Search results for: Single Throw Mechanical Equipment (STME)
568 The Philosophical Hermeneutics Contribution to Form a Highly Qualified Judiciary in Brazil
Authors: Thiago R. Pereira
Abstract:
The philosophical hermeneutics is able to change the Brazilian Judiciary because of the understanding of the characteristics of the human being. It is impossible for humans, to be invested in the function of being a judge, making absolutely neutral decisions, but the philosophical hermeneutics can assist the judge making impartial decisions, based on the federal constitution. The normative legal positivism imagined a neutral judge, a judge able to try without any preconceived ideas, without allowing his/her background to influence him/her. When a judge arbitrates based on legal rules, the problem is smaller, but when there are no clear legal rules, and the judge must try based on principles, the risk of the decision is based on what they believe in. Solipsistically, this issue gains a huge dimension. Today, the Brazilian judiciary is independent, but there must be a greater knowledge of philosophy and the philosophy of law, partially because the bigger problem is the unpredictability of decisions made by the judiciary. Actually, when a lawsuit is filed, the result of this judgment is absolutely unpredictable. It is almost a gamble. There must be the slightest legal certainty and predictability of judicial decisions, so that people, with similar cases, may not receive opposite sentences. The relativism, since classical antiquity, believes in the possibility of multiple answers. Since the Greeks in in the sixth century before Christ, through the Germans in the eighteenth century, and even today, it has been established the constitution as the great law, the Groundnorm, and thus, the relativism of life can be greatly reduced when a hermeneut uses the Constitution as North interpretational, where all interpretation must act as the hermeneutic constitutional filter. For a current philosophy of law, that inside a legal system with a Federal Constitution, there is a single correct answer to a specific case. The challenge is how to find this right answer. The only answer to this question will be that we should use the constitutional principles. But in many cases, a collision between principles will take place, and to resolve this issue, the judge or the hermeneut will choose a solipsism way, using what they personally believe to be the right one. For obvious reasons, that conduct is not safe. Thus, a theory of decision is necessary to seek justice, and the hermeneutic philosophy and the linguistic turn will be necessary for one to find the right answer. In order to help this difficult mission, it will be necessary to use philosophical hermeneutics in order to find the right answer, which is the constitutionally most appropriate response. The constitutionally appropriate response will not always be the answer that individuals agree to, but we must put aside our preferences and defend the answer that the Constitution gives us. Therefore, the hermeneutics applied to Law, in search constitutionally appropriate response, should be the safest way to avoid judicial individual decisions. The aim of this paper is to present the science of law starting from the linguistic turn, the philosophical hermeneutics, moving away from legal positivism. The methodology used in this paper is qualitative, academic and theoretical, philosophical hermeneutics with the mission to conduct research proposing a new way of thinking about the science of law. The research sought to demonstrate the difficulty of the Brazilian courts to depart from the secular influence of legal positivism. Moreover, the research sought to demonstrate the need to think science of law within a contemporary perspective, where the linguistic turn, philosophical hermeneutics, will be the surest way to conduct the science of law in the present century.Keywords: hermeneutic, right answer, solipsism, Brazilian judiciary
Procedia PDF Downloads 350567 Seafloor and Sea Surface Modelling in the East Coast Region of North America
Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk
Abstract:
Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.Keywords: seafloor, sea surface height, bathymetry, satellite altimetry
Procedia PDF Downloads 78566 Optimization of Multi-Disciplinary Expertise and Resource for End-Stage Renal Failure (ESRF) Patient Care
Authors: Mohamed Naser Zainol, P. P. Angeline Song
Abstract:
Over the years, the profile of end-stage renal patients placed under The National Kidney Foundation Singapore (NKFS) dialysis program has evolved, with a gradual incline in the number of patients with behavior-related issues. With these challenging profiles, social workers and counsellors are often expected to oversee behavior management, through referrals from its partnering colleagues. Due to the segregation of tasks usually found in many hospital-based multi-disciplinary settings, social workers’ and counsellors’ interventions are often seen as an endpoint, limiting other stakeholders’ involvement that could otherwise be potentially crucial in managing such patients. While patients’ contact in local hospitals often leads to eventual discharge, NKFS patients are mostly long term. It is interesting to note that these patients are regularly seen by a team of professionals that includes doctors, nurses, dietitians, exercise specialists in NKFS. The dynamism of relationships presents an opportunity for any of these professionals to take ownership of their potentials in leading interventions that can be helpful to patients. As such, it is important to have a framework that incorporates the strength of these professionals and also channels empowerment across the multi-disciplinary team in working towards wholistic patient care. This paper would like to suggest a new framework for NKFS’s multi-disciplinary team, where the group synergy and dynamics are used to encourage ownership and promote empowerment. The social worker and counsellor use group work skills and his/her knowledge of its members’ strengths, to generate constructive solutions that are centered towards patient’s growth. Using key ideas from Karl’s Tomm Interpersonal Communications, the Communication Management of Meaning and Motivational Interviewing, the social worker and counsellor through a series of guided meeting with other colleagues, facilitates the transmission of understanding, responsibility sharing and tapping on team resources for patient care. As a result, the patient can experience personal and concerted approach and begins to flow in a direction that is helpful for him. Using seven case studies of