Search results for: comments in google map
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 758

Search results for: comments in google map

698 Establishing Feedback Partnerships in Higher Education: A Discussion of Conceptual Framework and Implementation Strategies

Authors: Jessica To

Abstract:

Feedback is one of the powerful levers for enhancing students’ performance. However, some students are under-engaged with feedback because they lack responsibility for feedback uptake. To resolve this conundrum, recent literature proposes feedback partnerships in which students and teachers share the power and responsibilities to co-construct feedback. During feedback co-construction, students express feedback needs to teachers, and teachers respond to individuals’ needs in return. Though this approach can increase students’ feedback ownership, its application is lagging as the field lacks conceptual clarity and implementation guide. This presentation aims to discuss the conceptual framework of feedback partnerships and feedback co-construction strategies. It identifies the components of feedback partnerships and strategies which could facilitate feedback co-construction. A systematic literature review was conducted to answer the questions. The literature search was performed using ERIC, PsycINFO, and Google Scholar with the keywords “assessment partnership”, “student as partner,” and “feedback engagement”. No time limit was set for the search. The inclusion criteria encompassed (i) student-teacher partnerships in feedback, (ii) feedback engagement in higher education, (iii) peer-reviewed publications, and (iv) English as the language of publication. Those without addressing conceptual understanding and implementation strategies were excluded. Finally, 65 publications were identified and analysed using thematic analysis. For the procedure, the texts relating to the questions were first extracted. Then, codes were assigned to summarise the ideas of the texts. Upon subsuming similar codes into themes, four themes emerged: students’ responsibilities, teachers’ responsibilities, conditions for partnerships development, and strategies. Their interrelationships were examined iteratively for framework development. Establishing feedback partnerships required different responsibilities of students and teachers during feedback co-construction. Students needed to self-evaluate performance against task criteria, identify inadequacies and communicate their needs to teachers. During feedback exchanges, they interpreted teachers’ comments, generated self-feedback through reflection, and co-developed improvement plans with teachers. Teachers had to increase students’ understanding of criteria and evaluation skills and create opportunities for students’ expression of feedback needs. In feedback dialogue, teachers responded to students’ needs and advised on the improvement plans. Feedback partnerships would be best grounded in an environment with trust and psychological safety. Four strategies could facilitate feedback co-construction. First, students’ understanding of task criteria could be increased by rubrics explanation and exemplar analysis. Second, students could sharpen evaluation skills if they participated in peer review and received teacher feedback on the quality of peer feedback. Third, provision of self-evaluation checklists and prompts and teacher modeling of self-assessment process could aid students in articulating feedback needs. Fourth, the trust could be fostered when teachers explained the benefits of feedback co-construction, showed empathy, and provided personalised comments in dialogue. Some strategies were applied in interactive cover sheets in which students performed self-evaluation and made feedback requests on a cover sheet during assignment submission, followed by teachers’ response to individuals’ requests. The significance of this presentation lies in unpacking the conceptual framework of feedback partnerships and outlining feedback co-construction strategies. With a solid foundation in theory and practice, researchers and teachers could better enhance students’ engagement with feedback.

Keywords: conceptual framework, feedback co-construction, feedback partnerships, implementation strategies

Procedia PDF Downloads 91
697 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study

Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida

Abstract:

Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.

Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.

Procedia PDF Downloads 14
696 “Divorced Women are Like Second-Hand Clothes” - Hate Language in Media Discourse

Authors: Sopio Totibadze

Abstract:

