Search results for: human activity detection
16317 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 32216316 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 47516315 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 8716314 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 69216313 The Effect of Gender and Resources on Entrepreneurial Activity
Authors: Frederick Nyakudya
Abstract:
In this paper, we examine the relationship between human capital, personal wealth and social capital to explain the differential start-up rates between female and male entrepreneurs. Since our dependent variable is dichotomous, we examine the determinants of these using a maximum likelihood logit estimator. We used the Global Entrepreneurship Monitor database covering the period 2006 to 2009 with 421 usable cases drawn from drawn from the Lower Layer Super Output Areas in the East Midlands in the United Kingdom. we found evidence that indicates that a female positively moderate the positive relationships between indicators of human capital, personal wealth and social capital with start-up activity. The findings have implications for programs, policies, and practices to encourage more females to engage in start-up activity.Keywords: entrepreneurship, star-up, gender, GEM
Procedia PDF Downloads 10816312 Correlation Matrix for Automatic Identification of Meal-Taking Activity
Authors: Ghazi Bouaziz, Abderrahim Derouiche, Damien Brulin, Hélène Pigot, Eric Campo
Abstract:
Automatic ADL classification is a crucial part of ambient assisted living technologies. It allows to monitor the daily life of the elderly and to detect any changes in their behavior that could be related to health problem. But detection of ADLs is a challenge, especially because each person has his/her own rhythm for performing them. Therefore, we used a correlation matrix to extract custom rules that enable to detect ADLs, including eating activity. Data collected from 3 different individuals between 35 and 105 days allows the extraction of personalized eating patterns. The comparison of the results of the process of eating activity extracted from the correlation matrices with the declarative data collected during the survey shows an accuracy of 90%.Keywords: elderly monitoring, ADL identification, matrix correlation, meal-taking activity
Procedia PDF Downloads 9316311 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains
Authors: Sandip Suman
Abstract:
Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains
Procedia PDF Downloads 9816310 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms
Authors: Tian Xia, Yuan Yan Tang
Abstract:
In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian
Procedia PDF Downloads 46916309 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 24116308 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection
Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun
Abstract:
In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube
Procedia PDF Downloads 20116307 Leukocyte Detection Using Image Stitching and Color Overlapping Windows
Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan
Abstract:
Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection
Procedia PDF Downloads 31016306 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 14416305 Detection of Nanotoxic Material Using DNA Based QCM
Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na
Abstract:
Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nanotoxic material, qcm, frequency, in situ sensing
Procedia PDF Downloads 42216304 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection
Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman
Abstract:
The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture
Procedia PDF Downloads 58316303 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease
Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg
Abstract:
Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.Keywords: contrast analysis, early fire detection, video smoke detection, video surveillance
Procedia PDF Downloads 44716302 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols
Authors: V. Verma, Syed Riyaz-ul-Hassan
Abstract:
Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus
Procedia PDF Downloads 51316301 Protection of Human Rights in Europe: The Parliamentary Dimension
Authors: Aleksandra Chiniaeva
Abstract:
The following paper describes the activity of national and international parliamentary assemblies of the European region in protection and promotion of human rights. It may be said that parliamentarians have a “double mandate” — as members of the international assembly and of their respective national parliaments. In other words, parliamentarization at both international and national level provides a situation for parliamentarians, where they link people, national governments and international organizations. The paper is aimed towards demonstrating that the activity of the main international parliamentary assemblies of the European region have a real positive impact on the human rights situation in the European region. In addition, the paper describes the assemblies that include protection of human rights in their Agenda as one of the main subjects: the EP, the PACE, the OSCE PA and the IPA CIS. Co-operation activities such as joint election observation; participation in inter-parliamentary associations, such as the IPU; conclusion agreements allow assemblies to provide observation of human right situation in the states that are not members of the particular organization and as consequence make their impact broader.Keywords: human rights, international parliamentary assembly, IPU, EP, PACE, OSCE, international election observation
Procedia PDF Downloads 36616300 Detection of Pharmaceutical Personal Protective Equipment in Video Stream
Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva
Abstract:
Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE
Procedia PDF Downloads 8716299 Intrusion Detection Techniques in NaaS in the Cloud: A Review
Authors: Rashid Mahmood
Abstract:
The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.Keywords: IDS, cloud, naas, detection
