Search results for: sonication conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9942

Search results for: sonication conditions

1272 Clinical Outcomes and Symptom Management in Pediatric Patients Following Eczema Action Plans: A Quality Improvement Project

Authors: Karla Lebedoff, Susan Walsh, Michelle Bain

Abstract:

Eczema is a chronic atopy condition requiring long-term daily management in children. Written action plans for other chronic atopic conditions, such as asthma and food allergies, are widely recommended and distributed to pediatric patients' parents and caregivers, seeking to improve clinical outcomes and become empowered to manage the patient's ever-changing symptoms. Written action plans for eczema, referred to as "asthma of the skin," are not routinely used in practice. Parents of children suffering from eczema rarely receive a written action plan to follow, and commendations supporting eczema action plans are inconsistent. Pediatric patients between birth and 18 years old who were followed for eczema at an urban Midwest community hospital were eligible to participate in this quality improvement project. At the initial visit, parents received instructions on individualized eczema action plans for their child and completed two validated surveys: Health Confidence Score (HCS) and Patient-Oriented Eczema Measure (POEM). Pre- and post-survey responses were collected, and clinical symptom presentation at follow-up were outcome determinants. Project implementation was guided by Institute for Healthcare Improvement's Step-up Framework and the Plan-Do-Study-Act cycle. This project measured clinical outcomes and parent confidence in self-management of their child's eczema symptoms with the responses from 26 participant surveys. Pre-survey responses were collected from 36 participants, though ten were lost to follow-up. Average POEM scores improved by 53%, while average HCS scores remained unchanged. Of seven completed in-person follow-up visits, six clinical progress notes documented improvement. Individualized eczema action plans can be seamlessly incorporated into primary and specialty care visits for pediatric patients suffering from eczema. Following a patient-specific eczema action plan may lessen the daily physical and mental burdens of uncontrolled eczema for children and parents, managing symptoms that chronically flare and recede. Furthermore, incorporating eczema action plans into practice potentially reduces the likely underestimated $5.3 billion economic disease burden of eczema on the U.S. healthcare system.

Keywords: atopic dermatitis, eczema action plan, eczema symptom management, pediatric eczema

Procedia PDF Downloads 133
1271 Biocontrol Potential of Trichoderma longibrachiatum as an Entomopathogenic Fungi against Bemisia tabaci

Authors: Waheed Anwar, Kiran Nawaz, Muhammad Saleem Haider, Ahmad Ali Shahid, Sehrish Iftikhar

Abstract:

The whitefly, Bemisia tabaci (Gennadius), is a complex insect species, including many cryptic species or biotypes. Whitefly causes damage to many ornamental and horticultural crops through directly feeding on phloem sap, resulting in sooty mould and critically decreases the rate of photosynthesis of many host plants. Biological control has emerged as one of the most important methods for the management of soil-borne plant pathogens. Among the natural enemies of insects different entomopathogenic fungi are mostly used as biological control of the pest. The purpose of this research was to find indigenous insect-associated fungi and their virulence against Bemisia tabaci. A detailed survey of cotton fields in sample collection was conducted during July and August 2013 from the central mixed zone of Punjab, Pakistan. For the isolation of T. longibrachiatum, sabouraud dextrose peptone yeast extract agar (SDAY) media was used and morphological characterization of isolated T. longibrachiatum was studied using different dichotomous keys. Molecular Identification of the pathogen was confirmed by amplifying the internal transcribed spacer region. Blastn analysis showed 100% homology with already reported sequences on the database. For these bioassays, two conidial concentrations 4 × 108/mL & 4 × 104/mL of T. longibrachiatum was sprayed in clip cages for nymph and adult B. tabaci respectively under controlled environmental conditions. The pathogenicity of T. longibrachiatum was tested on nymph and adult whitefly to check mortality. Mortality of B. tabaci at nymphal and adult stages were observed after 24-hour intervals. Percentage mortality of nymphs treated with 4 x 104/mL conidia of T. longibrachiatum was 20, 24, 36 and 40% after 48, 72, 96, 72, 96, 120 and 144 hours respectively. However, no considerable difference was recorded in percentage mortality of whitefly after 120 and 144 hours. There were great variations after 24, 48, 72 and 96 hours in the rate of mortality. The efficacy of T. longibrachiatum as entomopathogenic fungi was evaluated in adult and nymphal stages of whitefly. Trichoderma longibrachiatum showed maximum activity on nymphal stages of whitefly as compared to adult stages. The percentage of conidial germination was also recorded on the outer surface of adult and nymphal stages of B. tabaci. The present findings indicated that T. longibrachiatum is an entomopathogenic fungus against B. tabaci and many species of Trichoderma were already reported as an antagonistc organism against a wide range of bacterial and fungal pathogens.