Although the legal framework of Georgia reflects the main principles of gender equality and is in line with the international situation, Georgia remains a male-dominated society. This means that men prevail in many areas of social, economic, and political life, which frequently gives women a subordinate status in society and the family. According to the latest studies, “violence against women and girls in Georgia is also recognized as a public problem, and it is necessary to focus on it”. Moreover, the Public Defender's report (2019) reveals that “in the last five years, 151 women were killed in Georgia due to gender and family violence”. Unfortunately, there are frequent cases of crimes based on gender-based oppression in Georgia, which pose a threat not only to women but also to people of any gender whose desires and aspirations do not correspond to the gender norms and roles prevailing in society. It is well-known that language is often used as a tool for gender oppression. Therefore, feminist and gender studies in linguistics ultimately serve to represent the problem, reflect on it, and propose ways to solve it. Together with technical advancement in communication, a new form of discrimination has arisen- hate language against women in electronic media discourse. Due to the nature of social media and the internet, messages containing hate language can spread in seconds and reach millions of people. However, only a few know about the detrimental effects they may have on the addressee and society. This paper aims to analyse the hateful comments directed at women on various media platforms to determine the linguistic strategies used while attacking women and the reasons why women may fall victim to this type of hate language. The data have been collected over six months, and overall, 500 comments will be examined for the paper. Qualitative and quantitative analysis was chosen for the methodology of the study. The comments posted on various media platforms have been selected manually due to several reasons, the most important being the problem of identifying hate speech as it can disguise itself in different ways- humour, memes, etc. The comments on the articles, posts, pictures, and videos selected for sociolinguistic analysis depict a woman, a taboo topic, or a scandalous event centred on a woman that triggered hate language towards the person to whom the post/article was dedicated. The study has revealed that a woman can become a victim of hatred directed at them if they do something considered to be a deviation from a societal norm, namely, get a divorce, be sexually active, be vocal about feministic values, and talk about taboos. Interestingly, people who utilize hate language are not only men trying to “normalize” the prejudiced patriarchal values but also women who are equally active in bringing down a "strong" woman. The paper also aims to raise awareness about the hate language directed at women, as being knowledgeable about the issue at hand is the first step to tackling it.

Keywords: femicide, hate language, media discourse, sociolinguistics

Procedia PDF Downloads 86
695 Recognition of Spelling Problems during the Text in Progress: A Case Study on the Comments Made by Portuguese Students Newly Literate

Authors: E. Calil, L. A. Pereira

Abstract:

The acquisition of orthography is a complex process, involving both lexical and grammatical questions. This learning occurs simultaneously with the domain of multiple textual aspects (e.g.: graphs, punctuation, etc.). However, most of the research on orthographic acquisition focus on this acquisition from an autonomous point of view, separated from the process of textual production. This means that their object of analysis is the production of words selected by the researcher or the requested sentences in an experimental and controlled setting. In addition, the analysis of the Spelling Problems (SP) are identified by the researcher on the sheet of paper. Considering the perspective of Textual Genetics, from an enunciative approach, this study will discuss the SPs recognized by dyads of newly literate students, while they are writing a text collaboratively. Six proposals of textual production were registered, requested by a 2nd year teacher of a Portuguese Primary School between January and March 2015. In our case study we discuss the SPs recognized by the dyad B and L (7 years old). We adopted as a methodological tool the Ramos System audiovisual record. This system allows real-time capture of the text in process and of the face-to-face dialogue between both students and their teacher, and also captures the body movements and facial expressions of the participants during textual production proposals in the classroom. In these ecological conditions of multimodal registration of collaborative writing, we could identify the emergence of SP in two dimensions: i. In the product (finished text): SP identification without recursive graphic marks (without erasures) and the identification of SPs with erasures, indicating the recognition of SP by the student; ii. In the process (text in progress): identification of comments made by students about recognized SPs. Given this, we’ve analyzed the comments on identified SPs during the text in progress. These comments characterize a type of reformulation referred to as Commented Oral Erasure (COE). The COE has two enunciative forms: Simple Comment (SC) such as ' 'X' is written with 'Y' '; or Unfolded Comment (UC), such as ' 'X' is written with 'Y' because...'. The spelling COE may also occur before or during the SP (Early Spelling Recognition - ESR) or after the SP has been entered (Later Spelling Recognition - LSR). There were 631 words entered in the 6 stories written by the B-L dyad, 145 of them containing some type of SP. During the text in progress, the students recognized orally 174 SP, 46 of which were identified in advance (ESRs) and 128 were identified later (LSPs). If we consider that the 88 erasure SPs in the product indicate some form of SP recognition, we can observe that there were twice as many SPs recognized orally. The ESR was characterized by SC when students asked their colleague or teacher how to spell a given word. The LSR presented predominantly UC, verbalizing meta-orthographic arguments, mostly made by L. These results indicate that writing in dyad is an important didactic strategy for the promotion of metalinguistic reflection, favoring the learning of spelling.

Keywords: collaborative writing, erasure, learning, metalinguistic awareness, spelling, text production

Procedia PDF Downloads 164
694 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 113
693 Enhanced Iceberg Information Dissemination for Public and Autonomous Maritime Use

Authors: Ronald Mraz, Gary C. Kessler, Ethan Gold, John G. Cline

Abstract:

The International Ice Patrol (IIP) continually monitors iceberg activity in the North Atlantic by direct observation using ships, aircraft, and satellite imagery. Daily reports detailing navigational boundaries of icebergs have significantly reduced the risk of iceberg contact. What is currently lacking is formatting this data for automatic transmission and display of iceberg navigational boundaries in commercial navigation equipment. This paper describes the methodology and implementation of a system to format iceberg limit information for dissemination through existing radio network communications. This information will then automatically display on commercial navigation equipment. Additionally, this information is reformatted for Google Earth rendering of iceberg track line limits. Having iceberg limit information automatically available in standard navigation equipment will help support full autonomous operation of sailing vessels.

