Search results for: dynamic characteristics
10826 Developing the Methods for the Study of Static and Dynamic Balance
Authors: K. Abuzayan, H. Alabed, J. Ezarrugh, M. Agila
Abstract:
Static and dynamic balance are essential in daily and sports life. Many factors have been identified as influencing static balance control. Therefore, the aim of this study was to apply the (XCoM) method and other relevant variables (CoP, CoM, Fh, KE, P, Q, and, AI) to investigate sport related activities such as hopping and jumping. Many studies have represented the CoP data without mentioning its accuracy, so several experiments were done to establish the agreement between the CoP and the projected CoM in a static condition. Five male healthy (Mean ± SD:- age 24.6 years ±4.5, height 177 cm ± 6.3, body mass 72.8 kg ± 6.6) participated in this study. Results found that The implementation of the XCoM method was found to be practical for evaluating both static and dynamic balance. The general findings were that the CoP, the CoM, the XCoM, Fh, and Q were more informative than the other variables (e.g. KE, P, and AI) during static and dynamic balance. The XCoM method was found to be applicable to dynamic balance as well as static balance.Keywords: centre of mass, static balance, dynamic balance, extrapolated centre of mass
Procedia PDF Downloads 42110825 Identification of Dynamic Friction Model for High-Precision Motion Control
Authors: Martin Goubej, Tomas Popule, Alois Krejci
Abstract:
This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model.Keywords: mechanical friction, LuGre model, friction identification, motion control
Procedia PDF Downloads 41410824 Fluid Structure Interaction of Offshore Concrete Columns under Explosion Loads
Authors: Ganga K. V. Prakhya, V. Karthigeyan
Abstract:
The paper describes the influences of the fluid and structure interaction in concrete structures that support large oil platforms in the North Sea. The dynamic interaction of the fluid both in 2D and 3D are demonstrated through a Computational Fluid Dynamics analysis in the event of explosion following a gas leak inside of the concrete column. The structural response characteristics of the column in water under dynamic conditions are quite complex involving axial, radial and circumferential modes. Fluid structure interaction (FSI) modelling showed that there are some frequencies of the column in water which are not found for a column in air. For example, it was demonstrated that one of the axial breathing modes can never be simulated without the use of FSI models. The occurrence of a shift in magnitude and time of pressure from explosion following gas leak along the height of the shaft not only excited the modes of vibration involving breathing (axial), bending and squashing (radial) modes but also magnified the forces in the column. FSI models revealed that dynamic effects resulted in dynamic amplification of loads. The results are summarized from a detailed study that was carried out by the first author for the Offshore Safety Division of Health & Safety Executive United Kingdom.Keywords: concrete, explosion, fluid structure interaction, offshore structures
Procedia PDF Downloads 18810823 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding
Authors: Indunil Jayatilake, Warna Karunasena
Abstract:
Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.Keywords: debonding, dynamic response, finite element modelling, novel FRP beams
Procedia PDF Downloads 11810822 Dynamic Modeling of Wind Farms in the Jeju Power System
Authors: Dae-Hee Son, Sang-Hee Kang, Soon-Ryul Nam
Abstract:
In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation.Keywords: dynamic model, Jeju power system, online limitation, pitch angle control, wind farm
Procedia PDF Downloads 32710821 Dynamic Analysis of Turbine Foundation
Authors: Mogens Saberi
Abstract:
This paper presents different design approaches for the design of turbine foundations. In the design process, several unknown factors must be considered such as the soil stiffness at the site. The main static and dynamic loads are presented and the results of a dynamic simulation are presented for a turbine foundation that is currently being built. A turbine foundation is an important part of a power plant since a non-optimal behavior of the foundation can damage the turbine itself and thereby stop the power production with large consequences.Keywords: dynamic turbine design, harmonic response analysis, practical turbine design experience, concrete foundation
Procedia PDF Downloads 31610820 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process
Authors: Mahesh K. Chudasama, Harit K. Raval
Abstract:
3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.Keywords: analytical modeling, cone frustum, dynamic bending, static bending
Procedia PDF Downloads 30810819 Cloud-Based Dynamic Routing with Feedback in Formal Methods
Authors: Jawid Ahmad Baktash, Mursal Dawodi, Tomokazu Nagata
Abstract:
With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.Keywords: cloud, dynamic routing, formal method, Pro-B, event-B