identified patients with behavioral issues, the social worker and counsellor apply this framework for a period of six months. Patient’s overall improvement through interventions as a result of this framework are recorded using the AB single case design, with baseline measured three months before referral. Interviews with patients and their families, as well as other colleagues that are not part of the multi-disciplinary team are solicited at mid and end points to gather their experiences about patient’s progress as a by-product of this framework. Expert interviews will be conducted on each member of the multi-disciplinary team to study their observations and experience in using this new framework. Hence, this exploratory framework hopes to identify the inherent usefulness in managing patients with behavior related issues. Moreover, it would provide indicators in improving aspects of the framework when applied to a larger population.Keywords: behavior management, end-stage renal failure, satellite dialysis, multi-disciplinary team
Procedia PDF Downloads 145565 Carbohydrate Intake and Physical Activity Levels Modify the Association between FTO Gene Variants and Obesity and Type 2 Diabetes: First Nutrigenetics Study in an Asian Indian Population
Authors: K. S. Vimal, D. Bodhini, K. Ramya, N. Lakshmipriya, R. M. Anjana, V. Sudha, J. A. Lovegrove, V. Mohan, V. Radha
Abstract:
Gene-lifestyle interaction studies have been carried out in various populations. However, to date there are no studies in an Asian Indian population. Hence, we examined whether lifestyle factors such as diet and physical activity modify the association between fat mass and obesity–associated (FTO) gene variants and obesity and type 2 diabetes (T2D) in an Asian Indian population. We studied 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the Chennai Urban Rural Epidemiology Study (CURES) in Southern India. Obesity was defined according to the World Health Organization Asia Pacific Guidelines (non-obese, BMI < 25 kg/m2; obese, BMI ≥ 25 kg/m2). Six single nucleotide polymorphisms (SNPs) in the FTO gene (rs9940128, rs7193144, rs8050136, rs918031, rs1588413 and rs11076023) identified from recent genome-wide association studies for T2D were genotyped by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Dietary assessment was carried out using a validated food frequency questionnaire and physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the model. A joint likelihood ratio test of the main SNP effects and the SNP-diet/physical activity interaction effects was used in the linear regression analyses to maximize statistical power. Statistical analyses were performed using STATA version 13. There was a significant interaction between FTO SNP rs8050136 and carbohydrate energy percentage (Pinteraction=0.04) on obesity, where the ‘A’ allele carriers of the SNP rs8050136 had 2.46 times higher risk of obesity than those with ‘CC’ genotype (P=3.0x10-5) among individuals in the highest tertile of carbohydrate energy percentage. Furthermore, among those who had lower levels of physical activity, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times higher risk of obesity than those with ‘CC’ genotype (P=4.0x10-5). We also found a borderline interaction between SNP rs11076023 and carbohydrate energy percentage (Pinteraction=0.08) on T2D, where the ‘A’ allele carriers in the highest tertile of carbohydrate energy percentage, had 1.57 times higher risk of T2D than those with ‘TT’ genotype (P=0.002). There was also a significant interaction between SNP rs11076023 and physical activity (Pinteraction=0.03) on T2D. No further significant interactions between SNPs and macronutrient intake or physical activity on obesity and T2D were observed. In conclusion, this is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. These findings suggest that the association between FTO gene variants and obesity and T2D is influenced by carbohydrate intake and physical activity levels. Greater understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions will advance the development of behavioral intervention and personalised lifestyle strategies predicted to reduce the development of metabolic diseases in ‘A’ allele carriers of both SNPs in this Asian Indian population.Keywords: dietary intake, FTO, obesity, physical activity, type 2 diabetes, Asian Indian.
Procedia PDF Downloads 529564 Investigating the Online Effect of Language on Gesture in Advanced Bilinguals of Two Structurally Different Languages in Comparison to L1 Native Speakers of L2 and Explores Whether Bilinguals Will Follow Target L2 Patterns in Speech and Co-speech
Authors: Armita Ghobadi, Samantha Emerson, Seyda Ozcaliskan
Abstract:
Being a bilingual involves mastery of both speech and gesture patterns in a second language (L2). We know from earlier work in first language (L1) production contexts that speech and co-speech gesture form a tightly integrated system: co-speech gesture mirrors the patterns observed in speech, suggesting an online effect of language on nonverbal representation of events in gesture during the act of speaking (i.e., “thinking for speaking”). Relatively less is known about the online effect of language on gesture in bilinguals speaking structurally different languages. The few existing studies—mostly with small sample sizes—suggests inconclusive findings: some show greater achievement of L2 patterns in gesture with more advanced L2 speech production, while others show preferences for L1 gesture patterns even in advanced bilinguals. In this study, we focus on advanced bilingual speakers of two structurally different languages (Spanish L1 with English L2) in comparison to L1 English speakers. We ask whether bilingual speakers will follow target L2 patterns not only in speech but also in gesture, or alternatively, follow L2 patterns in speech but resort to L1 patterns in gesture. We examined this question by studying speech and gestures produced by 23 advanced adult Spanish (L1)-English (L2) bilinguals (Mage=22; SD=7) and 23 monolingual English speakers (Mage=20; SD=2). Participants were shown 16 animated motion event scenes that included distinct manner and path components (e.g., "run over the bridge"). We recorded and transcribed all participant responses for speech and segmented it into sentence units that included at least one motion verb and its associated arguments. We also coded all gestures that accompanied each sentence unit. We focused on motion event descriptions as it shows strong crosslinguistic differences in the packaging of motion elements in speech and co-speech gesture in first language production contexts. English speakers synthesize manner and path into