Keywords: iceberg, iceberg risk, iceberg track lines, AIS messaging, international ice patrol, North American ice service, google earth, autonomous surface vessels

Procedia PDF Downloads 139
692 Conducting Computational Physics Laboratory Course Using Cloud Storage Space

Authors: Ajay Wadhwa

Abstract:

A Laboratory course on computational physics is different from the conventional lab course on other topics of physics like Mechanics, Heat, Optics, etc. because it involves active participation of the teacher as well as one-to-one interaction between teacher and the student. The course content requires the teacher to teach programming language as well as numerical methods along with their applications in physics. The task becomes more daunting when about 90% of the students in the class have no previous experience of any programming language. In the presented work, we have described a methodology for conducting the computational physics course by using the Google Drive and Dropitto.me cloud storage services. We have evaluated the performance in a class of sixty students by dividing them equally into four groups. One of the groups was made the peer group on whom the presented methodology was tested. The other groups were taught by using conventional method of classroom lectures. In order to assess our methodology, we analyzed the performance of students in four class tests. A study of certain statistical parameters like the mean, standard deviation, and Z-test hypothesis revealed that the cyber methodology based on cloud storage is more efficient than the conventional method of teaching.

Keywords: computational Physics, Z-test hypothesis, cloud storage, Google drive

Procedia PDF Downloads 300
691 Spanish Language Violence Corpus: An Analysis of Offensive Language in Twitter

Authors: Beatriz Botella-Gil, Patricio Martínez-Barco, Lea Canales

Abstract:

The Internet and ICT are an integral element of and omnipresent in our daily lives. Technologies have changed the way we see the world and relate to it. The number of companies in the ICT sector is increasing every year, and there has also been an increase in the work that occurs online, from sending e-mails to the way companies promote themselves. In social life, ICT’s have gained momentum. Social networks are useful for keeping in contact with family or friends that live far away. This change in how we manage our relationships using electronic devices and social media has been experienced differently depending on the age of the person. According to currently available data, people are increasingly connected to social media and other forms of online communication. Therefore, it is no surprise that violent content has also made its way to digital media. One of the important reasons for this is the anonymity provided by social media, which causes a sense of impunity in the victim. Moreover, it is not uncommon to find derogatory comments, attacking a person’s physical appearance, hobbies, or beliefs. This is why it is necessary to develop artificial intelligence tools that allow us to keep track of violent comments that relate to violent events so that this type of violent online behavior can be deterred. The objective of our research is to create a guide for detecting and recording violent messages. Our annotation guide begins with a study on the problem of violent messages. First, we consider the characteristics that a message should contain for it to be categorized as violent. Second, the possibility of establishing different levels of aggressiveness. To download the corpus, we chose the social network Twitter for its ease of obtaining free messages. We chose two recent, highly visible violent cases that occurred in Spain. Both of them experienced a high degree of social media coverage and user comments. Our corpus has a total of 633 messages, manually tagged, according to the characteristics we considered important, such as, for example, the verbs used, the presence of exclamations or insults, and the presence of negations. We consider it necessary to create wordlists that are present in violent messages as indicators of violence, such as lists of negative verbs, insults, negative phrases. As a final step, we will use automatic learning systems to check the data obtained and the effectiveness of our guide.

Keywords: human language technologies, language modelling, offensive language detection, violent online content

Procedia PDF Downloads 133
690 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method

Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt

Abstract:

Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.

Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS

Procedia PDF Downloads 152
689 A Comparative and Doctrinal Analysis towards the Investigation of a Right to Be Forgotten in Hong Kong

Authors: Jojo Y. C. Mo

Abstract:

Memories are good. They remind us of people, places and experiences that we cherish. But memories cannot be changed and there may well be memories that we do not want to remember. This is particularly true in relation to information which causes us embarrassment and humiliation or simply because it is private – we all want to erase or delete such information. This desire to delete is recently recognised by the Court of Justice of the European Union in the 2014 case of Google Spain SL, Google Inc. v Agencia Española de Protección de Datos, Mario Costeja González in which the court ordered Google to remove links to some information about the complainant which he wished to be removed. This so-called ‘right to be forgotten’ received serious attention and significantly, the European Council and the European Parliament enacted the General Data Protection Regulation (GDPR) to provide a more structured and normative framework for implementation of right to be forgotten across the EU. This development in data protection laws will, undoubtedly, have significant impact on companies and co-operations not just within the EU but outside as well. Hong Kong, being one of the world’s leading financial and commercial center as well as one of the first jurisdictions in Asia to implement a comprehensive piece of data protection legislation, is therefore a jurisdiction that is worth looking into. This article/project aims to investigate the following: a) whether there is a right to be forgotten under the existing Hong Kong data protection legislation b) if not, whether such a provision is necessary and why. This article utilises a comparative methodology based on a study of primary and secondary resources, including scholarly articles, government and law commission reports and working papers and relevant international treaties, constitutional documents, case law and legislation. The author will primarily engage literature and case-law review as well as comparative and doctrinal analyses. The completion of this article will provide privacy researchers with more concrete principles and data to conduct further research on privacy and data protection in Hong Kong and internationally and will provide a basis for policy makers in assessing the rationale and need for a right to be forgotten in Hong Kong.

Keywords: privacy, right to be forgotten, data protection, Hong Kong

Procedia PDF Downloads 191
688 Critical Discourse Analysis of Xenophobia in UK Political Party Blogs

Authors: Nourah Almulhim

Abstract:

This paper takes a critical discourse analysis (CDA) approach to investigate discourse and ideology in political blogs, focusing in particular on the Conservative Home blog from the UK’s current governing party. The Conservative party member’s discourse strategies as the blogger, alongside the discourse used by members of the public who reply to the blog in the below-the-lines comments, will be examined. The blog discourse reflects the writer's political identity and authorial voice. The analysis of the below-the-lines comments enables members of the public to engage in creating adversative positions, introducing different language users who bring their own individual and collective identities. These language users can play the role of news reporters, political analysts, protesters or supporters of a specific agenda and current socio-political topics or events. This study takes a qualitative approach to analyze the discriminatory context towards Islam/Muslims in ' The Conservative Home' blog. A cognitive approach is adopted and an analysis of dominant discourses in the blog text and the below-the-line comments is used. The focus of the study is, firstly, on the construction of self/ collective national identity in comparison to Muslim identity, highlighting the in-group and out-group construction. Second, the type of attitudes, whether feelings or judgments, related to these social actors as they are explicated to draw on the social values. Third, the role of discursive strategies in justifying and legitimizing those Islamophobic discriminatory practices. Therefore, the analysis is based on the systematic analysis of social actors drawing on actors, actions, and arguments to explicate identity construction and its development in the different discourses. A socio-semantic categorization of social actors is implemented to draw on the discursive strategies in addition to using literature to understand these strategies. An appraisal analysis is further used to classify attitudes and elaborate on core values in both genres. Finally, the grammar of othering is applied to explain how discriminatory dichotomies of 'Us' Vs. ''Them' actions are carried in discourse. Some of the key findings of the analysis can be summarized in two main points. First, the discursive practice used to represent Muslims/Islam as different from ‘Us’ are different in both genres as the blogger uses a covert voice while the commenters generally use an overt voice. This is to say that the blogger uses a mitigated strategy to represent the Muslim identity, for example, using the noun phrase ‘British Muslim’ but then representing them as ‘radical’ and ‘terrorists'. Contrary to this is in below the lines comments, where a direct strategy with an active declarative voice is used to negatively represent the Muslim identity as ‘oppressors’ and ‘terrorists’ with no inclusion of the noun phrase ‘British Muslims’. Second, the negotiation of the ‘British’ identity and values, such as culture and democracy, are prominent in the comment section as being unique and under threat by Muslims, while in the article, these standpoints are not represented.

Keywords: xenophobia, blogs, identity, critical discourse analysis

Procedia PDF Downloads 96
687 Process Mining as an Ecosystem Platform to Mitigate a Deficiency of Processes Modelling

Authors: Yusra Abdulsalam Alqamati, Ahmed Alkilany

Abstract:

The teaching staff is a distinct group whose impact is on the educational process and which plays an important role in enhancing the quality of the academic education process. To improve the management effectiveness of the academy, the Teaching Staff Management System (TSMS) proposes that all teacher processes be digitized. Since the BPMN approach can accurately describe the processes, it lacks a clear picture of the process flow map, something that the process mining approach has, which is extracting information from event logs for discovery, monitoring, and model enhancement. Therefore, these two methodologies were combined to create the most accurate representation of system operations, the ability to extract data records and mining processes, recreate them in the form of a Petri net, and then generate them in a BPMN model for a more in-depth view of process flow. Additionally, the TSMS processes will be orchestrated to handle all requests in a guaranteed small-time manner thanks to the integration of the Google Cloud Platform (GCP), the BPM engine, and allowing business owners to take part throughout the entire TSMS project development lifecycle.

