Search results for: human cancer cell lines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13007

Search results for: human cancer cell lines

12947 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.

Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 293
12946 Real Time PCR Analysis of microRNA Expression in Oral Cancer

Authors: Karl Kingsley

Abstract:

Many mechanisms are involved in the control of cellular differentiation and growth, which are often dysregulated in many cancers. Many distinct pathways are involved in these mechanisms of control, including deoxyribonuclease (DNA) methyltransferase and histone deacetylase (HDAC) activation that controls both genetic and epigenetic modifications and micro ribonucleic acid (RNA) expression. Less is known about the expression of DNA methyltransferase (DNMT) and HDAC in oral cancers and the effect on microRNA expression. The primary objective of this study was to evaluate the expression of DNMT and HDAC family members in oral cancer and the concomitant expression of cancer-associated microRNAs. Using commercially available oral cancers, including squamous cell carcinoma (SCC)-4, SCC-9, SCC-15, and SCC-25, RNA was extracted and screened for DNMT, HDAC, and microRNA expression using highly-specific primers and quantitative polymerase chain reaction (qPCR). These data revealed low or absent expression of DNMT-1, which is associated with cellular differentiation but increased expression of DNMT-3a and DNMT-3b in all SCC cell lines compared with normal non-cancerous cell controls. In addition, no expression of HDAC1 and HDAC2 expression was found among the normal, non-cancerous cells but was highly expressed in each of the SCC cell lines examined. Differential expression of oncogenic and cancer-associated microRNAs was also observed among the SCC cell lines, including miR-21, miR-133, miR-149, miR-155, miR-365, and miR-720. These findings also appeared to vary according to observed growth rates among these cells. These data may be the first to demonstrate the expression and association between HDAC and DNMT3 family members among oral cancers. In addition, the differential expression of these epigenetic modifiers may be associated with the expression of specific microRNAs in these cancers, which have not previously been observed to the best of the author's knowledge. In addition, some associations and relationships may exist between the expression of these biomarkers and the rates of growth and proliferation, which may suggest that these expression patterns might represent potentially useful biomarkers to determine tumor aggressiveness and other phenotypic behaviors among oral cancers.

Keywords: oral cancer, DNA methyltransferase, histone deacetylase, microRNA

Procedia PDF Downloads 123
12945 Anticancer Activity of Edible Coprinus Mushroom (Coprinus comatus) on Human Glioblastoma Cell Lines and Interaction with Temozolomide

Authors: Maria Borawska, Patryk Nowakowski, Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Anna Puscion-Jakubik, Krystyna Gromkowska-Kepka, Justyna Moskwa

Abstract:

Coprinus comatus (O. F. Müll.) Pers.) should not be confused with the common Ink Cap, which contains coprine and can induce coprine poisoning. We study the possibility of applying coprinus mushroom (Coprinus comatus), available in Poland, as food product supporting the treatment of human glioblastoma cells. The U87MG and T98 glioblastoma cell lines were exposed to water (CW) or ethanol 95° (CE) Cantharellus extracts (50-500 μg/ml), with or without temozolomide (TMZ) during 24, 48 or 72 hours. The cell division was examined by the H³-thymidine incorporation. The statistical analysis was performed using Statistica v. 13.0 software. Significant differences were assumed for p < 0.05. We found that both, CW and CE, administrated alone, had inhibitory effect on cell lines growth, but the CE extract had a higher degree of growth inhibition. The anti-tumor effect of TMZ (50 μM) on U87MG was enhanced by mushroom extracts, and the effect was lower to the effect after using Coprinus comatus extracts (CW and CE) alone. A significant decrease (p < 0.05) in pro-MMP2 (82.61 ± 6.3% of control) secretion in U87MG cells was observed after treated with CE (250 μg/ml). We conclude that extracts of Coprinus comatus, edible mushroom, present cytotoxic properties on U87MG and T98 cell lines and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line.

Keywords: anticancer, glioma, mushroom, temozolomide

Procedia PDF Downloads 180
12944 PCR Based DNA Analysis in Detecting P53 Mutation in Human Breast Cancer (MDA-468)

Authors: Debbarma Asis, Guha Chandan

Abstract:

Tumor Protein-53 (P53) is one of the tumor suppressor proteins. P53 regulates the cell cycle that conserves stability by preventing genome mutation. It is named so as it runs as 53-kilodalton (kDa) protein on Polyacrylamide gel electrophoresis although the actual mass is 43.7 kDa. Experimental evidence has indicated that P53 cancer mutants loses tumor suppression activity and subsequently gain oncogenic activities to promote tumourigenesis. Tumor-specific DNA has recently been detected in the plasma of breast cancer patients. Detection of tumor-specific genetic materials in cancer patients may provide a unique and valuable tumor marker for diagnosis and prognosis. Commercially available MDA-468 breast cancer cell line was used for the proposed study.