Keywords: efficacy, Trichoderma, virulence, bioassay

Procedia PDF Downloads 286
1270 Effect of Term of Preparation on Performance of Cool Chamber Stored White Poplar Hardwood Cuttings in Nursery

Authors: Branislav Kovačević, Andrej Pilipović, Zoran Novčić, Marina Milović, Lazar Kesić, Milan Drekić, Saša Pekeč, Leopold Poljaković Pajnik, Saša Orlović

Abstract:

Poplars present one of the most important tree species used for phytoremediation in the northern hemisphere. They can be used either as direct “cleaners” of the contaminated soils or as buffer zones preventing the contaminant plume to the surrounding environment. In order to produce appropriate planting material for this purpose, there is a long process of the breeding of the most favorable candidates. Although the development of the poplar propagation technology has been evolving for decades, white poplar nursery production, as well as the establishment of short-rotation coppice plantations, still considerably depends on the success of hardwood cuttings’ survival. This is why easy rooting is among the most desirable properties in white poplar breeding. On the other hand, there are many opportunities for the optimization of the technological procedures in order to meet the demands of particular genotype (clonal technology). In this study the effect of the term of hardwood cuttings’ preparation of four white poplar clones on their survival and further growth of rooted cuttings in nursery conditions were tested. There were three terms of cuttings’ preparation: the beginning of February (2nd Feb 2023), the beginning of March (3rd Mar 2023) and the end of March (21nd Mar 2023), which is regarded as the standard term. The cuttings were stored in cool chamber at 2±2°C. All cuttings were planted on the same date (11th Apr 2023), in soil prepared with rotary tillage, and then cultivated by usual nursey procedures. According to the results obtained after the bud set (29th Sept 2023) there were significant differences in the survival and growth of rooted cuttings between examined terms of cutting preparation. Also, there were significant differences in the reaction of examined clones on terms of cutting preparation. In total, the best results provided cuttings prepared at the first term (2nd Feb 2023) (survival rate of 39.4%), while performance after two later preparation terms was significantly poorer (20.5% after second and 16.5% after third term). These results stress the significance of dormancy preservation in cuttings of examined white poplar clones for their survival, which could be especially important in context of climate change. Differences in clones’ reaction to term of cutting preparation suggest necessity of adjustment of the technology to the needs of particular clone i.e. design of clone specific technology.

Keywords: rooting, Populus alba, nursery, clonal technology

Procedia PDF Downloads 62
1269 The Effectiveness of a Self-Efficacy Psychoeducational Programme to Enhance Outcomes of Patients with End-Stage Renal Disease

Authors: H. C. Chen, S. W. C. Chan, K. Cheng, A. Vathsala, H. K. Sran, H. He

Abstract:

Background: End-stage renal disease (ESRD) is the last stage of chronic kidney disease. The numbers of patients with ESRD have increased worldwide due to the growing number of aging, diabetes and hypertension populations. Patients with ESRD suffer from physical illness and psychological distress due to complex treatment regimens, which often affect the patients’ social and psychological functioning. As a result, the patients may fail to perform daily self-care and self-management, and consequently experience worsening conditions. Aims: The study aims to examine the effectiveness of a self-efficacy psychoeducational programme on primary outcome (self-efficacy) and secondary outcomes (psychological wellbeing, treatment adherence, and quality of life) in patients with ESRD and haemodialysis in Singapore. Methodology: A randomised controlled, two-group pretest and repeated posttests design will be carried out. A total of 154 participants (n=154) will be recruited. The participants in the control group will receive a routine treatment. The participants in the intervention group will receive a self-efficacy psychoeducational programme in addition to the routine treatment. The programme is a two-session of educational intervention in a week. A booklet, two consecutive sessions of face-to-face individual education, and an abdominal breathing exercise are adopted in the programme. Outcome measurements include Dialysis Specific Self-efficacy Scale, Kidney Disease Quality of Life- 36 Hospital Anxiety and Depression Scale, Renal Adherence Attitudes Questionnaire and Renal Adherence Behaviour Questionnaire. The questionnaires will be used to measure at baseline, 1- and 3- and 6-month follow-up periods. Process evaluation will be conducted with a semi-structured face to face interview. Quantitative data will be analysed using SPSS21.0 software. Qualitative data will be analysed by content analysis. Significance of the study: This study will identify a clinically useful and potentially effective approach to help patients with end-stage renal disease and haemodialysis by enhancing their self-efficacy in self-care behaviour, and therefore improving their psychological well-being, treatment adherence and quality of life. This study will provide information to develop clinical guidelines to improve patients’ disease self-management and to enhance health-related outcomes and it will help reducing disease burden.

Keywords: end-stage renal disease (ESRD), haemodialysis, psychoeducation, self-efficacy

Procedia PDF Downloads 318
1268 Plasma Arc Burner for Pulverized Coal Combustion

Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava

Abstract:

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Keywords: coal combustion, plasma arc, plasma torches, pulverized coal

Procedia PDF Downloads 160
1267 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris

Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić

Abstract:

Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.

Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris

Procedia PDF Downloads 149
1266 Supply Chain Design: Criteria Considered in Decision Making Process

Authors: Lenka Krsnakova, Petr Jirsak

Abstract:

Prior research on facility location in supply chain is mostly focused on improvement of mathematical models. It is due to the fact that supply chain design has been for the long time the area of operational research that underscores mainly quantitative criteria. Qualitative criteria are still highly neglected within the supply chain design research. Facility location in the supply chain has become multi-criteria decision-making problem rather than single criteria decision due to changes of market conditions. Thus, both qualitative and quantitative criteria have to be included in the decision making process. The aim of this study is to emphasize the importance of qualitative criteria as key parameters of relevant mathematical models. We examine which criteria are taken into consideration when Czech companies decide about their facility location. A literature review on criteria being used in facility location decision making process creates a theoretical background for the study. The data collection was conducted through questionnaire survey. Questionnaire was sent to manufacturing and business companies of all sizes (small, medium and large enterprises) with the representation in the Czech Republic within following sectors: automotive, toys, clothing industry, electronics and pharmaceutical industry. Comparison of which criteria prevail in the current research and which are considered important by companies in the Czech Republic is made. Despite the number of articles focused on supply chain design, only minority of them consider qualitative criteria and rarely process supply chain design as a multi-criteria decision making problem. Preliminary results of the questionnaire survey outlines that companies in the Czech Republic see the qualitative criteria and their impact on facility location decision as crucial. Qualitative criteria as company strategy, quality of working environment or future development expectations are confirmed to be considered by Czech companies. This study confirms that the qualitative criteria can significantly influence whether a particular location could or could not be right place for a logistic facility. The research has two major limitations: researchers who focus on improving of mathematical models mostly do not mention criteria that enter the model. Czech supply chain managers selected important criteria from the group of 18 available criteria and assign them importance weights. It does not necessarily mean that these criteria were taken into consideration when the last facility location was chosen, but how they perceive that today. Since the study confirmed the necessity of future research on how qualitative criteria influence decision making process about facility location, the authors have already started in-depth interviews with participating companies to reveal how the inclusion of qualitative criteria into decision making process about facility location influence the company´s performance.