Procedia PDF Downloads 32016298 Multichannel Object Detection with Event Camera
Authors: Rafael Iliasov, Alessandro Golkar
Abstract:
Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5.Keywords: event camera, object detection with multimodal inputs, multichannel fusion, computer vision
Procedia PDF Downloads 2716297 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos
Authors: Thilini M. Yatanwala
Abstract:
CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection
Procedia PDF Downloads 18116296 Electrochemical Study of Ti-O Modified Electrode towards Tyrosinase Catalytic Activity
Authors: Riya Thomas, Denis Music, Tautgirdas Ruzgas
Abstract:
The detection of tyrosinase holds considerable interest in the domains of food nutrition and human health due to its significant role in causing a detrimental effect on the colour, flavour, and nutritional value of food as well as in the synthesis of melanin causing skin melanoma. Compared to other conventional analytical techniques, electrochemical (EC) sensors are highly promising owing to their quick response, great sensitivity, ease of use, and low cost. Particularly, titania nanoparticle-based electrochemical sensors have drawn special attention in identifying several biomolecules including enzymes, antibodies, and receptors, owing to their enhanced electrocatalytic activity and electron-accepting properties. In this study, Ti-O film-modified electrode is fabricated using reactive magnetron sputtering, and its affinity towards tyrosinase is examined via electrochemical methods. To comprehend the physiochemical and surface properties-governed electrocatalytic activity of modified electrodes, Ti-O films are grown under various compositional ranges and deposition temperature, and their corresponding electrochemical activity towards tyrosinase is studied. Further, to understand the underlying atomistic mechanisms and electronic-scale electrochemical characteristics, density functional theory (DFT) is employed. The main goal of the current work is to determine the correlation between macroscopic measurements and the underlying atomic properties to improve the tyrosinase activity on Ti-O surfaces. Moreover, this work offers an intriguing new perspective on the use of Ti-O-modified electrodes to detect tyrosinase in the areas of clinical diagnosis, skincare, and food science.Keywords: density functional theory, electrochemical sensor, Ti-O film, tyrosinase
Procedia PDF Downloads 2216295 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 8716294 Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius
Authors: Osama H. Elsayed, Mohsen M. S. Asker, Mahmoud A. Swelim, Ibrahim H. Abbas, Aziza I. Attwa, Mohamed E. El Awady
Abstract:
Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities.Keywords: hydroxy marilone C, production, bioactive compound, Streptomyces badius
Procedia PDF Downloads 25316293 The Effect of Bisphenol A and Its Selected Analogues on Antioxidant Enzymes Activity in Human Erythrocytes
Authors: Aneta Maćczak, Bożena Bukowska, Jaromir Michałowicz
Abstract:
Bisphenols are one of the most widely used chemical compounds worldwide. They are used in the manufacturing of polycarbonates, epoxy resins and thermal paper which are applied in plastic containers, bottles, cans, newspapers, receipt and other products. Among these compounds, bisphenol A (BPA) is produced in the highest amounts. There are concerns about endocrine impact of BPA and its other toxic effects including hepatotoxicity, neurotoxicity and carcinogenicity on human organism. Moreover, BPA is supposed to increase the incidence the obesity, diabetes and heart disease. For this reason the use of BPA in the production of plastic infant feeding bottles and some other consumers products has been restricted in the European Union and the United States. Nowadays, BPA analogues like bisphenol F (BPF) and bisphenol S (BPS) have been developed as alternative compounds. The replacement of BPA with other bisphenols contributed to the increase of the exposure of human population to these substances. Toxicological studies have mainly focused on BPA. In opposite, a small number of studies concerning toxic effects of BPA analogues have been realized, which makes impossible to state whether those substituents are safe for human health. Up to now, the mechanism of bisphenols action on the erythrocytes has not been elucidated. That is why, the aim of this study was to assess the effect of BPA and its selected analogues such as BPF and BPS on the activity of antioxidant enzymes, i.e. catalase (EC 1.11.1.6.), glutathione peroxidase (E.C.1.11.1.9) and superoxide dismutase (EC.1.15.1.1) in human erythrocytes. Red blood cells in respect to their function (transport of oxygen) and very well developed enzymatic and non-enzymatic antioxidative system, are useful cellular model to assess changes in redox balance. Erythrocytes were incubated with BPA, BPF and BPS in the concentration ranging from 0.5 to 100 µg/ml for 24 h. The activity of catalase was determined by the method of Aebi (1984). The activity of glutathione peroxidase was measured according to the method described by Rice-Evans et al. (1991), while the activity of superoxide dismutase (EC.1.15.1.1) was determined by the method of Misra and Fridovich (1972). The results showed that BPA and BPF caused changes in the antioxidative enzymes activities. BPA decreased the activity of examined enzymes in the concentration of 100 µg/ml. We also noted that BPF decreased the activity of catalase (5-100 µg/ml), glutathione peroxidase (50-100 µg/ml) and superoxide dismutase (25-100 µg/ml), while BPS did not cause statistically significant changes in investigated parameters. The obtained results suggest that BPA and BPF disrupt redox balance in human erythrocytes but the observed changes may occur in human organism only during occupational or subacute exposure to these substances.Keywords: antioxidant enzymes, bisphenol A, bisphenol a analogues, human erythrocytes
Procedia PDF Downloads 47116292 The Quality of Human Capital as a Factor of Social and Economic Development of the Region
Authors: O. Gubnitsyna, O. Zakoretskaya, O. Russova
