Search results for: Jiyoung Yoon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 144

Search results for: Jiyoung Yoon

84 Influence of Ligature Tightening on Bone Fracture Risk in Interspinous Process Surgery

Authors: Dae Kyung Choi, Won Man Park, Kyungsoo Kim, Yoon Hyuk Kim

Abstract:

The interspinous process devices have been recently used due to its advantages such as minimal invasiveness and less subsidence of the implant to the osteoporotic bone. In this paper, we have analyzed the influences of ligature tightening of several interspinous process devices using finite element analysis. Four types of interspinous process implants were inserted to the L3-4 spinal motion segment based on their surgical protocols. Inferior plane of L4 vertebra was fixed and 7.5 Nm of extension moment were applied on superior plane of L3 vertebra with 400N of compressive load along follower load direction and pretension of the ligature. The stability of the spinal unit was high enough than that of intact model. The higher value of pretension in the ligature led the decrease of dynamic stabilization effect in cases of the WallisTM, DiamTM, Viking, and Spear®. The results of present study could be used to evaluate surgical option and validate the biomechanical characteristics of the spinal implants.

Keywords: interspinous process device, bone fracture risk, lumbar spine, finite element analysis

Procedia PDF Downloads 400
83 Calculation of Detection Efficiency of Horizontal Large Volume Source Using Exvol Code

Authors: M. Y. Kang, Euntaek Yoon, H. D. Choi

Abstract:

To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the EXVol (Efficiency calculator for EXtended Voluminous source) code which is based on effective solid angle method. EXVol is possible to describe the source area as a non-uniform three-dimensional (x, y, z) source. And decompose and set it into several sets of volume units. Users can equally divide (x, y, z) coordinate system to calculate the detection efficiency at a specific position of a cylindrical volume source. By determining the detection efficiency for differential volume units, the total radiative absolute distribution and the correction factor of the detection efficiency can be obtained from the nondestructive measurement of the source. In order to check the performance of the EXVol code, Si ingot of 20 cm in diameter and 50 cm in height were used as a source. The detector was moved at the collimation geometry to calculate the detection efficiency at a specific position and compared with the experimental values. In this study, the performance of the EXVol code was extended to obtain the detection efficiency distribution at a specific position in a large volume source.

Keywords: attenuation, EXVol, detection efficiency, volume source

Procedia PDF Downloads 185
82 Sharing Personal Information for Connection: The Effect of Social Exclusion on Consumer Self-Disclosure to Brands

Authors: Jiyoung Lee, Andrew D. Gershoff, Jerry Jisang Han

Abstract:

Most extant research on consumer privacy concerns and their willingness to share personal data has focused on contextual factors (e.g., types of information collected, type of compensation) that lead to consumers’ personal information disclosure. Unfortunately, the literature lacks a clear understanding of how consumers’ incidental psychological needs may influence consumers’ decisions to share their personal information with companies or brands. In this research, we investigate how social exclusion, which is an increasing societal problem, especially since the onset of the COVID-19 pandemic, leads to increased information disclosure intentions for consumers. Specifically, we propose and find that when consumers become socially excluded, their desire for social connection increases, and this desire leads to a greater willingness to disclose their personal information with firms. The motivation to form and maintain interpersonal relationships is one of the most fundamental human needs, and many researchers have found that deprivation of belongingness has negative consequences. Given the negative effects of social exclusion and the universal need to affiliate with others, people respond to exclusion with a motivation for social reconnection, resulting in various cognitive and behavioral consequences, such as paying greater attention to social cues and conforming to others. Here, we propose personal information disclosure as another form of behavior that can satisfy such social connection needs. As self-disclosure can serve as a strategic tool in creating and developing social relationships, those who have been socially excluded and thus have greater social connection desires may be more willing to engage in self-disclosure behavior to satisfy such needs. We conducted four experiments to test how feelings of social exclusion can influence the extent to which consumers share their personal information with brands. Various manipulations and measures were used to demonstrate the robustness of our effects. Through the four studies, we confirmed that (1) consumers who have been socially excluded show greater willingness to share their personal information with brands and that (2) such an effect is driven by the excluded individuals’ desire for social connection. Our findings shed light on how the desire for social connection arising from exclusion influences consumers’ decisions to disclose their personal information to brands. We contribute to the consumer disclosure literature by uncovering a psychological need that influences consumers’ disclosure behavior. We also extend the social exclusion literature by demonstrating that exclusion influences not only consumers’ choice of products but also their decision to disclose personal information to brands.