a single clause or gesture (he runs over the bridge; running fingers forward), while Spanish speakers express each component separately (manner-only: el corre=he is running; circle arms next to body conveying running; path-only: el cruza el puente=he crosses the bridge; trace finger forward conveying trajectory). We tallied all responses by group and packaging type, separately for speech and co-speech gesture. Our preliminary results (n=4/group) showed that productions in English L1 and Spanish L1 differed, with greater preference for conflated packaging in L1 English and separated packaging in L1 Spanish—a pattern that was also largely evident in co-speech gesture. Bilinguals’ production in L2 English, however, followed the patterns of the target language in speech—with greater preference for conflated packaging—but not in gesture. Bilinguals used separated and conflated strategies in gesture in roughly similar rates in their L2 English, showing an effect of both L1 and L2 on co-speech gesture. Our results suggest that online production of L2 language has more limited effects on L2 gestures and that mastery of native-like patterns in L2 gesture might take longer than native-like L2 speech patterns.Keywords: bilingualism, cross-linguistic variation, gesture, second language acquisition, thinking for speaking hypothesis
Procedia PDF Downloads 74563 Use of Activated Carbon from Olive Stone for CO₂ Capture in Porous Mortars
Authors: A. González-Caro, A. M. Merino-Lechuga, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodríguez
Abstract:
Climate change is one of the most significant issues today. Since the 19th century, the rise in temperature has not only been due to natural change, but also to human activities, which have been the main cause of climate change, mainly due to the burning of fossil fuels such as coal, oil and gas. The boom in the construction sector in recent years is also one of the main contributors to CO₂ emissions into the atmosphere; for example, for every tonne of cement produced, 1 tonne of CO₂ is emitted into the atmosphere. Most of the research being carried out in this sector is focused on reducing the large environmental impact generated during the manufacturing process of building materials. In detail, this research focuses on the recovery of waste from olive oil mills. Spain is the world's largest producer of olive oil, and this sector generates a large amount of waste and by-products such as olive pits, “alpechín” or “alpeorujo”. This olive stone by means of a pyrosilisis process gives rise to the production of active carbon. The process causes the carbon to develop many internal spaces. This study is based on the manufacture of porous mortars with Portland cement and natural limestone sand, with an addition of 5% and 10% of activated carbon. Two curing environments were used: i) dry chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration (approximately 0.04%); ii) accelerated carbonation chamber, with a humidity of 65 ± 10% and temperature of 21 ± 2 ºC and an atmospheric CO₂ concentration of 5%. In addition to eliminating waste from an industry, the aim of this study is to reduce atmospheric CO₂. For this purpose, first, a physicochemical and mineralogical characterisation of all raw materials was carried out, using techniques such as fluorescence and X-ray diffraction. The particle size and specific surface area of the activated carbon were determined. Subsequently, tests were carried out on the hardened mortar, such as thermogravimetric analysis (to determine the percentage of CO₂ capture), as well as mechanical properties, density, porosity, and water absorption. It was concluded that the activated carbon acts as a sink for CO₂, causing it to be trapped inside the voids. This increases CO₂ capture by 300% with the addition of 10% activated carbon at 7 days of curing. There was an increase in compressive strength of 17.5% with the CO₂ chamber after 7 days of curing using 10% activated carbon compared to the dry chamber.Keywords: olive stone, activated carbon, porous mortar, CO₂ capture, economy circular
Procedia PDF Downloads 60562 Metal Contents in Bird Feathers (Columba livia) from Mt Etna Volcano: Volcanic Plume Contribution and Biological Fractionation
Authors: Edda E. Falcone, Cinzia Federico, Sergio Bellomo, Lorenzo Brusca, Manfredi Longo, Walter D’Alessandro
Abstract:
Although trace metals are an essential element for living beings, they can become toxic at high concentrations. Their potential toxicity is related not only to the total content in the environment but mostly upon their bioavailability. Volcanoes are important natural metal emitters and they can deeply affect the quality of air, water and soils, as well as the human health. Trace metals tend to accumulate in the tissues of living organisms, depending on the metal contents in food, air and water and on the exposure time. Birds are considered as bioindicators of interest, because their feathers directly reflects the metals uptake from the blood. Birds are exposed to the atmospheric pollution through the contact with rainfall, dust, and aerosol, and they accumulate metals over the whole life cycle. We report on the first data combining the rainfall metal content in three different areas of Mt Etna, variably fumigated by the volcanic plume, and the metal contents in the feathers of pigeons, collected in the same areas. Rainfall samples were collected from three rain gauges placed at different elevation on the Eastern flank of the volcano, the most exposed to airborne plume, filtered, treated with HNO₃ Suprapur-grade and analyzed for Fe, Cr, Co, Ni, Se, Zn, Cu, Sr, Ba, Cd and As by ICP-MS technique, and major ions by ion chromatography. Feathers were collected from single individuals, in the same areas where the rain gauges were installed. Additionally, some samples were collected in an urban area, poorly interested by the volcanic plume. The samples were rinsed in MilliQ water and acetone, dried at 50°C until constant weight and digested in a mixture of 2:1 HNO₃ (65%) - H₂O₂ (30%) Suprapur-grade for 25-50 mg of sample, in a bath at near-to-boiling temperature. The solutions were diluted up to 20 ml prior to be analyzed by ICP-MS. The rainfall samples most contaminated by the plume were collected at close distance from the summit craters (less than 6 km), and show lower pH values and higher concentrations for all analyzed metals relative to those from the sites at lower elevation. Analyzed samples are enriched in both metals directly emitted by the volcanic plume and transported by acidic gases (SO₂, HCl, HF), and metals leached from the airborne volcanic ash. Feathers show different patterns in the different sites related to the exposure to natural or anthropogenic pollutants. They show abundance ratios similar to rainfall for lithophile elements (Ba, Sr), whereas are enriched in Zn and Se, known for their antioxidant properties, probably as adaptive response to oxidative stress induced by toxic metal exposure. The pigeons revealed a clear heterogeneity of metal uptake in the different parts of the volcano, as an effect of volcanic plume impact. Additionally, some physiological processes can modify the fate of some metals after uptake and this offer some insights for translational studies.Keywords: bioindicators, environmental pollution, feathers, trace metals, volcanic plume
