Search results for: deep work
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15342

Search results for: deep work

15282 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 33
15281 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 112
15280 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 144
15279 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping

Authors: Delowar Hossain, Genci Capi

Abstract:

This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.

Keywords: deep learning, genetic algorithm, object recognition, robot grasping

Procedia PDF Downloads 353
15278 Working Fluids in Absorption Chillers: Investigation of the Use of Deep Eutectic Solvents

Authors: L. Cesari, D. Alonso, F. Mutelet

Abstract:

The interest in cold production has been on the increase in absorption chillers for many years. In fact, the absorption cycles replace the compressor and thus reduce electrical consumption. The devices also allow waste heat generated through industrial activities to be recovered and cooled to a moderate temperature in accordance with regulatory guidelines. Many working fluids were investigated but could not compete with the commonly used {H2O + LiBr} and {H2O + NH3} to author’s best knowledge. Yet, the corrosion, toxicity and crystallization phenomena of these mixtures prevent the development of the absorption technology. This work investigates the possible use of a glyceline deep eutectic solvent (DES) and CO2 as working fluid in an absorption chiller. To do so, good knowledge of the mixtures is required. Experimental measurements (vapor-liquid equilibria, density, and heat capacity) were performed to complete the data lacking in the literature. The performance of the mixtures was quantified by the calculation of the coefficient of performance (COP). The results show that working fluids containing DES + CO2 are an interesting alternative and lead to different trails of working mixtures for absorption and chiller.

Keywords: absorption devices, deep eutectic solvent, energy valorization, experimental data, simulation

Procedia PDF Downloads 110
15277 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 183
15276 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 101
15275 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 184
15274 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable

Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack

Abstract:

In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.

Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32

Procedia PDF Downloads 128
15273 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 21
15272 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
15271 Structure of Consciousness According to Deep Systemic Constellations

Authors: Dmitry Ustinov, Olga Lobareva

Abstract:

The method of Deep Systemic Constellations is based on a phenomenological approach. Using the phenomenon of substitutive perception it was established that the human consciousness has a hierarchical structure, where deeper levels govern more superficial ones (reactive level, energy or ancestral level, spiritual level, magical level, and deeper levels of consciousness). Every human possesses a depth of consciousness to the spiritual level, however deeper levels of consciousness are not found for every person. It was found that the spiritual level of consciousness is not homogeneous and has its own internal hierarchy of sublevels (the level of formation of spiritual values, the level of the 'inner observer', the level of the 'path', the level of 'God', etc.). The depth of the spiritual level of a person defines the paradigm of all his internal processes and the main motives of the movement through life. At any level of consciousness disturbances can occur. Disturbances at a deeper level cause disturbances at more superficial levels and are manifested in the daily life of a person in feelings, behavioral patterns, psychosomatics, etc. Without removing the deepest source of a disturbance it is impossible to completely correct its manifestation in the actual moment. Thus a destructive pattern of feeling and behavior in the actual moment can exist because of a disturbance, for example, at the spiritual level of a person (although in most cases the source is at the energy level). Psychological work with superficial levels without removing a source of disturbance cannot fully solve the problem. The method of Deep Systemic Constellations allows one to work effectively with the source of the problem located at any depth. The methodology has confirmed its effectiveness in working with more than a thousand people.

Keywords: constellations, spiritual psychology, structure of consciousness, transpersonal psychology

Procedia PDF Downloads 249
15270 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading

Authors: Ashkan Shafee, Ahmad Fahimifar

Abstract:

There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.

Keywords: deep excavation, inclined loading, lateral deformation, pile group

Procedia PDF Downloads 274
15269 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing

Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi

Abstract:

This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.

Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning

Procedia PDF Downloads 31
15268 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 142
15267 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia

Authors: Josua Sihotang

Abstract:

Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.

Keywords: aquifer, deep groundwater potential, well devices, well logging analysis

Procedia PDF Downloads 252
15266 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 369
15265 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 89
15264 Subsea Control Module (SCM) - A Vital Factor for Well Integrity and Production Performance in Deep Water Oil and Gas Fields

Authors: Okoro Ikechukwu Ralph, Fuat Kara

Abstract:

The discoveries of hydrocarbon reserves has clearly drifted offshore, and in deeper waters - areas where the industry still has limited knowledge; and that were hitherto, regarded as being out of reach. This shift presents significant and increased challenges in technology requirements needed to guarantee safety of personnel, environment and equipment; ensure high reliability of installed equipment; and provide high level of confidence in security of investment and company reputation. Nowhere are these challenges more apparent than on subsea well integrity and production performance. The past two decades has witnessed enormous rise in deep and ultra-deep water offshore field developments for the recovery of hydrocarbons. Subsea installed equipment at the seabed has been the technology of choice for these developments. This paper discusses the role of Subsea Control module (SCM) as a vital factor for deep-water well integrity and production performance. A case study for Deep-water well integrity and production performance is analysed.