Keywords: consumer-brand relationship, consumer information disclosure, consumer privacy, social exclusion

Procedia PDF Downloads 123
81 Socio-Economic Sustainability for Artists with Cognitive Disability in Creative Space: Case Studies of Supported Studios in Australia

Authors: Jung Hyoung Yoon

Abstract:

This paper examines ways of building socio-economic sustainability for artists with cognitive disabilities who pursue professional artistic careers in Australia. It investigates two case studies of supported studios in terms of management, inclusivity and accessibility to facilitate professional development and create socio-economic values for artists with cognitive disabilities. This study uses semi-structured interviews with key art directors and staff of supported studios to unfold their experiences on the professional development of artists with cognitive disability at the individual, organizational and societal levels. It also analyses secondary data collection related to management, business strategic plans and marketing. This paper discusses the potentials of socio-economic sustainability for artists with cognitive disabilities through their art practice and careers, as well as the central role of the supported studio in order to achieve such goals for individual artists.

Keywords: artists with cognitive disability, inclusive management, professional development, socio-economic sustainability

Procedia PDF Downloads 179
80 An Implementation of a Configurable UART-to-Ethernet Converter

Authors: Jungho Moon, Myunggon Yoon

Abstract:

This paper presents an implementation of a configurable UART-to-Ethernet converter using an ARM-based 32-bit microcontroller as well as a dedicated configuration program running on a PC for configuring the operating parameters of the converter. The program was written in Python. Various parameters pertaining to the operation of the converter can be modified by the configuration program through the Ethernet interface of the converter. The converter supports 3 representative asynchronous serial communication protocols, RS-232, RS-422, and RS-485 and supports 3 network modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and UDP protocols were implemented on the microcontroller using an open source TCP/IP protocol stack called lwIP (A lightweight TCP/IP) and FreeRTOS, a free real-time operating system for embedded systems. Due to the use of a real-time operating system, the firmware of the converter was implemented as a multi-thread application and as a result becomes more modular and easier to develop. The converter can provide a seamless bridge between a serial port and an Ethernet port, thereby allowing existing legacy apparatuses with no Ethernet connectivity to communicate using the Ethernet protocol.

Keywords: converter, embedded systems, ethernet, lwIP, UART

Procedia PDF Downloads 706
79 Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions

Authors: Tran Le Luu, Jeyong Yoon

Abstract:

RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances.

Keywords: RuO2, electro-catalyst, sol-gel, microwave, chlorine, oxygen evolution

Procedia PDF Downloads 254
78 Study on Multi-Point Stretch Forming Process for Double Curved Surface

Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang

Abstract:

Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.

Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing

Procedia PDF Downloads 481
77 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.

Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition

Procedia PDF Downloads 458
76 Suitability Evaluation of CNW as Scaffold for Osteoblast

Authors: Hoo Cheol Lee, Dae Seung Kim, Sang Myung Jung, Gwang Heum Yoon, Hwa Sung Shin

Abstract:

Loss of bone tissue can occur due to a bone tissue disease and aging or fracture. Renewable formation of bone is mainly made by its differentiation and metabolism. For this reason, osteoblasts have been studied for regeneration of bone tissue. So, tissue engineering has attracted attention as a recovery means. In tissue engineering, a particularly important factor is a scaffold that supports cell growth. For osteoblast scaffold, we used the cellulose nanowhisker (CNW) extracted from marine organism. CNW is one of an abundant material obtained from a number of plants and animals. CNW is polymer consisting of monomer cellulose and this composition offers biodegradability and biocompatibility to CNW. Mechanical strength of CNW is superior to the existing natural polymers. In addition, substances of marine origin have a low risk of secondary infection by bacteria and pathogen in contrast with those of land-derived. For evaluating its suitability as an osteoblast scaffold, we fabricate CNW film for osteoblast culture and performed the MTT assay and ALP assay to confirm its cytotoxicity and effect on differentiation. Taking together these results, we assessed CNW is a potential candidate of a material for bone tissue regeneration.