Procedia PDF Downloads 142561 Ahmad Sabzi Balkhkanloo, Motahareh Sadat Hashemi, Seyede Marzieh Hosseini, Saeedeh Shojaee-Aliabadi, Leila Mirmoghtadaie
Authors: Elyria Kemp, Kelly Cowart, My Bui
Abstract:
According to the National Institute of Mental Health, an estimated 31.9% of adolescents have had an anxiety disorder. Several environmental factors may help to contribute to high levels of anxiety and depression in young people (i.e., Generation Z, Millennials). However, as young people negotiate life on social media, they may begin to evaluate themselves using excessively high standards and adopt self-perfectionism tendencies. Broadly defined, self-perfectionism involves very critical evaluations of the self. Perfectionism may also come from others and may manifest as socially prescribed perfectionism, and young adults are reporting higher levels of socially prescribed perfectionism than previous generations. This rising perfectionism is also associated with anxiety, greater physiological reactivity, and a sense of social disconnection. However, theories from psychology suggest that improvement in emotion regulation can contribute to enhanced psychological and emotional well-being. Emotion regulation refers to the ways people manage how and when they experience and express their emotions. Cognitive reappraisal and expressive suppression are common emotion regulation strategies. Cognitive reappraisal involves changing the meaning of a stimulus that involves construing a potentially emotion-eliciting situation in a way that changes its emotional impact. By contrast, expressive suppression involves inhibiting the behavioral expression of emotion. The purpose of this research is to examine the efficacy of social marketing initiatives which promote emotion regulation strategies to help young adults regulate their emotions. In Study 1 a single factor (emotional regulation strategy: a cognitive reappraisal, expressive, control) between-subjects design was conducted using an online, non-student consumer panel (n=96). Sixty-eight percent of participants were male, and 32% were female. Study participants belonged to the Millennial and Gen Z cohort, ranging in age from 22 to 35 (M=27). Participants were first told to spend at least three minutes writing about a public speaking appearance which made them anxious. The purpose of this exercise was to induce anxiety. Next, participants viewed one of three advertisements (randomly assigned) which promoted an emotion regulation strategy—cognitive reappraisal, expressive suppression, or an advertisement non-emotional in nature. After being exposed to one of the ads, participants responded to a measure composed of two items to access their emotional state and the efficacy of the messages in fostering emotion management. Findings indicated that individuals in the cognitive reappraisal condition (M=3.91) exhibited the most positive feelings and more effective emotion regulation than the expressive suppression (M=3.39) and control conditions (M=3.72, F(1,92) = 3.3, p<.05). Results from this research can be used by institutions (e.g., schools) in taking a leadership role in attacking anxiety and other mental health issues. Social stigmas regarding mental health can be removed and a more proactive stance can be taken in promoting healthy coping behaviors and strategies to manage negative emotions.Keywords: emotion regulation, anxiety, social marketing, generation z
Procedia PDF Downloads 203560 Analyzing the Effects of a Psychological Intervention on Black Students’ Sense of Belonging in Physics and Math: Exploring Differential Impacts for Historically Black Colleges and Universities and Predominantly White Institutions
Authors: Terrell Strayhorn
Abstract:
The lack of diversity in science, technology, engineering, and mathematics (STEM) fields is a persistent and concerning issue. One contributing factor to the underrepresentation of minority groups in STEM fields is a lack of sense of belonging, which can lead to lower levels of academic engagement, motivation, and achievement. In particular, Black students have been shown to experience lower levels of sense of belonging in STEM compared to their white peers. This study aimed to explore the effects of a psychological intervention on Black students' sense of belonging in physics and math courses at historically Black colleges and universities (HBCUs) and predominantly white institutions (PWIs). The study used a randomized controlled trial design and included 305 Black undergraduate students enrolled in physics or math courses at HBCUs and PWIs in the United States. Participants were randomly assigned to either an intervention group or a control group. The intervention consisted of a brief psychological, video-based intervention designed to enhance sense of belonging, which was delivered in a single session. The control group received no intervention. The primary outcome measure was sense of belonging in physics and math courses, as assessed by a validated self-report measure. Other outcomes included academic engagement, motivation, and achievement as measured by physics and math (course) grades. Preliminary results show that the intervention has a significant positive effect on Black students' sense of belonging in physics and math courses, with a moderate effect size. The intervention also had a significant positive effect on academic engagement and motivation, but not on academic achievement. Importantly, the effects of the intervention were larger for Black students enrolled at PWIs compared to those enrolled at HBCUs. Findings, at present, suggest that a brief psychological web-based intervention can enhance Black students' sense of belonging in physics and math courses, and that the effects may be particularly strong for Black students enrolled at PWIs, although they are not negligible for Black students at HBCUs. This is an important finding given the persistent underrepresentation of Black students in STEM fields, the growing number of Black students at PWIs, and the potential for enhancing sense of belonging to improve academic outcomes and increase diversity in these fields. The study has several limitations, including a relatively small sample size and a lack of long-term follow-up. Future research could explore the generalizability of these findings to other minority groups and other STEM fields, as well as the potential for longer-term interventions to sustain and enhance the effects observed in this study. Overall, this study highlights the potential for psychological interventions to enhance sense of belonging and improve academic outcomes for Black students in STEM courses, and underscores the importance of addressing sense of belonging as a key factor in promoting diversity and equity in STEM fields.Keywords: sense of belonging, achievement, racial equity, postsecondary education, intervention