Keywords: tumor protein (P53), cancer mutants, MDA-468, tumor suppressor gene

Procedia PDF Downloads 466
12943 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 317
12942 Regulation of Apoptosis in Human Lung Cancer NCI-H226 Cells through Caspase – Dependent Mechanism by Benjakul Extract

Authors: Pintusorn Hansakul, Ruchilak Rattarom, Arunporn Itharat

Abstract:

Background: Benjakul, a Thai traditional herbal formulation, comprises of five plants: Piper chaba, Piper sarmentosum, Piper interruptum, Plumbago indica, and Zingiber officinale. It has been widely used to treat cancer patients in the context of folk medicine in Thailand. This study aimed to investigate the cytotoxic effect of the ethanol extract of Benjakul against three non-small cell lung cancer (NSCLC) cell lines (NCI-H226, A549, COR-L23), small cell lung cancer (SCLC) cell line NCI-H1688 and normal lung fibroblast cell line MRC-5. The study further examined the molecular mechanisms underlying its cytotoxicity via induction of apoptosis in NCI-H226 cells. Methods: The cytotoxic effect of Benjakul was determined by SRB assay. The effect of Benjakul on cell cycle distribution was assessed by flow cytometric analysis. The apoptotic effects of Benjakul were determined by sub-G1 quantitation and Annexin V-FITC/PI flow cytometric analyses as well as by changes in caspase-3 activity. Results: Benjakul exerted potent cytotoxicity on NCI-H226 and A549 cells but lower cytotoxicity on COR-L23 and NCI-H1688 cells without any cytotoxic effect on normal cells. Molecular studies showed that Benjakul extract induced G2/M phase arrest in human NCI-H226 cells in a dose-dependent manner. The highest concentration of Benjakul (150 μg/ml) led to the highest increase in the G2/M population at 12 h, followed by the highest increase in the sub-G1 population (apoptotic cells) at 60 h. Benjakul extract also induced early apoptosis (AnnexinV +/PI−) in NCI-H226 cells in a dose- and time- dependent manner. Moreover, treatment with 150 μg/ml Benjakul extract for 36 h markedly increased caspase-3 activity by 3.5-fold, and pretreatment with the general caspase inhibitor z-VAD-fmk completely abolished such activity. Conclusions: This study reveals for the first time the regulation of apoptosis in human lung cancer NCI-H226 cells through caspase-dependent mechanism by Benjakul extract.

Keywords: apoptosis, Benjakul, caspase activation, cytotoxicity

Procedia PDF Downloads 423
12941 Comparison of Extracellular miRNA from Different Lymphocyte Cell Lines and Isolation Methods

Authors: Christelle E. Chua, Alicia L. Ho

Abstract:

The development of a panel of differential gene expression signatures has been of interest in the field of biomarker discovery for radiation exposure. In the absence of the availability of exposed human subjects, lymphocyte cell lines have often been used as a surrogate to human whole blood, when performing ex vivo irradiation studies. The extent of variation between different lymphocyte cell lines is currently unclear, especially with regard to the expression of extracellular miRNA. This study compares the expression profile of extracellular miRNA isolated from different lymphocyte cell lines. It also compares the profile of miRNA obtained when different exosome isolation kits are used. Lymphocyte cell lines were created using lymphocytes isolated from healthy adult males of similar racial descent (Chinese American and Chinese Singaporean) and immortalised with Epstein-Barr virus. The cell lines were cultured in exosome-free cell culture media for 72h and the cell culture supernatant was removed for exosome isolation. Two exosome isolation kits were used. Total exosome isolation reagent (TEIR, ThermoFisher) is a polyethylene glycol (PEG)-based exosome precipitation kit, while ExoSpin (ES, Cell Guidance Systems) is a PEG-based exosome precipitation kit that includes an additional size exclusion chromatography step. miRNA from the isolated exosomes were isolated using miRNEASY minikit (Qiagen) and analysed using nCounter miRNA assay (Nanostring). Principal component analysis (PCA) results suggested that the overall extracellular miRNA expression profile differed between the lymphocyte cell line originating from the Chinese American donor and the cell line originating from the Chinese Singaporean donor. As the gender, age and racial origins of both donors are similar, this may suggest that there are other genetic or epigenetic differences that account for the variation in extracellular miRNA gene expression in lymphocyte cell lines. However, statistical analysis showed that only 3 miRNA genes had a fold difference > 2 at p < 0.05, suggesting that the differences may not be of that great a significance as to impact overall conclusions drawn from different cell lines. Subsequent analysis using cell lines from other donors will give further insight into the reproducibility of results when difference cell lines are used. PCA results also suggested that the method of exosome isolation impacted the expression profile. 107 miRNA had a fold difference > 2 at p < 0.05. This suggests that the inclusion of an additional size exclusion chromatography step altered the subset of the extracellular vesicles that were isolated. In conclusion, these results suggest that extracellular miRNA can be isolated and analysed from exosomes derived from lymphocyte cell lines. However, care must be taken in the choice of cell line and method of exosome isolation used.