Keywords: bone regeneration, cellulose nanowhisker, marine derived material, osteoblast

Procedia PDF Downloads 347
75 Intrabody Communication Using Different Ground Configurations in Digital Door Lock

Authors: Daewook Kim, Gilwon Yoon

Abstract:

Intrabody communication (IBC) is a new way of transferring data using human body as a medium. Minute current can travel though human body without any harm. IBC can remove electrical wires for human area network. IBC can be also a secure communication network system unlike wireless networks which can be accessed by anyone with bad intentions. One of the IBC systems is based on frequency shift keying modulation where individual data are transmitted to the external devices for the purpose of secure access such as digital door lock. It was found that the quality of IBC data transmission was heavily dependent on ground configurations of electronic circuits. Reliable IBC transmissions were not possible when both of the transmitter and receiver used batteries as circuit power source. Transmission was reliable when power supplies were used as power source for both transmitting and receiving sites because the common ground was established through the grounds of instruments such as power supply and oscilloscope. This was due to transmission dipole size and the ground effects of floor and AC power line. If one site used battery as power source and the other site used the AC power as circuit power source, transmission was possible.

Keywords: frequency shift keying, ground, intrabody, communication, door lock

Procedia PDF Downloads 418
74 Development of Swing Valve for Gasoline Turbocharger Using Hybrid Metal Injection Molding

Authors: B. S. So, Y. H. Yoon, J. O. Jung, K. S. Bae

Abstract:

Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Particularly, it is widely applied to the manufacture of precision mobile parts and automobile turbocharger parts because compact precision parts with complicated three-dimensional shapes that are difficult to machining are formed into a large number of finished products. The swing valve is a valve that adjusts the boost pressure of the turbocharger. Since the head portion is exposed to the harsh temperature condition of about 900 degrees in the gasoline GDI engine, it is necessary to use Inconel material with excellent heat resistance and abrasion resistance, resulting in high manufacturing cost. In this study, we developed a swing valve using a metal powder injection molding based hybrid material (Inconel 713C material with heat resistance is applied to the head part, and HK30 material with low price is applied to the rest of the body part). For this purpose, the process conditions of the metal injection molding were optimized to minimize the internal defects, and the effectiveness was confirmed by the fracture strength and fatigue test.

Keywords: hybrid metal injection molding, swing valve, turbocharger, double injection

Procedia PDF Downloads 213
73 Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test

Authors: Jinyoung Choi, Tae-Ho Yoon, Sunmook Lee

Abstract:

Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475).

Keywords: accelerated degradation test, air-diffuser, lifetime assessment, SOTE

Procedia PDF Downloads 562
72 Comparative Study in Dentinal Tubuli Occlusion Using Bioglass and Copper-Bromide Laser

Authors: Sun Woo Lee, Tae Bum Lee, Yoon Hwa Park, Yoo Jeong Kim

Abstract:

Cervical dentinal hypersensitivity (CDH) affects 8-30% of adults and nearly 85% of perio-treated patients. Various treatment schemes have been applied for treating CDH, among them being fluoride application, laser irradiation, and, recently, bioglass. The purpose of this study was to investigate the influence of bioglass, copper-bromide (Cu-Br) laser irradiation and their combination on dentinal tubule occlusion as a potential dentinal hypersensitivity treatment for CDH. 45 human dentin surfaces were organized into three equal groups: group A received Cu-Br laser only; group B received bioglass only; group C received bioglass followed by Cu-Br laser irradiation. Specimens were evaluated with regard to dentinal tubule occlusion under environmental scanning electron microscope. Treatment modality significantly affected dentinal tubule occlusion (p<0.001). Groups B and C scored higher dentinal tubule occlusion than group A. Binary logistic regression showed that bioglass application significantly (p<0.001) contributed to dentinal tubule occlusion, compared with other variables. Under the conditions used herein and within the limitations of this study, bioglass application, alone or combined with Cu-Br laser irradiation, is a superior method for producing dentinal tubule occlusion, and may lead to an effective treatment modality for CDH.

Keywords: bioglass, Cu-Br laser, cervical dentinal hypersensitivity, dentinal tubule occlusion

Procedia PDF Downloads 355
71 Grain Refinement of Al-7Si-0.4Mg Alloy by Combination of Al-Ti-B and Mg-Al2Ca Mater Alloys and Their Effects on Tensile Property

Authors: Young-Ok Yoon, Su-Yeon Lee, Seong-Ho Ha, Gil-Yong Yeom, Bong-Hwan Kim, Hyun-Kyu Lim, Shae K. Kim

Abstract:

Al-7Si-0.4Mg alloy (designated A356) is widely used in the automotive and aerospace industries as structural components due to an excellent combination of castability and mechanical properties. Grain refinement has a significant effect on the mechanical properties of castings, mainly since the distribution of secondary phase is changed. As a grain refiner, the Al-Ti-B master alloys containing TiAl3 and TiB2 particles have been widely used in Al foundries. The Mg loss and Mg based inclusion formation by the strong affinity of Mg to oxygen in the melting process of Mg contained alloys have been an issue. This can be significantly improved only by Mg+Al2Ca master alloy as an alloying element instead of pure Mg. Moreover, the eutectic Si modification and grain refinement is simultaneously obtained because Al2Ca behaves as Ca, a typical Si modifier. The present study is focused on the combined effects of Mg+Al2Ca and Al-Ti-B master alloys on the grain refiment of Al-7Si-0.4Mg alloy and their proper ratio for the optimum effect. The aim of this study, therefore, is to investigate the change of the microstructure in Al-7Si-0.4Mg alloy with different ratios of Ti and Al2Ca (detected Ca content) and their effects on the tensile property. The distribution and morphology of the secondary phases by the grain refinement will be discussed.

Keywords: Al-7Si-0.4Mg alloy, Al2Ca, Al-Ti-B alloy, grain refinement

Procedia PDF Downloads 435
70 A Study on Solutions to Connect Distribution Power Grid up to Renewable Energy Sources at KEPCO

Authors: Seung Yoon Hyun, Hyeong Seung An, Myeong Ho Choi, Sung Hwan Bae, Yu Jong Sim

Abstract:

In 2015, the southern part of the Korean Peninsula has 8.6 million poles, 1.25 million km power lines, and 2 million transformers, etc. It is the massive amount of distribution equipments which could cover a round-trip distance from the earth to the moon and 11 turns around the earth. These distribution equipments are spread out like capillaries and supplying power to every corner of the Korean Peninsula. In order to manage these huge power facility efficiently, KEPCO use DAS (Distribution Automation System) to operate distribution power system since 1997. DAS is integrated system that enables to remotely supervise and control breakers and switches on distribution network. Using DAS, we can reduce outage time and power loss. KEPCO has about 160,000 switches, 50%(about 80,000) of switches are automated, and 41 distribution center monitoring&control these switches 24-hour 365 days to get the best efficiency of distribution networks. However, the rapid increasing renewable energy sources become the problem in the efficient operation of distributed power system. (currently 2,400 MW, 75,000 generators operate in distribution power system). In this paper, it suggests the way to interconnect between renewable energy source and distribution power system.

Keywords: distribution, renewable, connect, DAS (Distribution Automation System)

Procedia PDF Downloads 621
69 Effects of Plasma Treatment on Seed Germination

Authors: Yong Ho Jeon, Youn Mi Lee, Yong Yoon Lee

Abstract:

Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application.

Keywords: cold plasma, cucumber, germination, SEM

Procedia PDF Downloads 315
68 Cellulose Acetate Nanofiber Modification for Regulating Astrocyte Activity via Simple Heat Treatment

Authors: Sang-Myung Jung, Jeong Hyun Ju, Gwang Heum Yoon, Hwa Sung Shin

Abstract:

Central nervous system (CNS) consists of neuronal cell and supporting cells. Astrocytes are the most common supporting cells and play roles in metabolism between neurons and blood vessel. For this function, engineered astrocytes have been studied as a therapeutic source for CNS injury. In neural tissue engineering, nanofiber has been suggested as an effective scaffold for providing structure and mechanical properties influencing physiology. Cellulose acetate (CA) has been investigated for material to fabricate scaffold because of its biocompatibility, biodegradability and fine thermal stability. In this research, CA nanofiber was modified via heat treatment and its effect on astrocyte activity was evaluated. Adhesion and viability of astrocyte were increased in proportion to stiffness. Additionally, expression of GFAP, a marker of astrocyte activation, was increased via stiffness of scaffold. This research suggests a simple modification method to change stiffness of CA nanofiber and shows cellular behavior affecting stiffness of three-dimensional scaffold independently. For the results, we highlight that the stiffness is a factor to regulate astrocyte activity.

Keywords: astrocyte, cellulose acetate, cell therapy, stiffness of scaffold

Procedia PDF Downloads 477
67 Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers

Authors: Doo W. Lee, Soo J. Lee, Bye R. Yoon, Jae Y. Jho, Kyehan Rhee

Abstract:

Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb.