Keywords: process mining, BPM, business process model and notation, Petri net, teaching staff, Google Cloud Platform

Procedia PDF Downloads 142
686 Investigating 'Criticality' in Written Assignments of Postgraduate Students in TESOL and Applied Linguistics

Authors: Josephine Mirador

Abstract:

Too often, one hears teachers complaining about how uncritical students can be, yet the notion of ‘criticality’ may be subject to variable understandings or interpretations. One challenge facing postgraduate students is the writing of essays responding to a specific reading assignment. Such an essay requires students not only to summarise, but to engage in a discussion of the significant points of the article, pointing out its strengths as well as its weaknesses. This paper presents the results of an investigation on criticality in written assignments of postgraduate students in applied linguistics and TESOL. The guiding questions for this investigation were: -How ‘critical’ are postgraduate students when writing their assignments? -What kind of ‘critical’ comments are they able to offer? A total of 70 essays were analysed, using two sets of corpora in the initial and follow-through phases of the research from three different universities in Asia. The essays were written by MA applied linguistics and TESOL students. Students were told that the response essay should definitely not just summarise, but should offer a reflection or critique on the ideas presented in the subject article. The initial findings from the investigation include: the identification of at least 10 general ‘moves’ each of which has a number of possible specific categories; presence of critique ‘nodes’ as distinguished from ‘support’ comments; and the identification of at least 4 moves as the most recurrent and possibly obligatory categories. This investigation has unearthed a few more questions or issues that are definitely worth investigating as extensions of this research, and will be of interest (most especially) to genre analysts and teachers of writing.

Keywords: criticality, discourse and genre analysis, postgraduate students, applied linguistics

Procedia PDF Downloads 390
685 The Publication Impact of London’s Air Ambulance on the Field of Pre-Hospital Medicine and Its Application to Air Ambulances Internationally: A Bibliometric Analysis

Authors: Maria Ahmad, Alexandra Valetopoulou, Michael D. Christian

Abstract:

Background: London’s Air Ambulance (LAA) provides advanced pre-hospital trauma care across London, bringing specialist resources and expert trauma teams to patients. Since its inception 32 years ago, LAA has treated over 40,000 pre-hospital patients and significantly contributed to pre-hospital patient care in London. To the authors’ best knowledge, this is the first analysis to quantify the magnitude of the publication impact of LAA on the international field of pre-hospital medicine. Method: We searched the Scopus, Web of Science, Google Scholar and PubMed databases to identify LAA focused articles. These were defined as articles on the topic of pre-hospital medicine which either utilised data from LAA, or focused on LAA patients, or were authored by LAA clinicians. A bibliometric analysis was conducted and the impact of each eligible article was classified as either: high (article directly influenced the change or creation of clinical guidelines); medium (the article was referenced in clinical guidelines or had >20 Google Scholar citations or >10 PubMed citations); or low impact (article had <20 Google Scholar citations or <10 PubMed citations). Results: The literature search yielded 1,120 articles in total. 198 articles met our inclusion criteria, and their full text was analysed to determine the level of impact. 19 articles were classified as high-impact, 76 as medium-impact, and 103 as low-impact. 20 of the 76 medium-impact articles were referenced in clinical guidelines but had not prompted changes to the guidelines. Conclusion: To our knowledge, this review is the first to quantify the significant publication impact of LAA within the field of pre-hospital medicine over the last 32 years. LAA publications have focused on and driven clinical innovations in trauma care, particularly in pre-hospital anaesthesia, haemorrhage control, and major incidents, with many impacting national and international guidelines. We recommend a greater emphasis on multidisciplinary pre-hospital collaboration in publications in future research and quality improvement projects across all pre-hospital services.