Procedia PDF Downloads 68559 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag
Abstract:
MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂
Procedia PDF Downloads 191558 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada
Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone
Abstract:
Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.Keywords: cameras, monitoring, recreational fishing, stock assessment
Procedia PDF Downloads 122557 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam
Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir
Abstract:
Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory
Procedia PDF Downloads 318556 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 45555 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets
Procedia PDF Downloads 122554 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines
Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka
Abstract:
To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps
Procedia PDF Downloads 149553 A Case of Borderline Personality Disorder: An Explanatory Study of Unconscious Conflicts through Dream-Analysis
Authors: Mariam Anwaar, Kiran B. Ahmad
Abstract:
Borderline Personality Disorder (BPD) is an invasive presence of affect instability, disturbance in self-concept and attachment in relationships. The profound indicator is the dichotomous approach of the world in which the ego categorizes individuals, especially their significant others, into secure or threatful beings, leaving little room for a complex combination of characteristics in one person. This defense mechanism of splitting their world has been described through the explanatory model of unconscious conflict theorized by Sigmund Freud’s Electra Complex in the Phallic Stage. The central role is of the father with whom the daughter experiences penis envy, thus identifying with the mother’s characteristics to receive the father’s attention. However, Margret Mahler, an object relation theorist, elucidates the central role of the mother and that the split occurs during the pre-Electra complex stage. Amid the 14 and 24 months of the infant, it acknowledges the world away from the mother as they have developed milestones such as crawling. In such novelty, the infant crawls away from the mother creating a sense of independence (individuation). On the other hand, being distant causes anxiety, making them return to their original object of security (separation). In BPD, the separation-individuation stage is disrupted, due to contradictory actions of the caregiver, which results in splitting the object into negative and positive aspects, repressing the former and adhering to the latter for survival. Thus, with time, the ego distorts the reality into dichotomous categories, using the splitting defenses, and the mental representation of the self is distorted due to the internalization of the negative objects. The explanatory model was recognized in the case study of Fizza, at 21-year-old Pakistani female, residing in Karachi. Her marital status is single with an occupation being a dental student. Fizza lives in a nuclear family but is surrounded by her extended family as they all are in close vicinity. She came with the complaints of depressive symptoms for two-years along with self-harm due to severe family conflicts. Through the intervention of Dialectical Behavior Therapy (DBT), the self-harming actions were reduced, however, this libidinal energy transformed into claustrophobic symptoms and, along with this, Fizza has always experienced vivid dreams. A retrospective method of Jungian dream-analysis was applied to locate the origins of the splitting in the unconscious. The result was the revelation of a sexual harassment trauma at the age of six-years which was displaced in the form of self-harm. In addition to this, the presence of a conflict at the separation-individuation stage was detected during the dream-analysis, and it was the underlying explanation of the claustrophobic symptoms. This qualitative case study implicates the use of a patient’s subjective experiences, such as dreams, to journey through the spiral of the unconscious in order to not only detect repressed memories but to use them in psychotherapy as a means of healing the patient.Keywords: borderline personality disorder, dream-analysis, Electra complex, separation-individuation, splitting, unconscious
Procedia PDF Downloads 152552 Attention Treatment for People With Aphasia: Language-Specific vs. Domain-General Neurofeedback
Authors: Yael Neumann
Abstract:
Attention deficits are common in people with aphasia (PWA). Two treatment approaches address these deficits: domain-general methods like Play Attention, which focus on cognitive functioning, and domain-specific methods like Language-Specific Attention Treatment (L-SAT), which use linguistically based tasks. Research indicates that L-SAT can improve both attentional deficits and functional language skills, while Play Attention has shown success in enhancing attentional capabilities among school-aged children with attention issues compared to standard cognitive training. This study employed a randomized controlled cross-over single-subject design to evaluate the effectiveness of these two attention treatments over 25 weeks. Four PWA participated, undergoing a battery of eight standardized tests measuring language and cognitive skills. The treatments were counterbalanced. Play Attention used EEG sensors to detect brainwaves, enabling participants to manipulate items in a computer game while learning to suppress theta activity and increase beta activity. An algorithm tracked changes in the theta-to-beta ratio, allowing points to be earned during the games. L-SAT, on the other hand, involved hierarchical language tasks that increased in complexity, requiring