Keywords: biomarker, extracellular miRNA, isolation methods, lymphocyte cell line

Procedia PDF Downloads 185
12940 Studies on Induction of Cytotoxicity Through Apoptosis In Ovarian Cancer Cell Line (CAOV-3) by Chloroform Extract of Artocarpus Kemando Miq

Authors: Noor Shafifiyaz Mohd Yazid, Najihah Mohd Hashim, Hapipah Mohd Ali, Syam Mohan, Rosea Go

Abstract:

Artocarpus kemando is a plant species from Moraceae family. This plant is used as household utensil by the local and the fruits are edible. The plants’ bark was used for the extraction process and yielded the chloroform crude extract which was used to screen for anticancer potential. The cytotoxic effect of the extract on CAOV-3 and WRL 68 cell lines were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assays. Qualitative AO/PI assay was performed to confirm the apoptosis and necrosis process. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. In MTT assay, A. kemando inhibited 50% growth of CAOV-3 cells at 27.9 ± 0:03, 20.1± 0:03, 18.21± 0:04 µg/mL after 24, 48 and 72 hour, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with extract resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated A. kemando has potentially anticancer agent, particularly on human ovarian cancer.

Keywords: anticancer, Artocarpus kemando, ovarian cancer, cytotoxicity

Procedia PDF Downloads 539
12939 Anticancer Activity of Calyx of Diospyros kaki Thunb. through Downregulation of Cyclin D1 Protein Level in Human Colorectal Cancer Cells

Authors: Jin Boo Jeong

Abstract:

In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β–catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03931713).

Keywords: anticancer, calyx of persimmon, cyclin D1, Diospyros kaki Thunb., human colorectal cancer

Procedia PDF Downloads 299
12938 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures

Authors: Latife Merve Oktay, Berrin Tugrul

Abstract:

Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.

Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer

Procedia PDF Downloads 346
12937 New Quinazoline Derivative Induce Cytotoxic Effect against Mcf-7 Human Breast Cancer Cell

Authors: Maryam Zahedi Fard, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

New quinazoline schiff base 3-(5-bromo-2-hydroxy-3-methoxybenzylideneamino)-2-(5-bromo-2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one was investigated for anticancer activity against MCF-7 human breast cancer cell line with involved mechanism of apoptosis. The compound demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41 ± 0.34, after 72 hours of treatment. Morphological apoptotic features in treated MCF-7 cells were observed by AO/PI staining. Furthermore, treated MCF-7 cells subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity test demonstrated the nontoxic nature of the compound in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potent candidate for further in vivo and clinical breast cancer studies.

Keywords: antiproliferative effect, MCF-7 human breast cancer cell line, apoptosis, caspases

Procedia PDF Downloads 518
12936 Synthesis and Anti-Cancer Evaluation of Uranyle Complexes

Authors: Abdol-Hassan Doulah

Abstract:

In this research, some of the inorganic complexes of uranyl with N- donor ligands were synthesized. Complexes were characteriezed by FT-IR and UV spectra, ¹HNMR, ¹³CNMR and some physical properties. The uranyl unit (UO2) is composed of a center of uranium atom with the charge (+6) and two oxygen atom by forming two U=O double bonds. The structure is linear (O=U=O, 180) and usually stable. So other ligands often coordinate to the U atom in the plane perpendicularly to the O=U=O axis. The antitumor activity of some of ligand and their complexes against a panel of human tumor cell lines (HT29: Haman colon adenocarcinoma cell line T47D: human breast adenocarcinoma cell line) were determined by MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. These data suggest that some of these compounds provide good models for the further design of potent antitumor compounds.

Keywords: inorganic, uranyl complex-donor ligands, Schiff bases, anticancer activity

Procedia PDF Downloads 444
12935 Evaluation of Anti-Cancer Activities of Formononetin in Lung Cancer by in vitro Methods

Authors: Vishnu Varthan Vaithiyalingam Jagannathan, Lakshmi Karunanidhi Santhanalakshmi, Srividya Ammayappan Rajam

Abstract:

Formononetin is the O-Methoxy Flavonol that has many pharmacological activities, which belongs to the flavonoid family. In the current study, activity of this molecule was evaluated in lung cancer cell lines. In general, flavonoids possess certain anticancer mechanism. Being a flavonoid subfamily, this molecule was subjected to evaluate cytotoxicity assay by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)) stain, mode of cell death assay stained by acridine orange and ethidium bromide and Evaluation of Apoptosis pathway (extrinsic or intrinsic) by Caspase 3/7 stain and Rhodamine-123 stain. From the results, we could able to confirm that the investigatory molecule formononetin has anticancer activity and in future, the study will propose to evaluate the formononetin action against genetic changes occurs during lung cancer progression.