Keywords: air ambulance, pre-hospital medicine, London’s Air Ambulance, London HEMS

Procedia PDF Downloads 76
684 Adolescents’ Reports of Dating Abuse: Mothers’ Responses

Authors: Beverly Black

Abstract:

Background: Adolescent dating abuse (ADA) is widespread throughout the world and negatively impacts many adolescents. ADA is associated with lower self-esteem, poorer school performance, lower employment opportunities, higher rates of depression, absenteeism from school, substance abuse, bullying, smoking, suicide, pregnancy, eating disorders, and risky sexual behaviors, and experiencing domestic violence later in life. ADA prevention is sometimes addressed through school programming; yet, parental responses to ADA can also be an important vehicle for its prevention. In this exploratory study, the author examined how mothers, including abused mothers, responded to scenarios of ADA involving their children. Methods: Six focus groups were conducted between December, 2013 and June, 2014 with mothers (n=31) in the southern part of the United States. Three of the focus groups were comprised of mothers (n=17) who had been abused by their partners. Mothers were recruited from local community family agencies. Participants were provided a series of four scenarios about ADA and they were asked to explain how they would respond. Focus groups lasted approximately 45 minutes. All participants were given a gift card to a major retailer as a ‘thank you’. Using QSR-N10, two researchers’ analyzed the focus group data first using open and axial coding techniques to find overarching themes. Researchers triangulated the coded data to ensure accurate interpretations of the participants’ messages and used the scenario questions to structure the coded results. Results: Almost 30% of 699 comments coded as mothers’ recommendations for responding to ADA focused on the importance of providing advice to their children. Advice included breaking up, going to police, ignoring or avoiding the abusive partner, and setting boundaries in relationships. About 22% of comments focused on the need for educating teens about healthy and unhealthy relationships and seeking additional information. About 13% of the comments reflected the view that parents should confront abuser and/or abusers’ parents, and less than 2% noted the need to take their child to counseling. Mothers who had been abused offered similar responses as parents who had not experienced abuse. However, their responses were more likely to focus on sharing their own experience exercising caution in their responses, as they knew from their own experiences that authoritarian responses were ineffective. Over half of the comments indicated that parents would react stronger, quicker, and angrier if a girl was being abused by a boy than vice versa; parents expressed greater fear for their daughters than their sons involved in ADA. Conclusions. Results suggest that mothers have ideas about how to respond to ADA. Mothers who have been abused draw from their experiences and are aware that responding in an authoritarian manner may not be helpful. Because parental influence on teens is critical in their development, it is important for all parents to respond to ADA in a helpful manner to break the cycle of violence. Understanding responses to ADA can inform prevention programming to work with parents in responding to ADA.

Keywords: abused mothers' responses to dating abuse, adolescent dating abuse, mothers' responses to dating abuse, teen dating violence

Procedia PDF Downloads 218
683 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 294
682 Pedagogy of Possibility: Exploring the TVET of Southern African Workers on Foreign Vessels Mediated by Ubiquitous Google and Microsoft apps

Authors: Robin Ferguson

Abstract:

The context which this paper explores is the provision of Technical Vocational Education and Training (TVET) of southern African workers at sea on local and foreign vessels using a blended learning approach. The pedagogical challenge of providing quality education in this context is that multiple African and foreign languages and cultural norms are found amongst the all-male crew; and there are widely differing levels of education, low levels of digital literacy and limited connectivity. The methodology used is a nested case study. The study describes the mechanisms used to provide ongoing, real-time workplace TVET on two foreign vessels. Some training was done in person when the vessels came into port, however, the majority of the TVET was achieved from shore to ship using a combination of commonly available Google and Microsoft Apps and WhatsApp. Voice, video and text in multiple languages were used to accommodate different learning styles. The learning was supported by the development of learning networks using social media. This paper also reflects on the shore-based organisational change processes required to support sea learning. The conceptual framework used is the Theory of Practice Architectures (TPA) as is provides a site-ontological perspective of the sayings/thinkings, doings and relatings of this workplace training which is multiplanar as it plays out at sea and ashore, in-person and on-line. Using TPA, the overarching practice architectures and supporting structures which confound or enable these learning practices are revealed. The contribution which this paper makes is an insight into an innovative vocational pedagogy which promotes ICT-mediated learning amongst workers who suffer from low levels of literacies and limited ICT-access and who work and live in remote places. It is a pedagogy of possibility which crosses the digital divide.