Keywords: criteria influencing facility location, Czech Republic, facility location decision-making, qualitative criteria

Procedia PDF Downloads 321
1265 Feminising Football and Its Fandom: The Ideological Construction of Women's Super League

Authors: Donna Woodhouse, Beth Fielding-Lloyd, Ruth Sequerra

Abstract:

This paper explores the structure and culture of the English Football Association (FA) the governing body of soccer in England, in relation to the development of the FA Women’s Super League (WSL). In doing so, it examines the organisation’s journey from banning the sport in 1921 to establishing the country’s first semi professional female soccer league in 2011. As the FA has a virtual monopoly on defining the structures of the elite game, we attempted to understand its behaviour in the context of broader issues of power, control and resistance by giving voice to the experiences of those affected by its decisions. Observations were carried out at 39 matches over three years. Semi structured interviews with 17 people involved in the women’s game, identified via snowball sampling, were also carried out. Transcripts accompanied detailed field notes and were inductively coded to identify themes. What emerged was the governing body’s desire to create a new product, jettisoning the long history of the women’s game in order to shape and control the sport in a way it is no longer able to, with the elite male club game. The League created was also shaped by traditional conceptualisations of gender, in terms of the portrayal of its style of play and target audience, setting increased participation and spectatorship targets as measures of ‘success’. The national governing body has demonstrated pseudo inclusion and a lack of enthusiasm for the implementation of equity reforms, driven by a belief that the organisation is already representative, fair and accessible. Despite a consistent external pressure, the Football Association is still dominated at its most senior levels by males. Via claiming to hold a monopoly on expertise around the sport, maintaining complex committee structures and procedures, and with membership rules rooted in the amateur game, it remains a deeply gendered organisation, resistant to structural and cultural change. In WSL, the FA's structure and culture have created a franchise over which it retains almost complete control, dictating the terms of conditions of entry and marginalising alternative voices. The organisation presents a feminised version of both play and spectatorship, portraying the sport as a distinct, and lesser, version of soccer.

Keywords: football association, organisational culture, soccer, women’s super league

Procedia PDF Downloads 351
1264 Microbial Resource Research Infrastructure: A Large-Scale Research Infrastructure for Microbiological Services

Authors: R. Hurtado-Ortiz, D. Clermont, M. Schüngel, C. Bizet, D. Smith, E. Stackebrandt

Abstract:

Microbiological resources and their derivatives are the essential raw material for the advancement of human health, agro-food, food security, biotechnology, research and development in all life sciences. Microbial resources, and their genetic and metabolic products, are utilised in many areas such as production of healthy and functional food, identification of new antimicrobials against emerging and resistant pathogens, fighting agricultural disease, identifying novel energy sources on the basis of microbial biomass and screening for new active molecules for the bio-industries. The complexity of public collections, distribution and use of living biological material (not only living but also DNA, services, training, consultation, etc.) and service offer, demands the coordination and sharing of policies, processes and procedures. The Microbial Resource Research Infrastructure (MIRRI) is an initiative within the European Strategy Forum Infrastructures (ESFRI), bring together 16 partners including 13 European public microbial culture collections and biological resource centres (BRCs), supported by several European and non-European associated partners. The objective of MIRRI is to support innovation in microbiology by provision of a one-stop shop for well-characterized microbial resources and high quality services on a not-for-profit basis for biotechnology in support of microbiological research. In addition, MIRRI contributes to the structuring of microbial resources capacity both at the national and European levels. This will facilitate access to microorganisms for biotechnology for the enhancement of the bio-economy in Europe. MIRRI will overcome the fragmentation of access to current resources and services, develop harmonised strategies for delivery of associated information, ensure bio-security and other regulatory conditions to bring access and promote the uptake of these resources into European research. Data mining of the landscape of current information is needed to discover potential and drive innovation, to ensure the uptake of high quality microbial resources into research. MIRRI is in its Preparatory Phase focusing on governance and structure including technical, legal governance and financial issues. MIRRI will help the Biological Resources Centres to work more closely with policy makers, stakeholders, funders and researchers, to deliver resources and services needed for innovation.

Keywords: culture collections, microbiology, infrastructure, microbial resources, biotechnology

Procedia PDF Downloads 444
1263 Interventional Radiology Perception among Medical Students

Authors: Shujon Mohammed Alazzam, Sarah Saad Alamer, Omar Hassan Kasule, Lama Suliman Aleid, Mohammad Abdulaziz Alakeel, Boshra Mosleh Alanazi, Abdullah Abdulelah Altowairqi, Yahya Ali Al-Asiri

Abstract:

Background: Interventional radiology (IR) is a specialized field within radiology that diagnose and treat several conditions through a minimally invasive surgical procedure that involves the use of various radiological techniques. In the last few years, the role of IR has expanded to include a variety of organ systems which have been led to an increase in demand for these Specialties. The level of knowledge regarding IR is relatively low in general. In this study, we aimed to investigate the perceptions of interventional radiology (IR) as a specialty among medical students and medical interns in Riyadh, Saudi Arabia. Methodology: This study was a cross section. The target population is medical students in January 2023 in Riyadh city, KSA. We used the questionnaire for face-to-face interviews with voluntary participants to assess their knowledge of Interventional radiology. Permission was taken from participants to use their information. Assuring them that the data in this study was used only for scientific purposes. Results: According to the inclusion criteria, a total of 314 students participated in the study. (49%) of the participants were in the preclinical years, and (51%) were in the clinical years. The findings indicate more than half of the students think that they had good information about IR (58%), while (42%) reported that they had poor information and knowledge about IR. Only (28%) of students were planning to take an elective and radiology rotation, (and 27%) said they would consider a career in IR. (73%) of the participants who would not consider a career in IR, the highest reasons in order were due to "I do not find it interesting" (45%), then "Radiation exposure" (14%). Around half (48%) thought that an IRs must complete a residency training program in both radiology and surgery, and just (36%) of the students believe that an IRs must finish training in radiology. Our data show the procedures performed by IRs that (66%) lower limb angioplasty and stenting (58%) Cardiac angioplasty or stenting. (68%) of the students were familiar with angioplasty. When asked about the source of exposure to angioplasty, the majority (46%) were from a cardiologist, (and 16%) were from the interventional radiologist. Regarding IR career prospects, (78%) of the students believe that IRs have good career prospects. In conclusion, our findings reveal that the perception and exposure to IR among medical students and interns are generally poor. This has a direct influence on the student's decision regarding IR as a career path. Recommendations to attract medical students and promote IR as a career should be increased knowledge among medical students and future physicians through early exposure to IR, and this will promote the specialty's growth; also, involvement of the Saudi Interventional Radiology Society and Radiological Society of Saudi Arabia is essential.

Keywords: knowledge, medical students, perceptions, radiology, interventional radiology, Saudi Arabia

Procedia PDF Downloads 89
1262 The Study of Periodontal Health Status in Menopausal Women with Osteoporosis Referred to Rheumatology Clinics in Yazd and Healthy People

Authors: Mahboobe Daneshvar

Abstract:

Introduction: Clinical studies on the effect of systemic conditions on periodontal diseases have shown that some systemic deficiencies may provide grounds for the onset of periodontal diseases. One of these systemic problems is osteoporosis, which may be a risk factor for the onset and exacerbation of periodontitis. This study tends to evaluate periodontal indices in osteoporotic menopausal women and compare them with healthy controls. Materials and Methods: In this case-control study, participants included 45-75-year-old menopausal women referred to rheumatology wards of the Khatamolanbia Clinic and Shahid Sadoughi Hospital in Yazd; Their bone density was determined by DEXA-scan and by imaging the femoral-lumbar bone. Thirty patients with osteoporosis and 30 subjects with normal BMD were selected. Then, informed consent was obtained for participation in the study. During the clinical examinations, tooth loss (TL), plaque index (PI), gingival recession, pocket probing depth (PPD), clinical attachment loss (CAL), and tooth mobility (TM) were measured to evaluate the periodontal status. These clinical examinations were performed to determine the periodontal status by catheter, mirror and probe. Results: During the evaluation, there was no significant difference in PPD, PI, TM, gingival recession, and CAL between case and control groups (P-value>0.05); that is, osteoporosis has no effect on the above factors. These periodontal factors are almost the same in both healthy and patient groups. In the case of missing teeth, the following results were obtained: the mean of missing teeth was 22.173% of the total teeth in the case group and 18.583% of the total teeth in the control group. In the study of the missing teeth in the case and control groups, there was a significant relationship between case and control groups (P-value = 0.025). Conclusion: In fact, since periodontal disease is multifactorial and microbial plaque is the main cause, osteoporosis is considered a predisposing factor in exacerbation or persistence of periodontal disease. In patients with osteoporosis, usually pathological fractures, hormonal changes, and aging lead to reduced physical activity and affect oral health, which leads to the manifestation of periodontal disease. But this disease increases tooth loss by changing the shape and structure of bone trabeculae and weakening them. Osteoporosis does not seem to be a deterministic factor in the incidence of periodontal disease, since it affects bone quality rather than bone quantity.