Keywords: finger exoskeleton, ionic polymer metal composite, flexion and extension, motion analysis

Procedia PDF Downloads 237
66 A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test

Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim

Abstract:

In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), bending test, infrared camera, composite

Procedia PDF Downloads 398
65 Development of Intelligent Construction Management System Using Web-Camera Image and 3D Object Image

Authors: Hyeon-Seung Kim, Bit-Na Cho, Tae-Woon Jeong, Soo-Young Yoon, Leen-Seok Kang

Abstract:

Recently, a construction project has been large in the size and complicated in the site work. The web-cameras are used to manage the construction site of such a large construction project. They can be used for monitoring the construction schedule as compared to the actual work image of the planned work schedule. Specially, because the 4D CAD system that the construction appearance is continually simulated in a 3D CAD object by work schedule is widely applied to the construction project, the comparison system between the real image of actual work appearance by web-camera and the simulated image of planned work appearance by 3D CAD object can be an intelligent construction schedule management system (ICON). The delayed activities comparing with the planned schedule can be simulated by red color in the ICON as a virtual reality object. This study developed the ICON and it was verified in a real bridge construction project in Korea. To verify the developed system, a web-camera was installed and operated in a case project for a month. Because the angle and zooming of the web-camera can be operated by Internet, a project manager can easily monitor and assume the corrective action.

Keywords: 4D CAD, web-camera, ICON (intelligent construction schedule management system), 3D object image

Procedia PDF Downloads 507
64 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force

Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases. 

Keywords: axial force ratio, fire, reinforced concrete wall, residual strength

Procedia PDF Downloads 461
63 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 44
62 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac

Abstract:

In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepress whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analyzed through the tests, in this study, the applicability and possibility are proposed.

Keywords: Carbon Fiber Reinforced Plastic(CFRP), Glass Fiber Reinforced Plastic(GFRP), stainless wire mesh, electromagnetic shielding

Procedia PDF Downloads 415
61 Antidiabetic Effects of Bitter Melon

Authors: Jinhyun Ryu, Chengliang Xie, Nal Ae Yoon, Dong Hoon Lee, Gu Seob Roh, Hyun Joon Kim, Gyeong Jae Cho, Wan Sung Choi, Sang Soo Kang

Abstract:

Type 2 diabetes is a heterogeneous group of metabolic disorders featured by a deficit in or loss of insulin activity to maintain normal glucose homeostasis. Mainly, it results from the compromised insulin secretion and/or reduced insulin activity. The frequency of type 2 diabetes (T2D) has been increased rapidly in recent decades with the increase in the trend of obesity due to life style and food habit. Obesity is considered to be the primary risk factor for the development of insulin resistance and thereby developing T2D. Traditionally naturally occurring fruits, vegetables etc. are being used to treat many pathogenic conditions. In this study, we tried to find out the effect of a popularly used vegetable in Bangladesh and several other Asian countries, ‘bitter melon’ on high fat diet induced T2D. To investigate the effect, we used 70% ethanol extract of bitter melon (BME) as dietary supplement with chow. BME was found to attenuate the high fat diet (HFD) induced body weight and total fat mass significantly. We also observed that BME reduced the insulin resistance induced by HFD effectively. Furthermore, dietary supplementation of BME was highly effective in increasing insulin sensitivity, and reducing the hepatic fat and obesity. These results indicate that BME could be effective to attenuate T2D and could be a preventive measure against T2D.

Keywords: bitter melon, obesity, type 2 diabetes, high fat diet

Procedia PDF Downloads 358
60 An Integrated Theoretical Framework on Mobile-Assisted Language Learning: User’s Acceptance Behavior

Authors: Gyoomi Kim, Jiyoung Bae

Abstract:

In the field of language education research, there are not many tries to empirically examine learners’ acceptance behavior and related factors of mobile-assisted language learning (MALL). This study is one of the few attempts to propose an integrated theoretical framework that explains MALL users’ acceptance behavior and potential factors. Constructs from technology acceptance model (TAM) and MALL research are tested in the integrated framework. Based on previous studies, a hypothetical model was developed. Four external variables related to the MALL user’s acceptance behavior were selected: subjective norm, content reliability, interactivity, self-regulation. The model was also composed of four other constructs: two latent variables, perceived ease of use and perceived usefulness, were considered as cognitive constructs; attitude toward MALL as an affective construct; behavioral intention to use MALL as a behavioral construct. The participants were 438 undergraduate students who enrolled in an intensive English program at one university in Korea. This particular program was held in January 2018 using the vacation period. The students were given eight hours of English classes each day from Monday to Friday for four weeks and asked to complete MALL courses for practice outside the classroom. Therefore, all participants experienced blended MALL environment. The instrument was a self-response questionnaire, and each construct was measured by five questions. Once the questionnaire was developed, it was distributed to the participants at the final ceremony of the intensive program in order to collect the data from a large number of the participants at a time. The data showed significant evidence to support the hypothetical model. The results confirmed through structural equation modeling analysis are as follows: First, four external variables such as subjective norm, content reliability, interactivity, and self-regulation significantly affected perceived ease of use. Second, subjective norm, content reliability, self-regulation, perceived ease of use significantly affected perceived usefulness. Third, perceived usefulness and perceived ease of use significantly affected attitude toward MALL. Fourth, attitude toward MALL and perceived usefulness significantly affected behavioral intention to use MALL. These results implied that the integrated framework from TAM and MALL could be useful when adopting MALL environment to university students or adult English learners. Key constructs except interactivity showed significant relationships with one another and had direct and indirect impacts on MALL user’s acceptance behavior. Therefore, the constructs and validated metrics is valuable for language researchers and educators who are interested in MALL.

