Search results for: lung physiology
678 The Usefulness and Limitations of Manual Aspiration Immediately after Pneumothorax Complicating Percutaneous CT Guided Lung Biopsies: A Retrospective 9-Year Review from a Large Tertiary Centre
Authors: Niall Fennessy, Charlotte Yin, Vineet Gorolay, Michael Chan, Ilias Drivas
Abstract:
Background: The aim of this study was to evaluate the effect of manual aspiration of air from the pleural cavity in mitigating the need for chest drain placement after a CT-guided lung biopsy. Method: This is a single institution retrospective review of CT-guided lung biopsies performed on 799 patients between September 2013 and May 2021 in a major tertiary hospital. Percutaneous manual aspiration of air was performed in 104/306 patients (34%) with pneumothoraxes as a preventative measure. Simple and multivariate analysis was performed to identify independent risk factors (modifiable and nonmodifiable) for the success of manual aspiration in mitigating the need for chest drain insertion. Results: The overall incidence of pneumothorax was 37% (295/799). Chest drains were inserted for 81/295 (27%) of the pneumothoraxes, representing 81/799 (10%) of all CT-guided lung biopsies. Of patients with pneumothoraces, 104 (36%) underwent percutaneous aspiration via either the coaxial guide needle or an 18 or 20G intravenous catheter attached to a three-way stopcock and syringe. Amongst this group, 13 patients (13%) subsequently required chest drain insertion. The success of percutaneous aspiration in avoiding subsequent pleural drain insertion decreased with aspiration volume >500mL, radial pneumothorax depth >3cm, increased subpleural depth of the lesion, and the presence of background emphysema.Keywords: computed tomography, lung biopsy, pneumothorax, manual aspiration, chest drainage
Procedia PDF Downloads 176677 The out of Proportion - Pulmonary Hypertension in Indians with Chronic Lung Disease
Authors: S. P. Chintan, A. M. Khoja, M. Modi, R. K. Chopra, S. Garde, D. Jain, O. Kajale
Abstract:
Pulmonary Hypertension is a rare but debilitating disease that affects individuals of all ages and walks of life. As recent as 15 years ago, a patient diagnosed with PH was given an average survival rate of 2.8 years. Recent advances in treatment options have allowed patients to improve quality o and quantity of life. Initial screening for PH is through echocardiography with final diagnosis confirmed through right heart catheterization. PH is now considered to have five major classifications with subgroups among each. The mild to moderate PH is common in chronic lung diseases like Chronic obstructive pulmonary diseases and Interstitial lung disease. But very severe PH is noted in few cases. In COPD patients, PH is associated with an increased risk of severe exacerbations and a reduced life expectancy. Similarly, in patients with ILD, the presence of PH correlates with a poor prognosis. Early diagnosis is essential to slow disease progression. We report here five cases of severe PH (Out of Proportion) of which four cases were of COPD and another one of IPF (UIP pattern). There echocardiography showed gross RA/RV dilatation, interventricular septum bulging to the left and mPAP of more than 100 mmHg in all the five cases. These patients were put on LTOT, pulmonary rehabilitation, combination pharmacotherapy of vasodilators and diuretics in continuation to the treatment of underlying disease. As these patients have grave prognosis close monitoring and follow up is required. Physicians associated with respiratory care and treating chronic lung disease should have knowledge in the diagnosis and management of patients with PH.Keywords: COPD, pulmonary hypertension, chronic lung disease, India
Procedia PDF Downloads 357676 The Impact of Diesel Exhaust Particles on Tight Junction Proteins on Nose and Lung in a Mouse Model
Authors: Kim Byeong-Gon, Lee Pureun-Haneul, Hong Jisu, Jang An-Soo
Abstract:
Background: Diesel exhaust particles (DEPs) lead to trigger airway hyperresponsiveness (AHR) and airway dysfunction or inflammation in respiratory systems. Whether tight junction protein changes can contribute to development or exacerbations of airway diseases remain to be clarified. Objective: The aim of this study was to observe the effect of DEP on tight junction proteins in one airway both nose and lung in a mouse model. Methods: Mice were treated with saline (Sham) and exposed to 100 μg/m³ DEPs 1 hour a day for 5 days a week for 4 weeks and 8 weeks in a closed-system chamber attached to a ultrasonic nebulizer. Airway hyperresponsiveness (AHR) was measured and bronchoalveolar lavage (BAL) fluid, nasal lavage (NAL) fluid, lung and nasal tissue was collected. The effects of DEP on tight junction proteins were estimated using western blot, immunohistochemical in lung and nasal tissue. Results: Airway hyperresponsiveness