greater attention from participants. Results showed that for language tests, Participant 1 (moderate aphasia) aligned with existing literature, showing L-SAT was more effective than Play Attention. However, Participants 2 (very severe) and 3 and 4 (mild) did not conform to this pattern; both treatments yielded similar outcomes. This may be due to the extremes of aphasia severity: the very severe participant faced significant overall deficits, making both approaches equally challenging, while the mild participant performed well initially, leaving limited room for improvement. In attention tests, Participants 1 and 4 exhibited results consistent with prior research, indicating Play Attention was superior to L-SAT. Participant 2, however, showed no significant improvement with either program, although L-SAT had a slight edge on the Visual Elevator task, measuring switching and mental flexibility. This advantage was not sustained at the one-month follow-up, likely due to the participant’s struggles with complex attention tasks. Participant 3's results similarly did not align with prior studies, revealing no difference between the two treatments, possibly due to the challenging nature of the attention measures used. Regarding participation and ecological tests, all participants showed similar mild improvements with both treatments. This limited progress could stem from the short study duration, with only five weeks allocated for each treatment, which may not have been enough time to achieve meaningful changes affecting life participation. In conclusion, the performance of participants appeared influenced by their level of aphasia severity. The moderate PWA’s results were most aligned with existing literature, indicating better attention improvement from the domain-general approach (Play Attention) and better language improvement from the domain-specific approach (L-SAT).Keywords: attention, language, cognitive rehabilitation, neurofeedback
Procedia PDF Downloads 14551 Nurses' Knowledge and Practice Regarding Care of Patients Connected to Intra-Aortic Balloon Pump at Cairo University Hospitals
Authors: Tharwat Ibrahim Rushdy, Warda Youssef Mohammed Morsy, Hanaa Ali Ahmed Elfeky
Abstract:
Background: Intra-aortic balloon pump (IABP) is the first and the most commonly used mechanical circulatory support for patients with acute coronary syndromes and cardiogenic shock. Therefore, critical care nurses not only have to know how to monitor and operate the IABP, but also to provide interventions for preventing possible complications. Aim of the study: To assess nurses' knowledge and practices regarding care of patients connected to IABP at the ICUs of Cairo University Hospitals. Research design: A descriptive exploratory design was utilized. Sample: Convenience samples of 40 nurses were included in the current study. Setting: This study was carried out at the Intensive Care Units of Cairo University Hospitals. Tools of data collection: Three tools were developed, tested for clarity, and feasibility: a- Nurses' personal background sheet, b- IABP nurses' knowledge self-administered questionnaire, and c- IABP Nurses' practice observational checklist. Results: The majority of the studied sample had unsatisfactory knowledge and practice level (88% & 95%) respectively with a mean of 9.45+2.94 and 30.5+8.7, respectively. Unsatisfactory knowledge was found regarding description and physiological effects, nursing care, indications, contraindications, complications, weaning, and removal of IABP in percentage of 95%, 90%, 72.5%, and 57.5%, respectively, with a mean total knowledge score of 9.45 +2.94. In addition, unsatisfactory practice was found regarding about preparation and initiation of IABP therapy, nursing practice during therapy, weaning, and removal of IABP in percentages of (97.5%, 97.5%, and 90%), respectively. Finally, knowledge level was found to differ significantly in relation to gender (t = 2.46 at P ≤ 0.018). However, gender didn't play a role in relation to practice (t = 0.086 at P≤ 0.932). Conclusion: In spite of having vital role in assessment and management of critically ill patients, critical care nurses in the current study had in general unsatisfactory knowledge and practice regarding care of patients connected to IABP. Recommendation: updating knowledge and practice of ICU nurses through carrying out continuing educational programs about IABP; strict observation of nurses' practice when caring for patients connected to IABP and provision of guidance to correct of poor practices and replication of this study on larger probability sample selected from different geographical locations.Keywords: knowledge, practice, intra-aortic balloon pump (IABP), ICU nurses, intensive care unit (ICU), introduction
Procedia PDF Downloads 495550 Investigating the Impact of Individual Risk-Willingness and Group-Interaction Effects on Business Model Innovation Decisions
Authors: Sarah Müller-Sägebrecht
Abstract:
Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. Individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) Which impact has the individual risk-willingness on BMI decisions? And ii) how do group interaction effects impact BMI decisions? After conducting 26 in-depth interviews with executives from the manufacturing industry, the applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.Keywords: business model innovation, decision-making, group biases, group decisions, group-interaction effects, risk-willingness
Procedia PDF Downloads 96549 Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption
Authors: Peter O. Osifo, Hein W. J. P. Neomagus, Hein V. D. Merwe
Abstract:
Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours.Keywords: chitosan, membrane, waste water, heavy metal ions, adsorption
Procedia PDF Downloads 386548 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter
Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic
Abstract:
To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow
Procedia PDF Downloads 115547 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond
Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu
Abstract:
Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density
Procedia PDF Downloads 437546 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant
Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet
Abstract:
Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber
Procedia PDF Downloads 234545 Gut Microbial Dynamics in a Mouse Model of Inflammation-Linked Carcinogenesis as a Result of Diet Supplementation with Specific Mushroom Extracts
Authors: Alvarez M., Chapela M. J., Balboa E., Rubianes D., Sinde E., Fernandez de Ana C., Rodríguez-Blanco A.