Keywords: blended MALL, learner factors/variables, mobile-assisted language learning, MALL, technology acceptance model, TAM, theoretical framework

Procedia PDF Downloads 238
59 Enhanced Energy Powers via Composites of Piezoelectric CH₃NH₃PbI₃ and Flexoelectric Zn-Al:Layered Double Hydroxides (LDH) Nanosheets

Authors: Soon-Gil Yoon, Min-Ju Choi, Sung-Ho Shin, Junghyo Nah, Jin-Seok Choi, Hyun-A Song, Goeun Choi, Jin-Ho Choy

Abstract:

Layered double hydroxides (LDHs) with positively charged brucite-like layers and negatively charged interlayer anions are considered a critical nanoscale building block with potential for application in catalysts, biological sensors, and optical, electrical, and magnetic devices. LDHs also have a great potential as an energy conversion device, a key component in common modern electronics. Although LDHs are theoretically predicted to be centrosymmetric, we report here the first observations of the flexoelectric nature of LDHs and demonstrate their potential as an effective energy conversion material. We clearly show a linear energy conversion relationship between the output powers and curvature radius via bending with both the LDH nanosheets and thin films, revealing a direct evidence for flexoelectric effects. These findings potentially open up avenues to incorporate a flexoelectric coupling phenomenon into centrosymmetric materials such as LDHs and to harvest high-power energy using LDH nanosheets. In the present study, for enhancement of the output power, Zn-Al:LDH nanosheets were composited with piezoelectric CH3NH3PbI3 (MAPbI3) dye films and their enhanced energy harvesting was demonstrated in detail.

Keywords: layered double hydroxides, flexoelectric, piezoelectric, energy harvesting

Procedia PDF Downloads 492
58 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method

Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh

Abstract:

The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan.

Keywords: fluid-structure interaction, moving particle semi-implicit (MPS) method, elastic structure, incompressible flow, wedge slamming impact

Procedia PDF Downloads 602
57 Nurses’ Perception of Pain and Skin Tearing during Dressing Change

Authors: Jung Yoon Kim

Abstract:

Introduction: Wounds inevitably cause patients to experience discomfort, distress, and consequentially reduced quality of life due to entailed pain, maceration, and foul odor. The dressing has been a universal wound care method in which wounds are covered and protected, and an optimum environment for healing is provided. This study aimed to investigate Korean nurses’ level of awareness of pain and skin tearing in wound beds and/or peri-wound skin at dressing change. Methods: A descriptive study was performed. Convenience sampling was employed, and registered nurses were recruited from attendees of continuing education program. A total of 399 participants (RN) completed the questionnaire. Data were collected from September to November 2022. Results: Many of them perceived skin tearing and wound-related pain associated with dressing changes, but most of them did not assess and record pain and skin tearing at dressing change. More than half of the respondents reported that they did not provide nursing intervention to prevent pain and skin tearing. Many of them reported that a systematic educational program for preventing pain and skin tearing at dressing changes was needed. Discussion: Many of the respondents were aware of pain and skin tearing at dressing change but did not take any further necessary measures, including nursing intervention, for the most appropriate, systematic pain and skin tearing management. Therefore, this study suggested that a systematic and comprehensive educational program for Korean healthcare professionals needs to be developed and implemented in Korea’s hospital settings.

Keywords: skin tearing, pain, dressing change, nurses

Procedia PDF Downloads 101
56 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound

Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim

Abstract:

People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.

Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution

Procedia PDF Downloads 268
55 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac

Abstract:

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.

Keywords: carbon fiber reinforced plastic(CFRP), pre-impregnation, laminating method, interlaminar shear strength (ILSS)

Procedia PDF Downloads 372