Keywords: offshore reliability, production performance, subsea control module, well integrity

Procedia PDF Downloads 512
15263 Developing Environmental Engineering Alternatives for Deep Desulphurization of Transportation Fuels

Authors: Nalinee B. Suryawanshi, Vinay M. Bhandari, Laxmi Gayatri Sorokhaibam, Vivek V. Ranade

Abstract:

Deep desulphurization of transportation fuels is a major environmental concern all over the world and recently prescribed norms for the sulphur content require below 10 ppm sulphur concentrations in fuels such as diesel and gasoline. The existing technologies largely based on catalytic processes such as hydrodesulphurization, oxidation require newer catalysts and demand high cost of deep desulphurization whereas adsorption based processes have limitations due to lower capacity of sulphur removal. The present work is an attempt to provide alternatives for the existing methodologies using a newer non-catalytic process based on hydrodynamic cavitation. The developed process requires appropriate combining of organic and aqueous phases under ambient conditions and passing through a cavitating device such as orifice, venturi or vortex diode. The implosion of vapour cavities formed in the cavitating device generates (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, orifice was used as a cavitating device and deep desulphurization was demonstrated for removal of thiophene as a model sulphur compound from synthetic fuel of n-octane, toluene and n-octanol. The effect of concentration of sulphur (up to 300 ppm), nature of organic phase and effect of pressure drop (0.5 to 10 bar) was discussed. A very high removal of sulphur content of more than 90% was demonstrated. The process is easy to operate, essentially works at ambient conditions and the ratio of aqueous to organic phase can be easily adjusted to maximise sulphur removal. Experimental studies were also carried out using commercial diesel as a solvent and the results substantiate similar high sulphur removal. A comparison of the two cavitating devices- one with a linear flow and one using vortex flow for effecting pressure drop and cavitation indicates similar trends in terms of sulphur removal behaviour. The developed process is expected to provide an attractive environmental engineering alternative for deep desulphurization of transportation fuels.

Keywords: cavitation, petroleum, separation, sulphur removal

Procedia PDF Downloads 379
15262 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 243
15261 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 161
15260 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
15259 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering

Procedia PDF Downloads 479
15258 Construction of Strain Distribution Profiles of EDD Steel at Elevated Temperatures

Authors: K. Eshwara Prasad, R. Raman Goud, Swadesh Kumar Singh, N. Sateesh

Abstract:

In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretchforming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening COEFFICIENT (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy(r-) and strength coefficient of the material. Also the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.

Keywords: FLD, microhardness, strain distribution profile, stretch forming

Procedia PDF Downloads 325
15257 Strain DistributionProfiles of EDD Steel at Elevated Temperatures

Authors: Eshwara Prasad Koorapati, R. Raman Goud, Swadesh Kumar Singh

Abstract:

In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretch forming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening coefficient (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500 C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. Also, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.

Keywords: FLD, micro hardness, strain distribution profile, stretch forming

Procedia PDF Downloads 422
15256 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
15255 Online Yoga Asana Trainer Using Deep Learning

Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam

Abstract:

Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.

Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN

Procedia PDF Downloads 240
15254 Deep Neck Infection Associated with Peritoneal Sepsis: A Rare Death Case

Authors: Sait Ozsoy, Asude Gokmen, Mehtap Yondem, Hanife A. Alkan, Gulnaz T. Javan

Abstract:

Deep neck infection often develops due to upper respiratory tract and odontogenic infections. Gastrointestinal System perforation can occur for many reasons and is in need of the early diagnosis and prompt surgical treatment. In both cases late or incorrect diagnosis may lead to increase morbidity and high mortality. A patient with a diagnosis of deep neck abscess died while under treatment due to sepsis and multiple organ failure. Autopsy finding showed duodenal ulcer and this is reported in the literature.

Keywords: peptic ulcer perforation, peritonitis, retropharyngeal abscess, sepsis

Procedia PDF Downloads 498
15253 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom

Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan

Abstract:

Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.

Keywords: circle work, relational pedagogies, decolonization, distance education

Procedia PDF Downloads 76