Procedia PDF Downloads 42510818 An Experimental Study of Dynamic Compressive Strength of Bushveld Complex Brittle Rocks under Impact Loadingsa Chemicals and Fibre Corporation, Changhua Branch
Authors: A. Mudau, T. R. Stacey, R. A. Govender
Abstract:
This paper reports for the first time the findings on the dynamic compressive strength data of Bushveld Complex brittle rock materials. These rocks were subjected to both quasi-static and impact loading tests to help understand their behaviour both under quasi-static and dynamic loading conditions. Unlike quasi-static tests, characterization of dynamic behaviour of materials is challenging, in particularly brittle rock materials. The split Hopkinson pressure bar (SHPB) results reported for anorthosite and norite showed relatively low values for dynamic compressive strength compared to the quasi-static uniaxial compressive strength data. It was noticed that the dynamic stress conditions were not fully attained during testing, as well as constant strain rate.Keywords: Bushveld Complex, dynamic comperession, rock brittleness, stress equilibrium
Procedia PDF Downloads 50010817 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges
Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov
Abstract:
Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment
Procedia PDF Downloads 10110816 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification
Authors: Wenxue Xu
Abstract:
Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer
Procedia PDF Downloads 14410815 Paradigm Shift of Leadership: Leaders in Information Technology
Authors: Mustafa Hyder, Khalid Mahmood Iraqi, Sameen Mustafa
Abstract:
They say if the leader limps, all the others will start limping too. Therefore, a very dynamic leadership at all levels within the IT Community is critical to the success of an organization. This paper is an attempt to study the relationship between Information Technology (IT) with leadership and assesses its relevancy in today's fast-paced hi-tech globalized environment. The paper strives to look into the essential qualities and knowledge as needed by today's IT leader, in contrast to essential characteristics common to all the leaders-past, present, and future.Keywords: leadership, autocratic leaders, characteristics of IT leaders, skills of IT professionals, IT leadership
Procedia PDF Downloads 35210814 Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion
Authors: M. Yoneda
Abstract:
It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field.Keywords: dynamic interaction, footbridge, stationary people, structural damping
Procedia PDF Downloads 27410813 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.Keywords: 3D printing, composite bushing, modal analysis, multi-material
Procedia PDF Downloads 11010812 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 7210811 Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings
Authors: Denis V. Shutin, Alexander Yu. Babin, Leonid A. Savin
Abstract:
One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine.Keywords: active bearings, control system, damping, hybrid bearings, stiffness
Procedia PDF Downloads 38310810 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds
Authors: Qiming Wang
Abstract:
Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds
Procedia PDF Downloads 18810809 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation
Authors: Mohamed Elassaly
Abstract:
The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building.Keywords: damage, frequency content, ground motion, PGA, RC building, seismic
Procedia PDF Downloads 41010808 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile
Authors: Monika Kamocka, Radoslaw Mania
Abstract:
The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method
Procedia PDF Downloads 19410807 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory
Authors: J. Ranjbarn, A. Alibeigloo
Abstract:
In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response
Procedia PDF Downloads 37410806 Research on the Application of Flexible and Programmable Systems in Electronic Systems
Authors: Yang Xiaodong
Abstract:
This article explores the application and structural characteristics of flexible and programmable systems in electronic systems, with a focus on analyzing their advantages and architectural differences in dealing with complex environments. By introducing mathematical models and simulation experiments, the performance of dynamic module combination in flexible systems and fixed path selection in programmable systems in resource utilization and performance optimization was demonstrated. This article also discusses the mutual transformation between the two in practical applications and proposes a solution to improve system flexibility and performance through dynamic reconfiguration technology. This study provides theoretical reference for the design and optimization of flexible and programmable systems.Keywords: flexibility, programmable, electronic systems, system architecture
Procedia PDF Downloads 1310805 An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics
Authors: Abdelhakam A. Noreldien, Sakhr B. Abudarag, Muslim S. Eltoum, Salih O. Osman