Keywords: plaque index, Osteoporosis, tooth mobility, periodontal packet

Procedia PDF Downloads 70
1261 Simulation Research of Diesel Aircraft Engine

Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker

Abstract:

This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft, diesel, engine, simulation

Procedia PDF Downloads 206
1260 The Changing Role of Technology-Enhanced University Library Reform in Improving College Student Learning Experience and Career Readiness – A Qualitative Comparative Analysis (QCA)

Authors: Xiaohong Li, Wenfan Yan

Abstract:

Background: While it is widely considered that the university library plays a critical role in fulfilling the institution's mission and providing students’ learning experience beyond the classrooms, how the technology-enhanced library reform changed college students’ learning experience hasn’t been thoroughly investigated. The purpose of this study is to explore how technology-enhanced library reform affects students’ learning experience and career readiness and further identify the factors and effective conditions that enable the quality learning outcome of Chinese college students. Methodologies: This study selected the qualitative comparative analysis (QCA) method to explore the effects of technology-enhanced university library reform on college students’ learning experience and career readiness. QCA is unique in explaining the complex relationship between multiple factors from a holistic perspective. Compared with the traditional quantitative and qualitative analysis, QCA not only adds some quantitative logic but also inherits the characteristics of qualitative research focusing on the heterogeneity and complexity of samples. Shenyang Normal University (SNU) selected a sample of the typical comprehensive university in China that focuses on students’ learning and application of professional knowledge and trains professionals to different levels of expertise. A total of 22 current university students and 30 graduates who joined the Library Readers Association of SNU from 2011 to 2019 were selected for semi-structured interviews. Based on the data collected from these participating students, qualitative comparative analysis (QCA), including univariate necessity analysis and the multi-configuration analysis, was conducted. Findings and Discussion: QCA analysis results indicated that the influence of technology-enhanced university library restructures and reorganization on student learning experience and career readiness is the result of multiple factors. Technology-enhanced library equipment and other hardware restructured to meet the college students learning needs and have played an important role in improving the student learning experience and learning persistence. More importantly, the soft characteristics of technology-enhanced library reform, such as library service innovation space and culture space, have a positive impact on student’s career readiness and development. Technology-enhanced university library reform is not only the change in the building's appearance and facilities but also in library service quality and capability. The study also provides suggestions for policy, practice, and future research.

Keywords: career readiness, college student learning experience, qualitative comparative analysis (QCA), technology-enhanced library reform

Procedia PDF Downloads 78
1259 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 255
1258 Detailed Analysis of Mechanism of Crude Oil and Surfactant Emulsion

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

A number of surfactants which exhibit ultra-low interfacial tension and an excellent microemulsion phase behavior with crude oils of low to medium gravity are not sufficiently soluble at optimum salinity to produce stable aqueous solutions. Such solutions often show phase separation after a few days at reservoir temperature, which does not suffice the purpose and the time is short when compared to the residence time in a reservoir for a surfactant flood. The addition of polymer often exacerbates the problem although the poor stability of the surfactant at high salinity remains a pivotal issue. Surfactants such as SDS, Ctab with large hydrophobes produce lowest IFT, but are often not sufficiently water soluble at desired salinity. Hydrophilic co-solvents and/or co-surfactants are needed to make the surfactant-polymer solution stable at the desired salinity. This study focuses on contrasting the effect of addition of a co-solvent in stability of a surfactant –oil emulsion. The idea is to use a co-surfactant to increase stability of an emulsion. Stability of the emulsion is enhanced because of creation of micro-emulsion which is verified both visually and with the help of particle size analyzer at varying concentration of salinity, surfactant and co-surfactant. A lab-experimental method description is provided and the method is described in detail to permit readers to emulate all results. The stability of the oil-water emulsion is visualized with respect to time, temperature, salinity of the brine and concentration of the surfactant. Nonionic surfactant TX-100 when used as a co-surfactant increases the stability of the oil-water emulsion. The stability of the prepared emulsion is checked by observing the particle size distribution. For stable emulsion in volume% vs particle size curve, the peak should be obtained for particle size of 5-50 nm while for the unstable emulsion a bigger sized particles are observed. The UV-Visible spectroscopy is also used to visualize the fraction of oil that plays important role in the formation of micelles in stable emulsion. This is important as the study will help us to decide applicability of the surfactant based EOR method for a reservoir that contains a specific type of crude. The use of nonionic surfactant as a co-surfactant would also increase the efficiency of surfactant EOR. With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. Taking this into consideration, the work focuses on the optimization of the secondary recovery(Water flooding) with the help of surfactant and/or co-surfactants by creating desired conditions in the reservoir.