Abstract:
The gut microbiota plays an important role as gut inflammation could contribute to colorectal cancer development; however, this role is still not fully understood, and tools able to prevent this progression are yet to be developed. The main objective of this study was to monitor the effects of a mushroom extracts formulation in gut microbial community composition of an Azoxymethane (AOM)/Dextran sodium sulfate (DSS) mice model of inflammation-linked carcinogenesis. For the in vivo study, 41 adult male mice of the C57BL / 6 strain were obtained. 36 of them have been induced in a state of colon carcinogenesis by a single intraperitoneal administration of AOM at a dose of 12.5 mg/kg; the control group animals received instead of the same volume of 0.9% saline. DSS is an extremely toxic polysaccharide sulfate that causes chronic inflammation of the colon mucosa, favoring the appearance of severe colitis and the production of tumors induced by AOM. Induction by AOM/DSS is an interesting platform for chemopreventive intervention studies. This time the model was used to monitor gut microbiota changes as a result of supplementation with a specific mushroom extracts formulation previously shown to have prebiotic activity. The animals have been divided into three groups: (i) Cancer + mushroom extracts formulation experimental group: to which the MicoDigest2.0 mushroom extracts formulation developed by Hifas da Terra S.L has been administered dissolved in drinking water at an estimated concentration of 100 mg / ml. (ii) Control group of animals with Cancer: to which normal water has been administered without any type of treatment. (iii) Control group of healthy animals: these are the animals that have not been induced cancer or have not received any treatment in drinking water. This treatment has been maintained for a period of 3 months, after which the animals were sacrificed to obtain tissues that were subsequently analyzed to verify the effects of the mushroom extract formulation. A microbiological analysis has been carried out to compare the microbial communities present in the intestines of the mice belonging to each of the study groups. For this, the methodology of massive sequencing by molecular analysis of the 16S gene has been used (Ion Torrent technology). Initially, DNA extraction and metagenomics libraries were prepared using the 16S Metagenomics kit, always following the manufacturer's instructions. This kit amplifies 7 of the 9 hypervariable regions of the 16S gene that will then be sequenced. Finally, the data obtained will be compared with a database that makes it possible to determine the degree of similarity of the sequences obtained with a wide range of bacterial genomes. Results obtained showed that, similarly to certain natural compounds preventing colorectal tumorigenesis, a mushroom formulation enriched the Firmicutes and Proteobacteria phyla and depleted Bacteroidetes. Therefore, it was demonstrated that the consumption of the mushroom extracts’ formulation developed could promote the recovery of the microbial balance that is disrupted in the mice model of carcinogenesis. More preclinical and clinical studies are needed to validate this promising approach.Keywords: carcinogenesis, microbiota, mushroom extracts, inflammation
Procedia PDF Downloads 148544 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 388543 Study of a Decentralized Electricity Market on Awaji Island
Authors: Arkadiusz P. Wójcik, Tetsuya Sato, Shin-Ichiro Shima, Mateusz Malanowski
Abstract:
Over the last decades, new technologies have significantly changed the way information is transmitted and stored. Renewable energy sources have become prevalent and affordable. Cooperation of the Information and Communication Technology industry and Renewable Energy industry makes it possible to create a next generation, decentralized power grid. In this context, the study seeks to identify the wider benefits to the local Japanese economy as a result of the development of a decentralised electricity market. Our general approach aims to integrate an economic analysis (monetary appraisal of costs and benefits to society) with externalities that are not quantifiable in monetary terms (e.g. social impact, environmental impact). The study also highlights opportunities and sets out recommendations for the citizens of the island and the local government. The simulation is the scientific basis for economic impact analysis. Various types of sources of energy have been taken into account: residential wind farm, residential wind turbine, solar farm, residential solar panels and private solar farms. Analysis of local geographic and economic conditions allowed creating a customized business model. Very often farmers on Awaji Island are using crop cycle. During each cycle, one part of the field is resting and replenishing nutrients. In the next year another part of the field is resting. Portable solar panels could be freely set up in this part of the field. At the end of the crop cycle, portable solar panels would be moved to the next resting part. Because of spacious area, for a single household 500 square meters of portable solar panels has been proposed and simulated. The devised simulation shows that the Rate of Return on Investment for solar panels, which are on the island, could reach up to 37.21%. Supposing that about 20% of households install solar panels they could produce 49.11% of the electric energy consumed by households on the island. The analysis shows that rest of the energy supply can be produced by currently existing one huge solar farm and two wind farms to meet 97.59% of demand on electricity for households on the island. Although there are more than 7,000 agricultural fields on the island, young people tend to avoid agricultural work and prefer to move from the island to big cities, live there in little mansions and work until late night. The business model proposed in this study could increase farmer’s monthly income by ¥200,000 - ¥300,000 (1,600 euro – 2,400 euro). Young people could work less and have a higher standard of living than in a city. Creation of a decentralized electricity market can unlock significant benefits in other industries (e.g. electric vehicles), providing a welcome boost to economic growth, jobs and quality of life.Keywords: digital twin, Matlab, model-based systems engineering, simulink, smart grid, systems engineering
Procedia PDF Downloads 119542 Influence of 3D Printing Parameters on Surface Finish of Ceramic Hip Prostheses Fixed by Means of Osteointegration
Authors: Irene Buj-Corral, Ali Bagheri, Alejandro Dominguez-Fernandez
Abstract:
In recent years, use of ceramic prostheses as an implant in some parts of body has become common. In the present study, research has focused on replacement of the acetabulum bone, which is a part of the pelvis bone. Metallic prostheses have shown some problems such as release of metal ions into patient's blood. In addition, fracture of liners and squeezing between surface of femoral head and inner surface of acetabulum have been reported. Ceramic prostheses have the advantage of low debris and high strength, although they are more difficult to be manufactured than metallic ones. Specifically, new designs try to attempt an acetabulum in which the outer surface will be porous for proliferation of cells and fixation of the prostheses by means of osteointegration, while inner surface must be smooth enough to assure that the movement between femoral head and inner surface will be carried out with on feasibility. In the present study, 3D printing technologies are used for manufacturing ceramic prostheses. In Fused Deposition Modelling (FDM) process, 3D printed plastic prostheses are obtained by means of melting of a plastic filament and subsequent deposition on a glass surface. A similar