and number of inflammatory cells were higher in DEP exposure group than in control group, and were higher in 4 and 8 weeks model than in control group. The expression of tight junction proteins CLND4, -5, and -17 in both lung and nasal tissue were significantly increased in DEP exposure group than in the control group. Conclusion: These results suggesting that CLDN4, -5 and -17 may be involved in the airway both nose and lung, suggesting that air pollutants cause to disruption of epithelial and endothelial cell barriers. Acknowledgment: This research was supported by Korea Ministry of Environment (MOE) as 'The Environmental Health Action Program' (2016001360009) and Soonchunhyang University Research Fund.Keywords: diesel exhaust particles, air pollutant, tight junction, Claudin, Airway inflammation
Procedia PDF Downloads 145675 Role of Interleukin-36 in Response to Pseudomonas aeruginosa Infection
Authors: Muslim Idan Mohsin, Mohammed Jasim Al-Shamarti, Rusul Idan Mohsin, Ali A. Majeed
Abstract:
One of the causative agents of the lower respiratory tract (LRT) is Pseudomonas aeruginosa, which can lead to severe infection associated with a lung infection. There are many cytokines that are secreted in response to bacterial infection, in particular interleukin IL-36 cytokine in response to P. aeruginosa infection. The involvement of IL-36 in the P. aeruginosa infection could be a clue to find a specific way for treatments of different inflammatory and degenerative lung diseases. IL36 promotes primary immune response via binding to the IL-36 receptor (IL-36R). Indeed, an overactivity of IL-36 might be an initiating factor for many immunopathologic sceneries in pneumonia. Here we demonstrate if the IL-36 cytokine increases in response P. aeruginosa infection that is isolated from lower respiratory tract infection (LRT). We demonstrated that IL-36 expression significantly unregulated in human lung epithelial (A549) cells after infected by P. aeruginosa at mRNA level.Keywords: IL36, Pseudomonas aeruginosa, LRT infection, A549 cells
Procedia PDF Downloads 234674 A Preliminary Study on the Effects of Lung Impact on Ballistic Thoracic Trauma
Authors: Amy Pullen, Samantha Rodrigues, David Kieser, Brian Shaw
Abstract:
The aim of the study was to determine if a projectile interacting with the lungs increases the severity of injury in comparison to a projectile interacting with the ribs or intercostal muscle. This comparative study employed a 10% gelatine based model with either porcine ribs or balloons embedded to represent a lung. Four sample groups containing five samples were evaluated; these were control (plain gel), intercostal impact, rib impact, and lung impact. Two ammunition natures were evaluated at a range of 10m; these were 5.56x45mm and 7.62x51mm. Aspects of projectile behavior were quantified including exiting projectile weight, location of yawing, projectile fragmentation and distribution, location and area of the temporary cavity, permanent cavity formation, and overall energy deposition. Major findings included the cavity showing a higher percentage of the projectile weight exit the block than the intercostal and ribs, but similar to the control for the 5.56mm ammunition. However, for the 7.62mm ammunition, the lung was shown to have a higher percentage of the projectile weight exit the block than the control, intercostal and ribs. The total weight of projectile fragments as a function of penetration depth revealed large fluctuations and significant intra-group variation for both ammunition natures. Despite the lack of a clear trend, both plots show that the lung leads to greater projectile fragments exiting the model. The lung was shown to have a later center of the temporary cavity than the control, intercostal and ribs for both ammunition types. It was also shown to have a similar temporary cavity volume to the control, intercostal and ribs for the 5.56mm ammunition and a similar temporary cavity to the intercostal for the 7.62mm ammunition The lung was shown to leave a similar projectile tract than the control, intercostal and ribs for both ammunition types. It was also shown to have larger shear planes than the control and the intercostal, but similar to the ribs for the 5.56mm ammunition, whereas it was shown to have smaller shear planes than the control but similar shear planes to the intercostal and ribs for the 7.62mm ammunition. The lung was shown to have less energy deposited than the control, intercostal and ribs for both ammunition types. This comparative study provides insights into the influence of the lungs on thoracic gunshot trauma. It indicates that the lungs limits projectile deformation and causes a later onset of yawing and subsequently limits the energy deposited along the wound tract creating a deeper and smaller cavity. This suggests that lung impact creates an altered pattern of local energy deposition within the target which will affect the severity of trauma.Keywords: ballistics, lung, trauma, wounding