Keywords: Caspase 3/7, formononetin, lung cancer, Rhodamine-123

Procedia PDF Downloads 200
12934 Novel Nickel Complex Compound Reactivates the Apoptotic Network, Cell Cycle Arrest and Cytoskeletal Rearrangement in Human Colon and Breast Cancer Cells

Authors: Nima Samie, Batoul Sadat Haerian, Sekaran Muniandy, M. S. Kanthimathi

Abstract:

Colon and breast cancers are categorized as the most prevalent types of cancer worldwide. Recently, the broad clinical application of metal complex compounds has led to the discovery of potential therapeutic drugs. The aim of this study was to evaluate the cytotoxic action of a selected nickel complex compound (NCC) against human colon and breast cancer cells. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, MCF-7 and Hs 190.T cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content , measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results showed that our nickel complex compound displayed a potent suppressive effect on HT-29, WiDr, MCF-7 and Hs 190.T after 24 h of treatment with IC50 value of 2.02±0.54, 2.13±0.65, 3.76±015 and 3.14±0.45 µM respectively. This cytotoxic effect on normal cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the nickel complex compound. Activation of this pathway was further evidenced by significant activation of caspase 9 and 3/7.The nickel complex compound (NCC) was also shown activate the extrinsic pathways of apoptosis by activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. The results of this study suggest that the nickel complex compound is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways as well as cell cycle arrest in colon and breast cancer cells.

Keywords: nickel complex, apoptosis, cytoskeletal rearrangement, colon cancer, breast cancer

Procedia PDF Downloads 302
12933 Antioxidant and Cytotoxic Effects of Different Extracts of Fruit Peels Against Three Cancer Cell Lines

Authors: Emad A. Shalaby

Abstract:

Cancer is a disease that causes abnormal cell proliferation and invades nearby tissues. Lung cancer is the second most frequent cancer worldwide. Natural anti-cancer drugs have been developed with low side effects and toxicity. Citrus peels and extracts have been demonstrated to have significant pharmacological and physiological effects as a result of the high concentration of phenolic compounds found in citrus fruits, particularly peels. Tangerine peels can serve as an effective source of bioactive substances such as phenolics, flavonoids, and catechins, which have antioxidant, antibacterial, anticancer, and anti-inflammatory properties. Consequently, this work aims to determine the anticancer activity of ethanol extract of Tangerine peels against the A549 cell line and identify the phenolic compound profile (19 compounds) by using HPLC. Anticancer and antioxidant potentials of the extract were evaluated by MTT assay and TLC- TLC-bioautography sprayed with DPPH reagent, respectively. The obtained results revealed that tangerine peel extract showed significant activity against the A549 cell line with IC50 of 97.66 μg/mL. HPLC analysis proved that the highest concentration is naringenin 464.05 mg/g. More studies indicate that naringenin has significant anticancer potential on A549 cancer cells. The results showed that naringenin binds t0 EGFR protein in A549 with high binding affinity and thus may reduce lung cancer cell migration and enhance the apoptosis of cancer cells. From the obtained results it could be concluded that tangerine peel extract is an effective anti-cancer agent that may potentially serve as a natural therapeutic option for lung cancer treatment.

Keywords: tangerine peel, A549 cell line, anticancer, naringenin, HPLC analysis, naringenin, TLC bioautography

Procedia PDF Downloads 48
12932 The Influence of Polysaccharide Isolated from Morinda citrifolia Fruit to the Growth of Vero, He-La and T47D Cell Lines against Doxorubicin in vitro

Authors: Ediati Budi Cahyono, Triana Hertiani, Nauval Arrazy Asawimanda, Wahyu Puji Pratomo

Abstract:

Background: Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause macrophage dysfunction and decreasing proliferation of lymphocyte. Noni (Morinda citrifolia) fruit which has rich of polysaccharide content has potential as antitumor and immunostimulant effect. The isolation of polysaccharide from Noni fruit has been optimized according to four different methods based on macrophage and lymphocyte activities. We found the highest polysaccharide content from one of the four methods isolation. A method of polysaccharide isolation which has the highest immunostimulant effect was used for further observation as co-chemotherapy. The aim of the study: was to evaluate the isolated polysaccharide from the method of choice as co-chemotherapy of doxorubicin for the growth of Vero, He-La, and T47D cell lines in vitro. The method: in vitro growth assay of Vero, He-La, and T47D cell lines was done using MTT-reduction method, and apoptosis test was done by double staining method to evaluate the induction apoptotic effect of the combination. Every group was treated with doxorubicin and isolated polysaccharide from method of choice with 4 variances of concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) a long with negative control (doxorubicin only) and normal control (without doxorubicin or polysaccharide administration). Results: The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin against He-La and T47D cell lines influenced the highest cytotoxic effect by suppressing cell viability comparing with doxorubicin only. The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin-induced apoptotic effect the He-La cell line comparing with doxorubicin only. The result of the study: it can be concluded that the combination of polysaccharide fraction and doxorubicin effect more selective toward He-La and T47D cell lines than to Vero cell line. It can be suggested isolated polysaccharide from the method of choice has co-chemotherapy activity against doxorubicin.