Keywords: theory of practice architecture, microsoft, google, whatsapp, vocational pedagogy, mariners, distributed workplaces

Procedia PDF Downloads 82
681 Strategic Evaluation of Existing Drainage System in Apalit, Pampanga

Authors: Jennifer de Jesus, Ares Baron Talusan, Steven Valerio

Abstract:

This paper aims to conduct an evaluation of the drainage system in a specific village in Apalit, Pampanga using the geographic information system to easily identify inadequate drainage lines that needs rehabilitation to aid in flooding problem in the area. The researchers will be utilizing two methods and software to be able to strategically assess each drainage line in the village– the two methods were the rational method and the Manning's Formula for Open Channel Flow and compared it to each other, and the software to be used was Google Earth Pro by 2020 Google LLC. The results must satisfy the statement QManning > QRational to be able to see if the specific line and section is adequate; otherwise, it is inadequate; dimensions needed to be recomputed until it became adequate. The use of the software is the visualization of data collected from the computations to clearly see in which areas the drainage lines were adequate or not. The researchers were then able to conclude that the drainage system should be considered inadequate, seeing as most of the lines are unable to accommodate certain intensities of rainfall. The researchers have also concluded that line rehabilitation is a must to proceed.

Keywords: strategic evaluation, drainage system, as-built plans, inadequacy, rainfall intensity-duration-frequency data, rational method, manning’s equation for open channel flow

Procedia PDF Downloads 131
680 Artificial Intelligent Tax Simulator to Minimize Tax Liability for Multinational Corporations

Authors: Sean Goltz, Michael Mayo

Abstract:

The purpose of this research is to use Global-Regulation.com database of the world laws, focusing on tax treaties between countries, in order to create an AI-driven tax simulator that will run an AI agent through potential tax scenarios across countries. The AI agent goal is to identify the scenario that will result in minimum tax liability based on tax treaties between countries. The results will be visualized by a three dimensional matrix. This will be an online web application. Multinational corporations are running their business through multiple countries. These countries, in turn, have a tax treaty with many other countries to regulate the payment of taxes on income that is transferred between these countries. As a result, planning the best tax scenario across multiple countries and numerous tax treaties is almost impossible. This research propose to use Global-Regulation.com database of word laws in English (machine translated by Google and Microsoft API’s) in order to create a simulator that will include the information in the tax treaties. Once ready, an AI agent will be sent through the simulator to identify the scenario that will result in minimum tax liability. Identifying the best tax scenario across countries may save multinational corporations, like Google, billions of dollars annually. Given the nature of the raw data and the domain of taxes (i.e., numbers), this is a promising ground to employ artificial intelligence towards a practical and beneficial purpose.

Keywords: taxation, law, multinational, corporation

Procedia PDF Downloads 200
679 A Script for Presentation to the Management of a Teaching Hospital on DXplain Clinical Decision Support System

Authors: Jacob Nortey

Abstract:

Introduction: In recent years, there has been an enormous success in discoveries of scientific knowledge in medicine coupled with the advancement of technology. Despite all these successes, diagnoses and treatment of diseases have become complex. According to the Ibero – American Study of Adverse Effects (IBEAS), about 10% of hospital patients suffer from secondary damage during the care process, and approximately 2% die from this process. Many clinical decision support systems have been developed to help mitigate some healthcare medical errors. Method: Relevant databases were searched, including ones that were peculiar to the clinical decision support system (that is, using google scholar, Pub Med and general google searches). The articles were then screened for a comprehensive overview of the functionality, consultative style and statistical usage of Dxplain Clinical decision support systems. Results: Inferences drawn from the articles showed high usage of Dxplain clinical decision support system for problem-based learning among students in developed countries as against little or no usage among students in Low – and Middle – income Countries. The results also indicated high usage among general practitioners. Conclusion: Despite the challenges Dxplain presents, the benefits of its usage to clinicians and students are enormous.

Keywords: dxplain, clinical decision support sytem, diagnosis, support systems

Procedia PDF Downloads 80
678 Study of Religious Women's Acceptance of Religious Women Bloggers on Instagram

Authors: Ali Momeni

Abstract:

Visual media has had a significant impact on the mental structure and behaviors of humanity. One interactive platform that has played a major role in this is Instagram. In Islamic countries, particularly Iran, many Muslims have embraced this interactive media platform for various reasons. Instagram has also provided an opportunity for individuals to become famous and gain micro-celebrity status through its semi-algorithmic features. A notable group of Iranian women who have gained fame through Instagram are religious Muslim women who have transitioned into bloggers. These Iranian religious women bloggers (IRWB) have garnered a large following by showcasing different models of hijab and their private lives. This research aims to qualitatively study the representation of femininity and religiosity of these women. The main question addressed in this study is the acceptance of Instagram activity by IRWB among religious women. Drawing on concepts such as 'The Society of the Spectacle' and 'Celebrity Online', this study utilized the netnography method to analyze 14 pages of IRWB. Data was collected in two phases, with the first phase involving the analysis of religious women's comments on posts related to these themes. The second phase included interviews with religious women students who view or follow these pages. A total of 120 comments and 14 interviews were thematically analyzed. The results revealed that the reception of these pages by religious women fell into four main themes: the spectacle of femininity, the commercialization of religiosity, the distortion of Islam, and the construction of religiosity and femininity. Ultimately, religious women did not find these pages to be reflective of their own experiences of female and religious life.