Procedia PDF Downloads 172673 Object-Oriented Programming for Modeling and Simulation of Systems in Physiology
Authors: J. Fernandez de Canete
Abstract:
Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students.Keywords: object-oriented modeling, SIMSCAPE simulation language, MODELICA simulation language, cardiovascular system
Procedia PDF Downloads 507672 Early and Mid-Term Results of Anesthetic Management of Minimal Invasive Coronary Artery Bypass Grafting Using One Lung Ventilation
Authors: Devendra Gupta, S. P. Ambesh, P. K Singh
Abstract:
Introduction: Minimally invasive coronary artery bypass grafting (MICABG) is a less invasive method of performing surgical revascularization. Minimally invasive direct coronary artery bypass (MIDCAB) provides many anesthetic challenges including one lung ventilation (OLV), managing myocardial ischemia, and pain. We present an early and midterm result of the use of this technique with OLV. Method: We enrolled 62 patients for analysis operated between 2008 and 2012. Patients were anesthetized and left endobronchial tube was placed. During the procedure left lung was isolated and one lung ventilation was maintained through right lung. Operation was performed utilizing off pump technique of coronary artery bypass grafting through a minimal invasive incision. Left internal mammary artery graft was done for single vessel disease and radial artery was utilized for other grafts if required. Postoperative ventilation was done with single lumen endotracheal tube. Median follow-up is 2.5 years (6 months to 4 years). Results: Median age was 58.5 years (41-77) and all were male. Single vessel disease was present in 36, double vessel in 24 and triple vessel disease in 2 patients. All the patients had normal left ventricular size and function. In 2 cases difficulty were encounter in placement of endobronchial tube. In 1 case cuff of endobronchial tube was ruptured during intubation. High airway pressure was developed on OLV in 1 case and surgery was accomplished with two lung anesthesia with low tidal volume. Mean postoperative ventilation time was 14.4 hour (11-22). There was no perioperative and 30 day mortality. Conversion to median sternotomy to complete the operation was done in 3.23% (2 out of 62 patients). One patient had acute myocardial infarction postoperatively and there were no deaths during follow-up. Conclusion: MICABG is a safe and effective method of revascularization with OLV in low risk candidates for coronary artery bypass grafting.Keywords: MIDCABG, one lung ventilation, coronary artery bypass grafting, endobronchial tube
Procedia PDF Downloads 425671 An Evidence Map of Cost-Utility Studies in Non-Small Cell Lung Cancer
Authors: Cassandra Springate, Alexandra Furber, Jack E. Hines
Abstract:
Objectives: To create an evidence map of the cost-utility studies available with non-small cell lung cancer patients, and identify the geographical settings and interventions used. Methods: Using the Disease, Study Type, and Model Type filters in heoro.com we identified all cost-utility studies published between 1960 and 2017 with patients with non-small cell lung cancer. These papers were then indexed according to pre-specified categories. Results: Heoro.com identified 89 independent publications, published between 1995 and 2017. Of the 89 papers, 74 were published since 2010, 28 were from the USA, and 35 were from Europe, 16 of which were from the UK. Other publications were from China and Japan (13), Canada (9), Australia and New Zealand (4), and other countries (8). Fifty-nine studies included a chemotherapy intervention, of which 23 included erlotinib or gefitinib, 21 included pemetrexed or docetaxel, others included nivolumab (3), pembrolizumab (2), crizotinib (2), denosumab (2), necitumumab (1), and bevacizumab (1). Also, 19 studies modeled screening, staging, or surveillance strategies. Conclusions: The cost-utility studies found for NSCLC most commonly looked at the effectiveness of different chemotherapy treatments, with some also evaluating the addition of screening strategies. Most were also conducted with patient data from the USA and Europe.Keywords: cancer, cost-utility, economic model, non-small cell lung cancer
Procedia PDF Downloads 151670 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling
Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin
Abstract:
Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.Keywords: breast cancer, metastasis, PPI networks, protein conformational changes
Procedia PDF Downloads 245669 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 157668 Lung Parasites in Stone Martens (Martes foina L.) from Bulgaria
Authors: Vassilena Dakova, Mariana Panayotova-Pencheva
Abstract:
The present work focused on the study of pulmonary helminth-fauna of the stone marten in Bulgaria in terms of which the data are little. For the purpose, four stone martens were helminthologically necropsied according to the common technique. In addition, some of the injured lung parts were investigated after their boiling in lactic acid and subsequent compression. Four nematode species from different families of order Strongylida and Trichocephalida were found in the lungs. These were Crenosoma petrowi Morosov, 1939; Eucoleus aerophilus Creplin, 1839; Filaroides martis Werner, 1782 and Sobolevingylus petrowi Romanov, 1952. Some of the parasite structures with taxonomic importance were measured and described. According to our best knowledge, the species F. martis and S. petrowi are recorded for the first time as a part of the helminth-fauna of Southeast Europe and Bulgaria in particular.Keywords: Bulgaria, Crenosoma petrowi, Eucoleus aerophilus, Filaroides martis, lung parasites, Sobolevingylus petrowi, stone martens
Procedia PDF Downloads 147667 Underdiagnosis of Supraclavicular Brachial Plexus Metastasis in the Shadow of Cervical Disc Herniation: Insights from a Lung Cancer Case Study
Authors: Eunhwa Jun
Abstract:
This case report describes the misdiagnosis of a patient who presented with right arm pain as cervical disc herniation. The patient had several underlying conditions, including hypertension, diabetes mellitus, liver cirrhosis, a history of lung cancer with left lower lobe lobectomy, and adjuvant chemoradiotherapy. An external cervical spine MRI revealed central protruding discs at the C4-5-6-7 levels. Despite treatment with medication and epidural blocks, the patient's pain persisted. A C-RACZ procedure was planned, but the patient's pain had worsened before admission. Using ultrasound, a brachial plexus block was attempted, but the brachial plexus eluded clear visualization, hinting at underlying neurological complexities. Chest CT revealed a new, large soft tissue mass in the right supraclavicular region with adjacent right axillary lymphadenopathy, leading to the diagnosis of metastatic squamous cell carcinoma. Palliative radiation therapy and chemotherapy were initiated as part of the treatment plan, and the patient's pain score decreased to 3 out of 10 on the Numeric Rating Scale (NRS), revealing the pain was due to metastatic lung cancer.Keywords: supraclavicula brachial plexus metastasis, cervical disc herniation, brachial plexus block, metastatic lung cancer
Procedia PDF Downloads 47666 Airborne Pollutants and Lung Surfactant: Biophysical Impacts of Surface Oxidation Reactions
Authors: Sahana Selladurai, Christine DeWolf
Abstract:
Lung surfactant comprises a lipid-protein film that coats the alveolar surface and serves to prevent alveolar collapse upon repeated breathing cycles. Exposure of lung surfactant to high concentrations of airborne pollutants, for example tropospheric ozone in smog, can chemically modify the lipid and protein components. These chemical changes can impact the film functionality by decreasing the film’s collapse pressure (minimum surface tension attainable), altering it is mechanical and flow properties and modifying lipid reservoir formation essential for re-spreading of the film during the inhalation process. In this study, we use Langmuir monolayers spread at the air-water interface as model membranes where the compression and expansion of the film mimics the breathing cycle. The impact of ozone exposure on model lung surfactant films is measured using a Langmuir film balance, Brewster angle microscopy and a pendant drop tensiometer as a function of film and sub-phase composition. The oxidized films are analyzed using mass spectrometry where lipid and protein oxidation products are observed. Oxidation is shown to reduce surface activity, alter line tension (and film morphology) and in some cases visibly reduce the viscoelastic properties of the film when compared to controls. These reductions in functionality of the films are highly dependent on film and sub-phase composition, where for example, the effect of oxidation is more pronounced when using a physiologically relevant buffer as opposed to water as the sub-phase. These findings can lead to a better understanding on the impact of continuous exposure to high levels of ozone on the mechanical process of breathing, as well as understanding the roles of certain lung surfactant components in this process.Keywords: lung surfactant, oxidation, ozone, viscoelasticity
Procedia PDF Downloads 312665 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing
Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila
Abstract:
Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing
Procedia PDF Downloads 176664 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy
Authors: Shiva Shakori Poshteh
Abstract:
Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery
Procedia PDF Downloads 72663 Examining the Links between Fish Behaviour and Physiology for Resilience in the Anthropocene
Authors: Lauren A. Bailey, Amber R. Childs, Nicola C. James, Murray I. Duncan, Alexander Winkler, Warren M. Potts
Abstract:
Changes in behaviour and physiology are the most important responses of marine life to anthropogenic impacts such as climate change and over-fishing. Behavioural changes (such as a shift in distribution or changes in phenology) can ensure that a species remains in an environment suited for its optimal physiological performance. However, if marine life is unable to shift their distribution, they are reliant on physiological adaptation (either by broadening their metabolic curves to tolerate a range of stressors or by shifting their metabolic curves to maximize their performance at extreme stressors). However, since there are links between fish physiology and behaviour, changes to either of these traits may have reciprocal interactions. This paper reviews the current knowledge of the links between the behaviour and physiology of fishes, discusses these in the context of exploitation and climate change, and makes recommendations for future research needs. The review revealed that our understanding of the links between fish behaviour and physiology is rudimentary. However, both are hypothesized to be linked to stress responses along the hypothalamic pituitary axis. The link between physiological capacity and behaviour is particularly important as both determine the response of an individual to a changing climate and are under selection by fisheries. While it appears that all types of capture fisheries are likely to reduce the adaptive potential of fished populations to climate stressors, angling, which is primarily associated with recreational fishing, may induce fission of natural populations by removing individuals with bold behavioural traits and potentially the physiological traits required to facilitate behavioural change. Future research should focus on assessing how the links between physiological capacity and behaviour influence catchability, the response to climate change drivers, and post-release recovery. The plasticity of phenotypic traits should be examined under a range of stressors of differing intensity in several species and life history stages. Future studies should also assess plasticity (fission or fusion) in the phenotypic structuring of social hierarchy and how this influences habitat selection. Ultimately, to fully understand how physiology is influenced by the selective processes driven by fisheries, long-term monitoring of the physiological and behavioural structure of fished populations, their fitness, and catch rates are required.Keywords: climate change, metabolic shifts, over-fishing, phenotypic plasticity, stress response
Procedia PDF Downloads 118662 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant
Authors: Weiam Daear, Patrick Lai, Elmar Prenner
Abstract:
The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles
Procedia PDF Downloads 180661 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 103660 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway
Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li
Abstract:
Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis
Procedia PDF Downloads 312659 Correlation Between Cytokine Levels and Lung Injury in the Syrian Hamster (Mesocricetus Auratus) Covid-19 Model
Authors: Gleb Fomin, Kairat Tabynov, Nurkeldy Turebekov, Dinara Turegeldiyeva, Rinat Islamov
Abstract:
The level of major cytokines in the blood of patients with COVID-19 varies greatly depending on age, gender, duration and severity of infection, and comorbidity. There are two clinically significant cytokines, IL-6 and TNF-α, which increase in levels in patients with severe COVID-19. However, in a model of COVID-19 in hamsters, TNF-α levels are unchanged or reduced, while the expression of other cytokines reflects the profile of cytokines found in patients’ plasma. The aim of our study was to evaluate the relationship between the level of cytokines in the blood, lungs, and lung damage in the model of the Syrian hamster (Mesocricetus auratus) infected with the SARS-CoV-2 strain. The study used outbred female and male Syrian hamsters (n=36, 4 groups) weighing 80-110 g and 5 months old (protocol IACUC, #4, 09/22/2020). Animals were infected intranasally with the hCoV-19/Kazakhstan/KazNAU-NSCEDI-481/2020 strain and euthanized at 3 d.p.i. The level of cytokines IL-6, TNF-α, IFN-α, and IFN-γ was determined by ELISA MyBioSourse (USA) for hamsters. Lung samples were subjected to histological processing. The presence of pathological changes in histological preparations was assessed on a 3-point scale. The work was carried out in the ABSL-3 laboratory. The data were analyzed