Keywords: polysaccharide, noni fruit, doxorubicin, cancer cell lines, vero cell line

Procedia PDF Downloads 238
12931 Discovery, Design and Synthesis of Some Novel Antitumor 1,2,4-Triazine Derivatives as C-Met Kinase Inhibitors

Authors: Ibrahim M. Labouta, Marwa H. El-Wakil, Hayam M. Ashour, Ahmed M. Hassan, Manal N. Saudi

Abstract:

The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Among the wide variety of heterocycles that have been explored for developing c-Met kinase inhibitors, the 1,2,4-triazines have been rarely investigated, although they are well known in the literature to possess antitumor activities. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives possessing N-acylarylhydrazone moiety and another series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-MP in order to explore their “double-drug” effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antiproliferative activity and four compounds showed potent inhibitory activity more than the reference drug Foretinib against one or more cancer cell lines. The obtained results revealed that the potent compounds are highly selective to A549 (lung adenocarcinoma) cancer cell line. The c-Met kinase inhibitory activity of the potent derivatives is still under investigation. The present study clearly demonstrates that the 1,2,4-triazine core ring exhibits promising antitumor activity with potential c-Met kinase inhibitory activity.

Keywords: 1, 2, 4-triazine, antitumor, c-Met inhibitor, double-drug

Procedia PDF Downloads 329
12930 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway

Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li

Abstract:

Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.

Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis

Procedia PDF Downloads 301
12929 A Prenylflavanoid, HME5 with Antiproliferative Activity in Human Ovarian Cancer Cells

Authors: Mashitoh Abd Rahman, Najihah Mohd Hashim, Faiqah Ramli, Syam Mohan, Noraziah Nordin, Hamed Karimian, Hapipah Mohd Ali

Abstract:

Ovarian cancer is the most lethal gynecological malignancies. HME5, a prenylflavanoid has been isolated from local medicinal plant. This compound has been reported to possess a broad spectrum of biological activities including anticancer property. However, the potential of HME5 as an antiproliferative and cytotoxic agent on an ovarian cancer cells has not yet been investigated. In this present study, we examined the antiproliferative and cytotoxic effect of HME5 on Caov-3 (Human Ovarian Adenocarcinoma) cell line by using 3-[4,5-dimethylthizol-2-y]-2,5-diphenyltetrazolium bromide (MTT) assay, Acridine orange and propidium Iodide (AOPi) and cell cycle analysis study. HME5 has shown to inhibit Caov-3 in a time-dependent manner with the IC50 values of 5µg/ml, 2µg/ml and 1µg/ml after 24h, 48h and 72h treatment, respectively. Morphological study from AOPi analysis showed that HME5 induced apoptosis after 24 and 48h post-treatment. Nevertheless, HME5 exhibited cell cycle arrest at G1 phase as indicated in flow cytometry cell cycle profiling. In conclusion, HME5 inhibited proliferation of Caov-3 through induction of apoptosis and cell cycle arrest at G1 phase.

Keywords: apoptosis, prenylflavanoid, ovarian cancer, HME5

Procedia PDF Downloads 446
12928 Non-Canonical Beclin-1-Independent Autophagy and Apoptosis in Cell Death Induced by Rhus coriaria in Human Colon HT-29 Cancer Cells

Authors: Rabah Iratni, Husain El Hasasna, Khawlah Athamneh, Halima Al Sameri, Nehla Benhalilou, Asma Al Rashedi

Abstract:

Background: Cancer therapies have witnessed great advances in the recent past, however, cancer continues to be a leading cause of death, with colorectal cancer being the fourth cause of cancer-related deaths. Colorectal cancer affects both sexes equally with poor survival rate once it metastasizes. Phytochemicals, which are plant derived compounds, have been on a steady rise as anti-cancer drugs due to the accumulation of evidences that support their potential. Here, we investigated the anticancer effect of Rhus coriaria on colon cancer cells. Material and Method: Human colon cancer HT-29 cell line was used. Protein expression and protein phosphorylation were examined using Western blotting. Transcription activity was measure using Quantitative RT-PCR. Human tumoral clonogenic assay was used to assess cell survival. Senescence was assessed by the senescence-associated beta-galactosidase assay. Results: Rhus coriaria extract (RCE) was found to significantly inhibit the viability and colony growth of human HT-29 colon cancer cells. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, p16, downregulation of cyclin D1, p27, c-myc and expression of Senescence-associated-β-Galactosidase activity. Moreover, RCE induced non-canonical beclin-1independent autophagy and subsequent apoptotic cell death through activation of activation caspase 8 and caspase 7. The blocking of autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death. Further, RCE induced DNA damage, reduced mutant p53 protein level and downregulated phospho-AKT and phospho-mTOR, events that preceded autophagy. Mechanistically, we found that RCE inhibited the AKT and mTOR pathway, a regulator of autophagy, by promoting the proteasome-dependent degradation of both AKT and mTOR proteins. Conclusion: Our findings provide strong evidence that Rhus coriaria possesses strong anti-colon cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against colon cancer.