process is applied to ceramics in which ceramic powders need to be mixed with a liquid polymer before depositing them. After 3D printing, parts are subjected to a sintering process in an oven so that they can achieve final strength. In the present paper, influence of printing parameters on surface roughness 3D printed ceramic parts are presented. Three parameter full factorial design of experiments was used. Selected variables were layer height, infill and nozzle diameter. Responses were average roughness Ra and mean roughness depth Rz. Regression analysis was applied to responses in order to obtain mathematical models for responses. Results showed that surface roughness depends mainly on layer height and nozzle diameter employed, while infill was found not to be significant. In order to get low surface roughness, low layer height and low infill should be selected. As a conclusion, layer height and infill are important parameters for obtaining good surface finish in ceramic 3D printed prostheses. However, use of too low infill could lead to prostheses with low mechanical strength. Such prostheses could not be able to bear the static and dynamic charges to which they are subjected once they are implanted in the body. This issue will be addressed in further research.Keywords: ceramic, hip prostheses, surface roughness, 3D printing
Procedia PDF Downloads 196541 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation
Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim
Abstract:
Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl
Procedia PDF Downloads 393540 In vitro Evaluation of Immunogenic Properties of Oral Application of Rabies Virus Surface Glycoprotein Antigen Conjugated to Beta-Glucan Nanoparticles in a Mouse Model
Authors: Narges Bahmanyar, Masoud Ghorbani
Abstract:
Rabies is caused by several species of the genus Lyssavirus in the Rhabdoviridae family. The disease is deadly encephalitis transmitted from warm-blooded animals to humans, and domestic and wild carnivores play the most crucial role in its transmission. The prevalence of rabies in poor areas of developing salinities is constantly posed as a global threat to public health. According to the World Health Organization, approximately 60,000 people die yearly from rabies. Of these, 60% of deaths are related to the Middle East. Although rabies encephalitis is incurable to date, awareness of the disease and the use of vaccines is the best way to combat the disease. Although effective vaccines are available, there is a high cost involved in vaccine production and management to combat rabies. Increasing the prevalence and discovery of new strains of rabies virus requires the need for safe, effective, and as inexpensive vaccines as possible. One of the approaches considered to achieve the quality and quantity expressed through the manufacture of recombinant types of rabies vaccine. Currently, livestock rabies vaccines are used only in inactivated or live attenuated vaccines, the process of inactivation of which pays attention to considerations. The rabies virus contains a negatively polarized single-stranded RNA genome that encodes the five major structural genes (N, P, M, G, L) from '3 to '5 . Rabies virus glycoprotein G, the major antigen, can produce the virus-neutralizing antibody. N-antigen is another candidate for developing recombinant vaccines. However, because it is within the RNP complex of the virus, the possibility of genetic diversity based on different geographical locations is very high. Glycoprotein G is structurally and antigenically more protected than other genes. Protection at the level of its nucleotide sequence is about 90% and at the amino acid level is 96%. Recombinant vaccines, consisting of a pathogenic subunit, contain fragments of the protein or polysaccharide of the pathogen that have been carefully studied to determine which of these molecules elicits a stronger and more effective immune response. These vaccines minimize the risk of side effects by limiting the immune system's access to the pathogen. Such vaccines are relatively inexpensive, easy to produce, and more stable than vaccines containing viruses or whole bacteria. The problem with these vaccines is that the pathogenic subunits may elicit a weak immune response in the body or may be destroyed before they reach the immune cells, which requires nanoparticles to overcome. Suitable for use as an adjuvant. Among these, biodegradable nanoparticles with functional levels are good candidates as adjuvants for the vaccine. In this study, we intend to use beta-glucan nanoparticles as adjuvants. The surface glycoprotein of the rabies virus (G) is responsible for identifying and binding the virus to the target cell. This glycoprotein is the major protein in the structure of the virus and induces an antibody response in the host. In this study, we intend to use rabies virus surface glycoprotein conjugated with beta-glucan nanoparticles to produce vaccines.Keywords: rabies, vaccines, beta glucan, nanoprticles, adjuvant, recombinant protein
Procedia PDF Downloads 15539 Urban Accessibility of Historical Cities: The Venetian Case Study
Authors: Valeria Tatano, Francesca Guidolin, Francesca Peltrera
Abstract:
The preservation of historical Italian heritage, at the urban and architectural scale, has to consider restrictions and requirements connected with conservation issues and usability needs, which are often at odds with historical heritage preservation. Recent decades have been marked by the search for increased accessibility not only of public and private buildings, but to the whole historical city, also for people with disability. Moreover, in the last years the concepts of Smart City and Healthy City seek to improve accessibility both in terms of mobility (independent or assisted) and fruition of goods and services, also for historical cities. The principles of Inclusive Design have introduced new criteria for the improvement of public urban space, between current regulations and best practices. Moreover, they have contributed to transforming “special needs” into an opportunity of social innovation. These considerations find a field of research and analysis in the historical city of Venice, which is at the same time a site of UNESCO world heritage, a mass tourism destination bringing in visitors from all over the world and a city inhabited by an aging population. Due to its conformation, Venetian urban fabric is only partially accessible: about four thousand bridges divide thousands of islands, making it almost impossible to move independently. These urban characteristics and difficulties were the base, in the last 20 years, for several researches, experimentations and solutions with the aim of eliminating architectural barriers, in particular for the usability of bridges. The Venetian Municipality with the EBA Office and some external consultants realized several devices (e.g. the “stepped ramp” and the new accessible ramps for the Venice Marathon) that should determine an innovation for the city, passing from the use of mechanical replicable devices to specific architectural projects in order to guarantee autonomy in use. This paper intends to present the state-of-the-art in bridges accessibility, through an analysis based on Inclusive Design principles and on the current national and regional regulation. The purpose is to evaluate some possible strategies that could improve performances, between limits and possibilities of interventions. The aim of the research is to lay the foundations for the development of a strategic program for the City of Venice that could successfully bring together both conservation and improvement requirements.Keywords: accessibility of historical cities, historical heritage preservation, inclusive design, technological and social innovation
Procedia PDF Downloads 280