in GraphPad Prism 6.00 (GraphPad Software, La Jolla, California, USA). The work was supported by the MES RK grant (AP09259865). In the blood, the level of TNF-α increased in males (p=0.0012) and IFN-γ in males and females (p=0.0001). On the contrary, IFN-α production decreased (p=0.0006). Only TNF-α level increased in lung tissues (p=0.0011). Correlation analysis showed a negative relationship between the level of IL-6 in the blood and lung damage in males (r -0.71, p=0.0001) and females (r-0.57, p=0.025). On the contrary, in males, the level of IL-6 in the lungs and score is positively correlated (r 0.80, p=0.01). The level of IFN-γ in the blood (r -0.64, p=0.035) and lungs (r-0.72, p=0.017) in males has a negative correlation with lung damage. No links were found for TNF-α and IFN-α. The study showed a positive association between lung injury and tissue levels of IL-6 in male hamsters. It is known that in humans, high concentrations of IL-6 in the lungs are associated with suppression of cellular immunity and, as a result, with an increase in the severity of COVID-19. TNF-α and IFN-γ play a key role in the pathogenesis of COVID-19 in hamsters. However, the mechanisms of their activity require more detailed study. IFN-α plays a lesser role in direct lung injury in a Syrian hamster model. We have shown the significance of tissue IL-6 and IFN-γ as predictors of the severity of lung damage in COVID-19 in the Syrian hamster model. Changes in the level of cytokines in the blood may not always reflect pathological processes in the lungs with COVID-19.Keywords: syrian hamster, COVID-19, cytokines, biological model
Procedia PDF Downloads 93658 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung
Authors: Yu-Chen Hsu, Kuang C. Lin
Abstract:
The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows
Procedia PDF Downloads 312657 Postmortem Magnetic Resonance Imaging as an Objective Method for the Differential Diagnosis of a Stillborn and a Neonatal Death
Authors: Uliana N. Tumanova, Sergey M. Voevodin, Veronica A. Sinitsyna, Alexandr I. Shchegolev
Abstract:
An important part of forensic and autopsy research in perinatology is the answer to the question of life and stillbirth. Postmortem magnetic resonance imaging (MRI) is an objective non-invasive research method that allows to store data for a long time and not to exhume the body to clarify the diagnosis. The purpose of the research is to study the possibilities of a postmortem MRI to determine the stillbirth and death of a newborn who had spontaneous breathing and died on the first day after birth. MRI and morphological data of a study of 23 stillborn bodies, prenatally dead at a gestational age of 22-39 weeks (Group I) and the bodies of 16 newborns who died from 2 to 24 hours after birth (Group II) were compared. Before the autopsy, postmortem MRI was performed on the Siemens Magnetom Verio 3T device in the supine position of the body. The control group for MRI studies consisted of 7 live newborns without lung disease (Group III). On T2WI in the sagittal projection was measured MR-signal intensity (SI) in the lung tissue (L) and shoulder muscle (M). During the autopsy, a pulmonary swimming test was evaluated, and macro- and microscopic studies were performed. According to the postmortem MRI, the highest values of mean SI of the lung (430 ± 27.99) and of the muscle (405.5 ± 38.62) on T2WI were detected in group I and exceeded the corresponding value of group II by 2.7 times. The lowest values were found in the control group - 77.9 ± 12.34 and 119.7 ± 6.3, respectively. In the group II, the lung SI was 1.6 times higher than the muscle SI, whereas in the group I and in the control group, the muscle SI was 2.1 times and 1.8 times larger than the lung. On the basis of clinical and morphological data, we calculated the formula for determining the breathing index (BI) during postmortem MRI: BI = SIL x SIM / 100. The mean value of BI in the group I (1801.14 ± 241.6) (values ranged from 756 to 3744) significantly higher than the corresponding average value of BI in the group II (455.89 ± 137.32, p < 0.05) (305-638.4). In the control group, the mean BI value was 91.75 ± 13.3 (values ranged from 53 to 154). The BI with the results of pulmonary swimming tests and microscopic examination of the lungs were compared. The boundary value of BI for the differential diagnosis of stillborn and newborn death was 700. Using the postmortem MRI allows to differentiate the stillborn with the death of the breathing newborn.Keywords: lung, newborn, postmortem MRI, stillborn
Procedia PDF Downloads 128656 Synergistic Anti-Proliferation Effect of PLK-1 Inhibitor and Livistona Chinensis Fruit Extracts on Lung Adenocarcinoma A549 Cells
Authors: Min-Chien Su, Tzu-Hsuan Hsu, Guan-Xuan Wu, Shyh-Ming Kuo
Abstract:
Lung cancer is one of the clinically challenging malignant diseases worldwide. For efficient therapeutics in cancer, combination therapy has developed to acquire a better outcome. PLK-1 was one of the major factors affecting cell mitosis in cancer cells, its inhibitor Bi6727 was proven effective in treating several different cancers namely oral cancer, colon cancer and lung cancer. Despite its low toxicity toward normal cells compared to traditional chemotherapy, it is still yet to be evaluated in detail. Livistona Chinensis (LC) is a Chinese herb that used as a traditional prescription to treat lung cancer. Due to the uncertainty of the efficacy of LC, we utilized a water extraction method to extract the Livistona Chinensis and then lyophilized into powder for further study. In this study we investigated the antiproliferation activities of Bi6727 and LC extracts (LCE) on A549 non-small lung cancer cells. The IC50 of Bi6727 and LCE on A549 are 60 nM and 0.8 mg/mL, respectively. The fluorescent staining images shown nucleolus damage in cells treated with Bi6727 and mitochondrial damage after treated with LCE. A549 cells treated with Bi6727 and LCE showed increased expression of Bax, Caspase-3 and Caspase-9 proteins from Western blot assay. LCE also inhibited A549 cells growth keeping cells at G2-M phase from cell cycle assay. Apoptosis assay results showed that LCE induced late apoptosis of A549 cells. JC-1 assay showed that the mitochondria damaged at the LCE concentration of 0.4 mg/mL. In our preliminary anti-proliferation test of combined LCE and Bi-6727 on A549 cells, we found a dramatically decrease in proliferation after treated with LCE first for 24-h and then Bi-6727 for extra 24-h. This was an important finding regarding synergistic anti-proliferation effect of these drugs, However, the usage, the application sequence of LCE and Bi-6727 on A549 cells and their related mechanisms still need to be evaluated. In summary, the drugs exerted anti-proliferation effect on A549 cells independently. We hopefully combine the usage of these two drugs will bring a different and potential outcome in treating lung cancer.Keywords: anti-proliferation, A549, Livistona Chinensis fruit extracts, PLK-1 inhibitor
Procedia PDF Downloads 142655 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology
Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury
Abstract:
An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin
Procedia PDF Downloads 100654 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 155653 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation
Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao
Abstract:
Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy
Procedia PDF Downloads 68652 Aquaporin-1 as a Differential Marker in Toxicant-Induced Lung Injury
Authors: Ekta Yadav, Sukanta Bhattacharya, Brijesh Yadav, Ariel Hus, Jagjit Yadav
Abstract:
Background and Significance: Respiratory exposure to toxicants (chemicals or particulates) causes disruption of lung homeostasis leading to lung toxicity/injury manifested as pulmonary inflammation, edema, and/or other effects depending on the type and extent of exposure. This emphasizes the need for investigating toxicant type-specific mechanisms to understand therapeutic targets. Aquaporins, aka water channels, are known to play a role in lung homeostasis. Particularly, the two major lung aquaporins AQP5 and AQP1 expressed in alveolar epithelial and vasculature endothelia respectively allow for movement of the fluid between the alveolar air space and the associated vasculature. In view of this, the current study is focused on understanding the regulation of lung aquaporins and other targets during inhalation exposure to toxic chemicals (Cigarette smoke chemicals) versus toxic particles (Carbon nanoparticles) or co-exposures to understand their relevance as markers of injury and intervention. Methodologies: C57BL/6 mice (5-7 weeks old) were used in this study following an approved protocol by the University of Cincinnati Institutional Animal Care and Use Committee (IACUC). The mice were exposed via oropharyngeal aspiration to multiwall carbon nanotube (MWCNT) particles suspension once (33 ugs/mouse) followed by housing for four weeks or to Cigarette smoke Extract (CSE) using a daily dose of 30µl/mouse for four weeks, or to co-exposure using the combined regime. Control groups received vehicles following the same dosing schedule. Lung toxicity/injury was assessed in terms of homeostasis changes in the lung tissue and lumen. Exposed lungs were analyzed for transcriptional expression of specific targets (AQPs, surfactant protein A, Mucin 5b) in relation to tissue homeostasis. Total RNA from lungs extracted using TRIreagent kit was analyzed using qRT-PCR based on gene-specific primers. Total protein in bronchoalveolar lavage (BAL) fluid was determined by the DC protein estimation kit (BioRad). GraphPad Prism 5.0 (La