Keywords: autophagy, proteasome degradation, senescence, mTOR, apoptosis, Beclin-1

Procedia PDF Downloads 248
12927 Microfluidic Based High Throughput Screening System for Photodynamic Therapy against Cancer Cells

Authors: Rina Lee, Chung-Hun Oh, Eunjin Lee, Jeongyun Kim

Abstract:

The Photodynamic therapy (PDT) is a treatment that uses a photosensitizer as a drug to damage and kill cancer cells. After injecting the photosensitizer into the bloodstream, the drug is absorbed by cancer cells selectively. Then the area to be treated is exposed to specific wavelengths of light and the photosensitizer produces a form of oxygen that kills nearby cancer cells. PDT is has an advantage to destroy the tumor with minimized side-effects on normal cells. But, PDT is not a completed method for cancer therapy. Because the mechanism of PDT is quite clear yet and the parameters such as intensity of light and dose of photosensitizer are not optimized for different types of cancers. To optimize these parameters, we suggest a novel microfluidic system to automatically control intensity of light exposure with a personal computer (PC). A polydimethylsiloxane (PDMS) microfluidic chip is composed with (1) a cell culture channels layer where cancer cells were trapped to be tested with various dosed photofrin (1μg/ml used for the test) as the photosensitizer and (2) a color dye layer as a neutral density (ND) filter to reduce intensity of light which exposes the cell culture channels filled with cancer cells. Eight different intensity of light (10%, 20%, …, 100%) are generated through various concentrations of blue dye filling the ND filter. As a light source, a light emitting diode (LED) with 635nm wavelength was placed above the developed PDMS microfluidic chip. The total time for light exposure was 30 minutes and HeLa and PC3 cell lines of cancer cells were tested. The cell viability of cells was evaluated with a Live/Dead assay kit (L-3224, Invitrogen, USA). The stronger intensity of light exposed, the lower viability of the cell was observed, and vice versa. Therefore, this system was demonstrated through investigating the PDT against cancer cell to optimize the parameters as critical light intensity and dose of photosensitizer. Our results suggest that the system can be used for optimizing the combinational parameters of light intensity and photosensitizer dose against diverse cancer cell types.

Keywords: photodynamic therapy, photofrin, high throughput screening, hela

Procedia PDF Downloads 375
12926 Antigen-Presenting Cell Characteristics of Human γδ T Lymphocytes in Chronic Myeloid Leukemia

Authors: Piamsiri Sawaisorn, Tienrat Tangchaikeeree, Waraporn Chan-On, Chaniya Leepiyasakulchai, Rachanee Udomsangpetch, Suradej Hongeng, Kulachart Jangpatarapongsa

Abstract:

Human Vγ9Vδ2 T lymphocytes are regarded as promising effector cells for cancer immunotherapy since they have the ability to eliminate several tumor cells through non-peptide antigen recognition and non-major histocompatibility complex (MHC) restriction. An issue of recent interest is the capability to activate γδ T cells by use of a group of drugs, such as pamidronate, that cause accumulation of phosphoantigen which is recognized by γδ T cell receptors. Moreover, their antigen presenting cell-like phenotype and function have been confirmed in many clinical trials. In this study, Vγ9Vδ2 T cells derived from normal peripheral blood mononuclear cells were activated with pamidronate and the expanded Vγ9Vδ2 T cells can recognize and kill chronic myeloid leukemia (CML) cells treated with pamidronate through their cytotoxic activity. To support the strong role played by Vγ9Vδ2 T cells against cancer, we provide the evidence that Vγ9Vδ2 T cells activated with CML cell lysate antigen can efficiently express antigen presenting cell (APC) phenotype and function. In conclusion, pamidronate can be used in intentional activation of human Vγ9Vδ2 T cells and can increase the susceptibility of CML cells to cytotoxicity of Vγ9Vδ2 T cells. The activated Vγ9Vδ2 T cells by cancer cells lysate can show their APC characteristics, and so greatly increase the interest in exploring their therapeutic potential in hematologic malignancy.

