of actual retention in watershed and it simply determined runoff based on. In the corresponding relations, in addition to Precipitation (P), Initial retention (Ia), cumulative values of actual retention capacity (F), total retention (S), runoff (Q), antecedent moisture (M), potential retention (Sp), total retention (S), we introduced Fmax and Fmin referring to maximum and minimum actual retention, respectively. As well as, ksh is a coefficient which depends on morphological characteristics of the watershed. Advantages of the modified version versus the original model include a better precision, higher performance, easier calibration and speed computing.Keywords: model, mathematical, retention, watershed, SCS
Procedia PDF Downloads 457568 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 35567 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 409566 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: hough forest, active shape model, segmentation, cardiac left ventricle
Procedia PDF Downloads 339565 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 478564 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 378563 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections
Authors: Anthony D. Rhodes, Manan Goel
Abstract:
We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.Keywords: computer vision, object segmentation, interactive segmentation, model compression
Procedia PDF Downloads 120562 A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time.Keywords: artificial neural network, diarization, speaker indexing, speaker segmentation
Procedia PDF Downloads 502561 Travellers’ Innovation Segmentation for Shared Accommodation: Comparing Travellers’ Segmentation Pre- and Post-adoption in Shanghai, China
Authors: Lei Qin
Abstract:
As shared accommodation has become one of the most important market developments in the tourism industry, numerous contributions have emerged on travelers’ motivations to choose shared accommodation. A debated question, however, resides in the heterogeneity of travelers based on motivations. This paper aims to reconcile opposing perspectives by comparing motivation segmentation at two distinct phases of innovation adoption of this new hospitality option: (i) before the first travel – potential users showing interest (n=420) and (ii) after the first travel – users (n=420). Interestingly, we find that travelers (including pre-and-post adopters) have a stronger agreement in experiential motivations than practical motivations. However, the heterogeneity of motivations among travelers is significantly higher in users, increasing from two to six clusters, which means travelers cluster into more and distinct motivation groups after adoption. Rather than invalidating specific assumptions used in the literature in terms of motivation heterogeneity, this paper reconciles opposing findings by putting them along with one another in the process of innovation adoption. A subsequent tourists’ segmentation based on motivations were conducted according to their innovation adoption stages.Keywords: motivation, pre-and-post adoption, shared accommodation, segmentation
Procedia PDF Downloads 143560 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 357559 Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed
Authors: M. P. Tripathi, Priti Tiwari
Abstract:
Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds.Keywords: watershed, hydrologic and water quality, ArcSWAT model, remote sensing, GIS, runoff and sediment yield
Procedia PDF Downloads 379558 Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software
Authors: M. Khal, Ab. Algouti, A. Algouti
Abstract:
Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.Keywords: central High-Atlas, hydrogeology, M’Goun watershed, OpenGis, water erosion
Procedia PDF Downloads 159557 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 125556 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 483555 Using the GIS Technology for Erosion Risk Mapping of BEN EL WIDAN Dam Watershed in Beni Mallal, Marroco
Authors: Azzouzi Fadoua
Abstract:
This study focuses on the diagnosis of the dynamics of natural resources in a semi-arid mountainous weakened by natural vulnerability and anthropogenic action. This is evident in the forms of hydraulic erosion and degradation of agricultural land. The rate of this damaged land is 53%, with a strong presence of concentrated erosion; this shows that balanced and semi-balanced environments are less apparent to the Watershed, representing 47%. The results revealed the crucial role of the slopes and the density of the hydraulic networks to facilitate the transport of fine elements, at the level of the slopes with low vegetation intensity, to the lake of the dam. Something that endangers the siltation of the latter. After the study of natural and anthropogenic elements, it turned out that natural vulnerability is an integral part of the current dynamic, especially when it coincides with the overexploitation of natural resources, in this case, the exploitation of steep slopes for the cultivation of cereals and overgrazing. This causes the soil to pile up and increase the rate of runoff.Keywords: watershed, erosion, natural vulnerability, anthropogenic