Jolla, CA, USA) was used for all analyses. Major findings: CNT exposure alone or as co-exposure with CSE increased the total protein content in the BAL fluid (lung lumen rinse), implying compromised membrane integrity and cellular infiltration in the lung alveoli. In contrast, CSE showed no significant effect. AQP1, required for water transport across membranes of endothelial cells in lungs, was significantly upregulated in CNT exposure but downregulated in CSE exposure and showed an intermediate level of expression for the co-exposure group. Both CNT and CSE exposures had significant downregulating effects on Muc5b, and SP-A expression and the co-exposure showed either no significant effect (Muc5b) or significant downregulating effect (SP-A), suggesting an increased propensity for infection in the exposed lungs. Conclusions: The current study based on the lung toxicity mouse model showed that both toxicant types, particles (CNT) versus chemicals (CSE), cause similar downregulation of lung innate defense targets (SP-A, Muc5b) and mostly a summative effect when presented as co-exposure. However, the two toxicant types show differential induction of aquaporin-1 coinciding with the corresponding differential damage to alveolar integrity (vascular permeability). Interestingly, this implies the potential of AQP1 as a differential marker of toxicant type-specific lung injury.Keywords: aquaporin, gene expression, lung injury, toxicant exposure
Procedia PDF Downloads 184651 Triple Case Phantom Tumor of Lungs
Authors: Angelis P. Barlampas
Abstract:
Introduction: The term phantom lung mass describes the ovoid collection of fluid within the interlobular fissure, which initially creates the impression of a mass. The problem of correct differential diagnosis is great, especially in plain radiography. A case is presented with three nodular pulmonary foci, the shape, location, and density of which, as well as the presence of chronic loculated pleural effusions, suggest the presence of multiple phantom tumors of the lung. Purpose: The aim of this paper is to draw the attention of non-experienced and non-specialized physicians to the existence of benign findings that mimic pathological conditions and vice versa. The careful study of a radiological examination and the comparison with previous exams or further control protect against quick wrong conclusions. Methods: A hospitalized patient underwent a non-contrast CT scan of the chest as part of the general control of her situation. Results: Computed tomography revealed pleural effusions, some of them loculated, increased cardiothoracic index, as well as the presence of three nodular foci, one in the left lung and two in the right with a maximum density of up to 18 Hounsfield units and a mean diameter of approximately five centimeters. Two of them are located in the characteristical anatomical position of the major interlobular fissure. The third one is located in the area of the right lower lobe’s posterior basal part, and it presents the same characteristics as the previous ones and is likely to be a loculated fluid collection, within an auxiliary interlobular fissure or a cyst, in the context of the patient's more general pleural entrapments and loculations. The differential diagnosis of nodular foci based on their imaging characteristics includes the following: a) rare metastatic foci with low density (liposarcoma, mucous tumors of the digestive or genital system, necrotic metastatic foci, metastatic renal cancer, etc.), b) necrotic multiple primary lung tumor locations (squamous epithelial cancer, etc. ), c) hamartomas of the lung, d) fibrotic tumors of the interlobular fissures, e) lipoid pneumonia, f) fluid concentrations within the interlobular fissures, g) lipoma of the lung, h) myelolipomas of the lung. Conclusions: The collection of fluid within the interlobular fissure of the lung can give the false impression of a lung mass, particularly on plain chest radiography. In the case of computed tomography, the ability to measure the density of a lesion, combined with the provided high anatomical details of the location and characteristics of the lesion, can lead relatively easily to the correct diagnosis. In cases of doubt or image artifacts, comparison with previous or subsequent examinations can resolve any disagreements, while in rare cases, intravenous contrast may be necessary.Keywords: phantom mass, chest CT, pleural effusion, cancer
Procedia PDF Downloads 55650 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning
Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel
Abstract:
Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection
Procedia PDF Downloads 44649 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer
Authors: Rahaba Marima, Clement Penny
Abstract:
The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer
Procedia PDF Downloads 156