Abstract:
It is generally recognized that the main task of modern society is human development. The quality of human capital has been identified as a key driver of economic development in the region. In this article, considered the quality of human capital as one of the main types of social and economic potential for the region’s development. The phenomenon of human capital represents both material and intellectual components of human activity. It is show that the necessary population characterized by certain quantitative and qualitative indicators (qualification and professional structure, education or social general condition and others) and is an necessary resource for the development of the regional economy. The connection of the regional goals with the quality of human capital is discussed in the article and a number of recommendations on its improvement were given. Solving the tasks stated in the article, the authors used analytical and statistical methods of research, scientific publications of domestic and foreign scientists on this issue. The results can be used in this implementation of the concept of regional development.Keywords: human capital, the quality of human capital, economic development, social general condition
Procedia PDF Downloads 29116291 The Cleavage of DNA by the Anti-Tumor Drug Bleomycin at the Transcription Start Sites of Human Genes Using Genome-Wide Techniques
Authors: Vincent Murray
Abstract:
The glycopeptide bleomycin is used in the treatment of testicular cancer, Hodgkin's lymphoma, and squamous cell carcinoma. Bleomycin damages and cleaves DNA in human cells, and this is considered to be the main mode of action for bleomycin's anti-tumor activity. In particular, double-strand breaks are thought to be the main mechanism for the cellular toxicity of bleomycin. Using Illumina next-generation DNA sequencing techniques, the genome-wide sequence specificity of bleomycin-induced double-strand breaks was determined in human cells. The degree of bleomycin cleavage was also assessed at the transcription start sites (TSSs) of actively transcribed genes and compared with non-transcribed genes. It was observed that bleomycin preferentially cleaved at the TSSs of actively transcribed human genes. There was a correlation between the degree of this enhanced cleavage at TSSs and the level of transcriptional activity. Bleomycin cleavage is also affected by chromatin structure and at TSSs, the peaks of bleomycin cleavage were approximately 200 bp apart. This indicated that bleomycin was able to detect phased nucleosomes at the TSSs of actively transcribed human genes. The genome-wide cleavage pattern of the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin was also investigated in human cells. As found for bleomycin, these bleomycin analogues also preferentially cleaved at the TSSs of actively transcribed human genes. The cytotoxicity (IC₅₀ values) of these bleomycin analogues was determined. It was found that the degree of enhanced cleavage at TSSs was inversely correlated with the IC₅₀ values of the bleomycin analogues. This suggested that the level of cleavage at the TSSs of actively transcribed human genes was important for the cytotoxicity of bleomycin and analogues. Hence this study provided a deeper understanding of the cellular processes involved in the cancer chemotherapeutic activity of bleomycin.Keywords: anti-tumour activity, bleomycin analogues, chromatin structure, genome-wide study, Illumina DNA sequencing
Procedia PDF Downloads 12016290 Human Skin Identification Using a Specific mRNA Marker at Different Storage Durations
Authors: Abla A. Ali, Heba A. Abd El Razik, Nadia A. Kotb, Amany A. Bayoumi, Laila A. Rashed
Abstract:
The detection of human skin through mRNA-based profiling is a very useful tool for forensic investigations. The aim of this study was definitive identification of human skin at different time intervals using an mRNA marker late cornified envelope gene 1C. Ten middle-aged healthy volunteers of both sexes were recruited for this study. Skin samples controlled with blood samples were taken from the candidates to test for the presence of our targeted mRNA marker. Samples were kept at dry dark conditions to be tested at different time intervals (24 hours, one week, three weeks and four weeks) for detection and relative quantification of the targeted marker by RT PCR. The targeted marker could not be detected in blood samples. The targeted marker showed the highest mean value after 24 hours (11.90 ± 2.42) and the lowest mean value (7.56 ± 2.56) after three weeks. No marker could be detected at four weeks. This study verified the high specificity and sensitivity of mRNA marker in the skin at different storage times up to three weeks under the study conditions.Keywords: human skin, late cornified envelope gene 1C, mRNA marker, time intervals
Procedia PDF Downloads 16516289 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 66316288 Extract and Naphthoquinone Derivatives from in vitro Culture of an Ascomycetous Marine Fungus with Antibacterial Activity
Authors: Uftah Ali M. Shushni, Viola Stuppec, Ulrike Lindequist
Abstract:
Because of the evolving resistance of microorganisms to existing antibiotics, there is an increasing need for new antibiotics not only in human but also in veterinary medicine. As part of our ongoing work on the secondary metabolites produced by marine fungi, the organic extract of the culture filtrate of an Ascomycetous fungus, which was found on driftwood collected from the coast of the Greifswalder Bodden, Baltic Sea, Germany displayed antimicrobial activity against some fish and human pathogenic bacteria. Bioactivity-guided column chromatographic separation led to the isolation of 6-Deoxybostrycoidin. The structure was determined from the interpretation of spectroscopic data (UV, MS, and NMR). 6-Deoxybostrycoidin exhibited in vitro activity against Bacillus subtilis, Staphylococcus aureus and Flexibacter maritimus with minimal inhibitory concentrations of 25, 12.5 and 12.5 μg/ml respectively.Keywords: marine fungi, fish pathogenic bacteria, microorganism, medicine
Procedia PDF Downloads 529