Keywords: women, bloggers, instagram, IRWB, reception.

Procedia PDF Downloads 75
677 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System

Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone

Abstract:

Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.

Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality

Procedia PDF Downloads 158
676 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study

Authors: Majdah Alnefaie

Abstract:

The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.

Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving

Procedia PDF Downloads 155
675 Improving Engagement: Dental Veneers, a Qualitative Analysis of Posts on Instagram

Authors: Matthew Sedgwick

Abstract:

Introduction: Social media continues to grow in popularity and Instagram is one of the largest platforms available. It provides an invaluable method of communication between health care professionals and patients. Both patients and dentists can benefit from seeing clinical cases posted by other members of the profession. It can prompt discussion about how the outcome was achieved and showcases what is possible with the right techniques and planning. This study aimed to identify what people were posting about the topic ‘veneers’ and inform health care professionals as to what content had the most engagement and make recommendations as to how to improve the quality of social media posts. Design: 150 consecutive posts for the search term ‘veneers’ were analyzed retrospectively between 21st October 2021 to 31st October 2021. Non-English language posts duplicated posts, and posts not about dental veneers were excluded. After exclusions were applied, 80 posts were included in the study for analysis. The content of the posts was analyzed and coded and the main themes were identified. The number of comments, likes and views were also recorded for each post. Results: The themes were: before and after treatment, cost, dental training courses, treatment process and trial smiles. Dentists were the most common posters of content (82.5%) and it was interesting to note that there were no patients who posted about treatment in this sample. The main type of media was photographs (93.75%) compared to video (6.25%). Videos had an average of 45,541 views and more comments and likes than the average for photographs. The average number of comments and likes per post were 20.88 and 761.58, respectively. Conclusion: Before and after photographs were the most common finding as this is how dentists showcase their work. The study showed that videos showing the treatment process had more engagement than photographs. Dentists should consider making video posts showing the patient journey, including before and after veneer treatment, as this can result in more potential patients and colleagues viewing the content. Video content could help dentists distinguish their posts from others as it can also be used across other platforms such as TikTok or Facebook reaching a wider audience. More informative posts about how the result has shown are achieved required, including potential costs. This will help increase transparency regarding this treatment method, including the financial and potential biological cost to teeth. As a result, this will improve patient understanding and become an invaluable adjunct in informed consent.

Keywords: content analysis, dental veneers, Instagram, social media

Procedia PDF Downloads 137
674 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms

Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.

Abstract:

Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.

Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery

Procedia PDF Downloads 176
673 Real-Time Fitness Monitoring with MediaPipe

Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola

Abstract:

In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.

Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback

Procedia PDF Downloads 67
672 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 32
671 Application of the Mobile Phone for Occupational Self-Inspection Program in Small-Scale Industries

Authors: Jia-Sin Li, Ying-Fang Wang, Cheing-Tong Yan

Abstract:

In this study, an integrated approach of Google Spreadsheet and QR code which is free internet resources was used to improve the inspection procedure. The mobile phone Application(App)was also designed to combine with a web page to create an automatic checklist in order to provide a new integrated information of inspection management system. By means of client-server model, the client App is developed for Android mobile OS and the back end is a web server. It can set up App accounts including authorized data and store some checklist documents in the website. The checklist document URL could generate QR code first and then print and paste on the machine. The user can scan the QR code by the app and filled the checklist in the factory. In the meanwhile, the checklist data will send to the server, it not only save the filled data but also executes the related functions and charts. On the other hand, it also enables auditors and supervisors to facilitate the prevention and response to hazards, as well as immediate report data checks. Finally, statistics and professional analysis are performed using inspection records and other relevant data to not only improve the reliability, integrity of inspection operations and equipment loss control, but also increase plant safety and personnel performance. Therefore, it suggested that the traditional paper-based inspection method could be replaced by the APP which promotes the promotion of industrial security and reduces human error.

Keywords: checklist, Google spreadsheet, APP, self-inspection

Procedia PDF Downloads 120
670 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: deep learning, data mining, gender predication, MOOCs

Procedia PDF Downloads 149
669 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 22