Abstract:
This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases.Keywords: model, simulating, SUAV, wind tunnel
Procedia PDF Downloads 37510804 Enhancing the Pricing Expertise of an Online Distribution Channel
Authors: Luis N. Pereira, Marco P. Carrasco
Abstract:
Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics
Procedia PDF Downloads 23510803 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances
Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi
Abstract:
This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.Keywords: crane, dynamic model, overloading condition, vibration
Procedia PDF Downloads 57510802 Dynamic Transmission Modes of Network Public Opinion on Subevents Clusters of an Emergent Event
Authors: Yuan Xu, Xun Liang, Meina Zhang
Abstract:
The rise and attenuation of the public opinion broadcast of an emergent accident, in the social network, has a close relationship with the dynamic development of its subevents cluster. In this article, we take Tianjin Port explosion's subevents as an example to research the dynamic propagation discipline of Internet public opinion in a sudden accident, and analyze the overall structure of dynamic propagation to propose four different routes for subevents clusters propagation. We also generate network diagrams for the dynamic public opinion propagation, analyze each propagation type specifically. Based on this, suggestions on the supervision and guidance of Internet public opinion broadcast can be made.Keywords: network dynamic transmission modes, emergent subevents clusters, Tianjin Port explosion, public opinion supervision
Procedia PDF Downloads 29710801 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings
Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani
Abstract:
The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.Keywords: direct method, finite element method, foundation, R/C Frame, soil-structure interaction
Procedia PDF Downloads 64210800 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation
Authors: Sun Li-Ping, Zhu Jian-Xun, Liu Sheng-Nan
Abstract:
In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.Keywords: S-lay operation, dynamic positioning, coupling motion, time domain, allocation of thrust
Procedia PDF Downloads 46610799 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load
Authors: Morteza Raminnia
Abstract:
In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers
Procedia PDF Downloads 42010798 Behaviour of Polypropylene Fiber Reinforced Concrete under Dynamic Impact Loads
Authors: Masoud Abedini, Azrul A. Mutalib
Abstract:
A study of the used of additives which mixed with concrete in order to increase the strength and durability of concrete was examined to improve the quality of many aspects in the concrete. This paper presents a polypropylene (PP) fibre was added into concrete to study the dynamic response under impact load. References related to dynamic impact test for sample polypropylene fibre reinforced concrete (PPFRC) is very limited and there is no specific research and information related to this research. Therefore, the study on the dynamic impact of PPFRC using a Split Hopkinson Pressure Bar (SHPB) was done in this study. Provided samples for this study was composed of 1.0 kg/m³ PP fibres, 2.0 kg/m³ PP fibres and plain concrete as a control samples. This PP fibre contains twisted bundle non-fibrillating monofilament and fibrillating network fibres. Samples were prepared by cylindrical mould with three samples of each mix proportion, 28 days curing period and concrete grade 35 Mpa. These samples are then tested for dynamic impact by SHPB at 2 Mpa pressure under the strain rate of 10 s-1. Dynamic compressive strength results showed an increase of SC1 and SC2 samples than the control sample which is 13.22 % and 76.9 % respectively with the dynamic compressive strength of 74.5 MPa and 116.4 MPa compared to 65.8 MPa. Dynamic increased factor (DIF) shows that, sample SC2 gives higher value with 4.15 than others samples SC1 and SC3 that gives the value of 2.14 and 1.97 respectively.Keywords: polypropylene fiber, Split Hopkinson Pressure Bar, impact load, dynamic compressive strength
Procedia PDF Downloads 55010797 Climate Change Effect on the Dynamic Modulus Property of Asphalt Concrete in Southern England Using UKCP09
Authors: David Idiata
Abstract:
This paper is directed at using the UKCP09 climate change projection tool to predict the effect of climate change on the dynamic modulus of asphalt concrete is Southern England knowing that there is a pressing challenge directly facing infrastructure in the urban cities in the world today due to climate change. Climate change causes change in the environment which in turn impacts on the long-term structural performance of structures. From the projection values obtained, it was discovered that as the temperature increases, the dynamic modulus reduces and this effect was more on the South West which have temperature range of 36.8 oC to 48.3 oC and dynamic modulus range of 2,212 MPa to 1256 MPa.Keywords: dynamic modulus, asphalt concrete, UKCP09, Southern England
Procedia PDF Downloads 360