Procedia PDF Downloads 151554 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering
Procedia PDF Downloads 399553 Brain Tumor Segmentation Based on Minimum Spanning Tree
Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun
Abstract:
In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing
Procedia PDF Downloads 122552 Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin
Authors: Punwath Prum
Abstract:
Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site.Keywords: soil contamination, spatial analysis, watershed
Procedia PDF Downloads 140551 Assessment of the Impacts of Climate Change on Watershed Runoff Using Soil and Water Assessment Tool Model in Southeast Nigeria
Authors: Samuel Emeka Anarah, Kingsley Nnaemeka Ogbu, Obasi Arinze
Abstract:
Quantifying the hydrological response due to changes in climate change is imperative for proper management of water resources within a watershed. The impact of climate change on the hydrology of the Upper Ebony River (UER) watershed, South East Nigeria, was studied using the Soil and Water Assessment Tool (SWAT) hydrological model. A climatological time series analysis from 1985 - 2014 using non-parametric test showed significant negative trends in precipitation and relative humidity trend while minimum and maximum temperature, solar radiation and wind speed showed significant positive trends. Future hypothetical land-use change scenarios (Scenarios 1, 2, 3 and 4) representing urbanization and conversion of forest to agricultural land were combined with future downscaled climate model (CSIRO-Mk3-6-0) and simulated in SWAT model. Relative to the Baseline scenario (2005 - 2014), the results showed a decrease in streamflow by 10.29%, 26.20%, 11.80% and 26.72% for Scenarios 1, 2, 3, and 4 respectively. Model results suggest development of adaptation strategies to cope with the predicted hydrological conditions under future climate change in the watershed.Keywords: climate change, hydrology, runoff, SWAT model
Procedia PDF Downloads 143550 Comparative Analysis of Edge Detection Techniques for Extracting Characters
Authors: Rana Gill, Chandandeep Kaur
Abstract:
Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.Keywords: segmentation, edge detection, text, extracting characters
Procedia PDF Downloads 426549 Impact of Integrated Watershed Management Programme Based on Four Waters Concept: A Case Study of Sali Village, Rajasthan State of India
Authors: Garima Sharma, R. N. Sharma
Abstract:
Integrated watershed management programme based on 'Four Water Concept' was implemented in Sali village, in Jaipur District, Rajasthan State of India . The latitude 26.7234486 North and longitude 75.023876 East are the geocoordinate of the Sali. 'Four Waters Concept' is evolved by integrating the 'Four Waters', viz. rain water, soil moisture, ground water and surface water This methodology involves various water harvesting techniques to prevent the runoff of water by treatment of catchment, proper utilization of available water harvesting structures, renovation of the non-functional water harvesting structures and creation of new water harvesting structures. The case study included questionnaire survey from farmers and continuous study of village for two years. The total project area is 6153 Hac, and the project cost is Rs. 92.25 million. The sanctioned area of Sali Micro watershed is 2228 Hac with an outlay of Rs. 10.52 million. Watershed treatment activities such as water absorption trench, continuous contour trench, field bunding, check dams, were undertaken on agricultural lands for soil and water conservation. These measures have contributed in preventing runoff and increased the perennial availability of water in wells. According to the survey, water level in open wells in the area has risen by approximately 5 metres after the introduction of water harvesting structures. The continuous availability of water in wells has increased the area under irrigation and helped in crop diversification. Watershed management activities have brought the changes in cropping patterns and crop productivity. It helped in transforming 567 Hac culturable waste land into culturable arable land in the village. The farmers of village have created an additional income from the increased crop production. The programme also assured the availability of water during peak summers for the day to day activities of villagers. The outcomes indicate that there is positive impact of watershed management practices on the water resource potential as well the crop production of the area. This suggests that persistent efforts in this direction may lead to sustainability of the watershed.Keywords: four water concept, groundwater potential, irrigation potential, watershed management
Procedia PDF Downloads 357548 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 313547 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 72