Keywords: γδ T lymphocytes, antigen-presenting cells, chronic myeloid leukemia, cancer, immunotherapy

Procedia PDF Downloads 171
12925 Evaluation of Promoter Hypermethylation in Tissue and Blood of Non-Small Cell Lung Cancer Patients and Association with Survival

Authors: Ashraf Ali, Kriti Upadhyay, Puja Sohal, Anant Mohan, Randeep Guleria

Abstract:

Background: Gene silencing by aberrant promoter hypermethylation is common in lung cancer and is an initiating event in its development. Aim: To evaluate the gene promoter hypermethylation frequency in serum and tissue of lung cancer patients. Method: 95 newly diagnosed untreated advance stage lung cancer patients and 50 cancer free matched controls were studied. Bisulfite modification of tissue and serum DNA was done; modified DNA was used as a template for methylation-specific PCR analysis. Survival was assessed for one year. Results: Of 95 patients, 82% were non-small cell lung cancer (34% squamous cell carcinoma, 34% non-small cell lung cancer and 14% adenocarcinoma) and 18% were small cell lung cancer. Biopsy revealed that tissue of 89% and 75% of lung cancer patients and 85% and 52% of controls had promoter hypermethylated for MGMT (p=0.35) and p16(p<0.001) gene, respectively. In serum, 33% and 49% of lung cancer patients and 28% and 43% controls were positive for MGMT and p16 gene. No significant correlation was found between survival and clinico-pathological parameters. Conclusion: High gene promoter methylation frequency of p16 gene in tissue biopsy may be linked with early stages of carcinogenesis. Appropriate follow-up is required for confirmation of this finding.

Keywords: lung cancer, MS- PCR, methylation, molecular biology

Procedia PDF Downloads 182
12924 Indenyl and Allyl Palladates: Synthesis, Bonding, and Anticancer Activity

Authors: T. Scattolin, E. Cavarzerani, F. Visentin, F. Rizzolio

Abstract:

Organopalladium compounds have recently attracted attention for their high stability even under physiological conditions and, above all, for their remarkable in vitro cytotoxicity towards cisplatin-resistant cell lines. Among the organopalladium derivatives, those bearing at least one N-heterocyclic carbene ligand (NHC) and the Pd(II)-η³-allyl fragment have exhibited IC₅₀ values in the micro and sub-micromolar range towards several cancer cell lines in vitro and in some cases selectivity towards cancerous vs. non-tumorigenic cells. Herein, a selection of allyl and indenyl palladates were synthesized using a solvent-free method consisting of grinding the corresponding palladium precursors with different saturated and unsaturated azolium salts. All compounds have been fully characterized by NMR, XRD and elemental analyses. The intramolecular H, Cl interaction has been elucidated and quantified using the Voronoi Deformation Density scheme. Most of the complexes showed excellent cytotoxicity towards ovarian cancer cell lines, with I₅₀ values comparable to or even lower than cisplatin. Interestingly, the potent anticancer activity was also confirmed in a high-serous ovarian cancer (HGSOC) patient-derived tumoroid, with a clear superiority of this class of compounds over classical platinum-based agents. Finally, preliminary enzyme inhibition studies of the synthesized palladate complexes against the model TrxR show that the compounds have high activity comparable to or even higher than auranofin and classical Au(I) NHC complexes. Based on such promising data, further in vitro and in vivo experiments and in-depth mechanistic studies are ongoing in our laboratories.

Keywords: anticancer activity, palladium complexes, organoids, indenyl and allyl ligands

Procedia PDF Downloads 83
12923 Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors

Authors: Isaac Quiros-Fernandez, Angel Cid-Arregui

Abstract:

Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors.

Keywords: cancer, TCR, tumor antigens, immunotherapy

Procedia PDF Downloads 54
12922 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 190
12921 Biflavonoids from Selaginellaceae as Epidermal Growth Factor Receptor Inhibitors and Their Anticancer Properties

Authors: Adebisi Adunola Demehin, Wanlaya Thamnarak, Jaruwan Chatwichien, Chatchakorn Eurtivong, Kiattawee Choowongkomon, Somsak Ruchirawat, Nopporn Thasana

Abstract:

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein involved in cellular signalling processes and, its aberrant activity is crucial in the development of many cancers such as lung cancer. Selaginellaceae are fern allies that have long been used in Chinese traditional medicine to treat various cancer types, especially lung cancer. Biflavonoids, the major secondary metabolites in Selaginellaceae, have numerous pharmacological activities, including anti-cancer and anti-inflammatory. For instance, amentoflavone induces a cytotoxic effect in the human NSCLC cell line via the inhibition of PARP-1. However, to the best of our knowledge, there are no studies on biflavonoids as EGFR inhibitors. Thus, this study aims to investigate the EGFR inhibitory activities of biflavonoids isolated from Selaginella siamensis and Selaginella bryopteris. Amentoflavone, tetrahydroamentoflavone, sciadopitysin, robustaflavone, robustaflavone-4-methylether, delicaflavone, and chrysocauloflavone were isolated from the ethyl-acetate extract of the whole plants. The structures were determined using NMR spectroscopy and mass spectrometry. In vitro study was conducted to evaluate their cytotoxicity against A549, HEPG2, and T47D human cancer cell lines using the MTT assay. In addition, a target-based assay was performed to investigate their EGFR inhibitory activity using the kinase inhibition assay. Finally, a molecular docking study was conducted to predict the binding modes of the compounds. Robustaflavone-4-methylether and delicaflavone showed the best cytotoxic activity on all the cell lines with IC50 (µM) values of 18.9 ± 2.1 and 22.7 ± 3.3 on A549, respectively. Of these biflavonoids, delicaflavone showed the most potent EGFR inhibitory activity with an 84% relative inhibition at 0.02 nM using erlotinib as a positive control. Robustaflavone-4-methylether showed a 78% inhibition at 0.15 nM. The docking scores obtained from the molecular docking study correlated with the kinase inhibition assay. Robustaflavone-4-methylether and delicaflavone had a docking score of 72.0 and 86.5, respectively. The inhibitory activity of delicaflavone seemed to be linked with the C2”=C3” and 3-O-4”’ linkage pattern. Thus, this study suggests that the structural features of these compounds could serve as a basis for developing new EGFR-TK inhibitors.

Keywords: anticancer, biflavonoids, EGFR, molecular docking, Selaginellaceae

Procedia PDF Downloads 187
12920 Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology

Authors: Radia Chemlal, Salim Mehenni, Dahbia Leila Anes-boulahbal, Mohamed Kherat, Nabil Mameri

Abstract:

The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line.

Keywords: continuous electric field, RD cancer cell line, RSM, voltage

Procedia PDF Downloads 97
12919 A Single Cell Omics Experiments as Tool for Benchmarking Bioinformatics Oncology Data Analysis Tools

Authors: Maddalena Arigoni, Maria Luisa Ratto, Raffaele A. Calogero, Luca Alessandri

Abstract:

The presence of tumor heterogeneity, where distinct cancer cells exhibit diverse morphological and phenotypic profiles, including gene expression, metabolism, and proliferation, poses challenges for molecular prognostic markers and patient classification for targeted therapies. Understanding the causes and progression of cancer requires research efforts aimed at characterizing heterogeneity, which can be facilitated by evolving single-cell sequencing technologies. However, analyzing single-cell data necessitates computational methods that often lack objective validation. Therefore, the establishment of benchmarking datasets is necessary to provide a controlled environment for validating bioinformatics tools in the field of single-cell oncology. Benchmarking bioinformatics tools for single-cell experiments can be costly due to the high expense involved. Therefore, datasets used for benchmarking are typically sourced from publicly available experiments, which often lack a comprehensive cell annotation. This limitation can affect the accuracy and effectiveness of such experiments as benchmarking tools. To address this issue, we introduce omics benchmark experiments designed to evaluate bioinformatics tools to depict the heterogeneity in single-cell tumor experiments. We conducted single-cell RNA sequencing on six lung cancer tumor cell lines that display resistant clones upon treatment of EGFR mutated tumors and are characterized by driver genes, namely ROS1, ALK, HER2, MET, KRAS, and BRAF. These driver genes are associated with downstream networks controlled by EGFR mutations, such as JAK-STAT, PI3K-AKT-mTOR, and MEK-ERK. The experiment also featured an EGFR-mutated cell line. Using 10XGenomics platform with cellplex technology, we analyzed the seven cell lines together with a pseudo-immunological microenvironment consisting of PBMC cells labeled with the Biolegend TotalSeq™-B Human Universal Cocktail (CITEseq). This technology allowed for independent labeling of each cell line and single-cell analysis of the pooled seven cell lines and the pseudo-microenvironment. The data generated from the aforementioned experiments are available as part of an online tool, which allows users to define cell heterogeneity and generates count tables as an output. The tool provides the cell line derivation for each cell and cell annotations for the pseudo-microenvironment based on CITEseq data by an experienced immunologist. Additionally, we created a range of pseudo-tumor tissues using different ratios of the aforementioned cells embedded in matrigel. These tissues were analyzed using 10XGenomics (FFPE samples) and Curio Bioscience (fresh frozen samples) platforms for spatial transcriptomics, further expanding the scope of our benchmark experiments. The benchmark experiments we conducted provide a unique opportunity to evaluate the performance of bioinformatics tools for detecting and characterizing tumor heterogeneity at the single-cell level. Overall, our experiments provide a controlled and standardized environment for assessing the accuracy and robustness of bioinformatics tools for studying tumor heterogeneity at the single-cell level, which can ultimately lead to more precise and effective cancer diagnosis and treatment.

Keywords: single cell omics, benchmark, spatial transcriptomics, CITEseq

Procedia PDF Downloads 96
12918 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol

Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee

Abstract:

In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.

Keywords: apoptosis, cancer, G1 arrest, panaxydol

Procedia PDF Downloads 309