Keywords: co-surfactant, enhanced oil recovery, micro-emulsion, surfactant flooding

Procedia PDF Downloads 250
1257 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology

Procedia PDF Downloads 60
1256 Soil Improvement through Utilization of Calcifying Bhargavaea cecembensis N1 in an Affordable Whey Culture Medium

Authors: Fatemeh Elmi, Zahra Etemadifar

Abstract:

Improvement of soil mechanical properties is crucial before its use in construction, as the low mechanical strength and unstable structure of soil in many parts of the world can lead to the destruction of engineering infrastructure, resulting in financial and human losses. Although, conventional methods, such as chemical injection, are often utilized to enhance soil strength and stiffness, they are generally expensive, require heavy machinery, and cause significant environmental effects due to chemical usage, and also disrupt urban infrastructure. Moreover, they are not suitable for treating large volume of soil. Recently, an alternative method to improve various soil properties, including strength, hardness, and permeability, has received much attention: the application of biological methods. One of the most widely used is biocementation, which is based on the microbial precipitation of calcium carbonte crystalls using ureolytic bacteria However, there are still limitations to its large-scale use that need to be resolved before it can be commercialized. These issues have not received enough attention in prior research. One limitation of MICP (microbially induced calcium carbonate precipitation) is that microorganisms cannot operate effectively in harsh and variable environments, unlike the controlled conditions of a laboratory. Another limitation of applying this technique on a large scale is the high cost of producing a substantial amount of bacterial culture and reagents required for soil treatment. Therefore, the purpose of the present study was to investigate soil improvement using the biocementation activity of poly-extremophile, calcium carbonate crystal- producing bacterial strain, Bhargavaea cecembensis N1, in whey as an inexpensive medium. This strain was isolated and molecularly identified from sandy soils in our previous research, and its 16S rRNA gene sequences was deposited in the NCBI Gene Bank with an accession number MK420385. This strain exhibited a high level of urease activity (8.16 U/ml) and produced a large amount of calcium carbonate (4.1 mg/ ml). It was able to improve the soil by increasing the compressive strength up to 205 kPa and reducing permeability by 36%, with 20% of the improvement attributable of calcium carbonate production. This was achieved using this strain in a whey culture medium. This strain can be an eco-friendly and economical alternative to conventional methods in soil stabilization, and other MICP related applications.

Keywords: biocementation, Bhargavaea cecembensis, soil improvement, whey culture medium

Procedia PDF Downloads 52
1255 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 310
1254 Redirecting Photosynthetic Electron Flux in the Engineered Cyanobacterium synechocystis Sp. Pcc 6803 by the Deletion of Flavodiiron Protein Flv3

Authors: K. Thiel, P. Patrikainen, C. Nagy, D. Fitzpatrick, E.-M. Aro, P. Kallio

Abstract:

Photosynthetic cyanobacteria have been recognized as potential future biotechnological hosts for the direct conversion of CO₂ into chemicals of interest using sunlight as the solar energy source. However, in order to develop commercially viable systems, the flux of electrons from the photosynthetic light reactions towards specified target chemicals must be significantly improved. The objective of the study was to investigate whether the autotrophic production efficiency of specified end-metabolites can be improved in engineered cyanobacterial cells by rescuing excited electrons that are normally lost to molecular oxygen due to the cyanobacterial flavodiiron protein Flv1/3. Natively Flv1/3 dissipates excess electrons in the photosynthetic electron transfer chain by directing them to molecular oxygen in Mehler-like reaction to protect photosystem I. To evaluate the effect of flavodiiron inactivation on autotrophic production efficiency in the cyanobacterial host Synechocystis sp. PCC 6803 (Synechocystis), sucrose was selected as the quantitative reporter and a representative of a potential end-product of interest. The concept is based on the native property of Synechocystis to produce sucrose as an intracellular osmoprotectant when exposed to high external ion concentrations, in combination with the introduction of a heterologous sucrose permease (CscB from Escherichia coli), which transports the sucrose out from the cell. In addition, cell growth, photosynthetic gas fluxes using membrane inlet mass spectrometry and endogenous storage compounds were analysed to illustrate the consequent effects of flv deletion on pathway flux distributions. The results indicate that a significant proportion of the electrons can be lost to molecular oxygen via Flv1/3 even when the cells are grown under high CO₂ and that the inactivation of flavodiiron activity can enhance the photosynthetic electron flux towards optionally available sinks. The flux distribution is dependent on the light conditions and the genetic context of the Δflv mutants, and favors the production of either sucrose or one of the two storage compounds, glycogen or polyhydroxybutyrate. As a conclusion, elimination of the native Flv1/3 reaction and concomitant introduction of an engineered product pathway as an alternative sink for excited electrons could enhance the photosynthetic electron flux towards the target endproduct without compromising the fitness of the host.

Keywords: cyanobacterial engineering, flavodiiron proteins, redirecting electron flux, sucrose

Procedia PDF Downloads 124
1253 Safety Evaluation of Intramuscular Administration of Zuprevo® Compared to Draxxin® in the Treatment of Swine Respiratory Disease at Weaning Age

Authors: Josine Beek, S. Agten, R. Del Pozo, B. Balis

Abstract:

The objective of the present study was to compare the safety of intramuscular administration of Zuprevo® (tildipirosin, 40 mg/mL) with Draxxin® (tulathromycin, 100 mg/mL) in the treatment of swine respiratory disease at weaning age. The trial was carried out in two farrow-to-finish farms with 300 sows (farm A) and 500 sows (farm B) in a batch-production system. Farm A had no history of respiratory problems, whereas farm B had a history of respiratory outbreaks with increased mortality ( > 2%) in the nursery. Both farms were positive to Pasteurella multocida, Bordetella bronchiseptica, Actinobacillus pleuropneumoniae and Haemophilus parasuis. From each farm, one batch of piglets was included (farm A: 644 piglets; farm B: 963 piglets). One day before weaning (day 0; 18-21 days of age), piglets were identified by an individual ear tag and randomly assigned to a treatment group. At day 0, Group 1 was treated with a single intramuscular injection with Zuprevo® (tildipirosin, 40 mg/mL; 1 mL/10 kg) and group 2 with Draxxin® (tulathromycin, 100 mg/mL; 1 mL/40 kg). For practical reasons, dosage of the product was adjusted according to three weight categories: < 4 kg, 4-6 kg and > 6 kg. Within each farm, piglets of both groups were comingled at weaning and subsequently managed and located in the same facilities and with identical environmental conditions. Our study involved the period from day 0 until 10 weeks of age. Safety of treatment was evaluated by 1) visual examination for signs of discomfort directly after treatment and after 15 min, 1 h and 24 h and 2) mortality rate within 24 h after treatment. Efficacy of treatment was evaluated based on mortality rate from day 0 until 10 weeks of age. Each piglet that died during the study period was necropsied by the herd veterinarian to determine the probable cause of death. Data were analyzed using binary logistic regression and differences were considered significant if p < 0.05. The pig was the experimental unit. In total, 848 piglets were treated with tildipirosin and 759 piglets with tulathromycin. In farm A, one piglet with retarded growth ( < 1 kg at 18 days of age) showed an adverse reaction after injection of tildipirosin: lateral recumbence and dullness for ± 30 sec. The piglet recovered after 1-2 min. This adverse reaction was probably due to overdosing (12 mg/kg). No adverse effect of treatment was observed in any other piglet. There was no mortality within 24 h after treatment. No significant difference was found in mortality rate between both groups from day 0 until 10 weeks of age. In farm A, overall mortality rate was 0.3% (2/644). In farm B, mortality rate was 0.2% (1/502) in group 1 (tildipirosin) and 0.9% (4/461) in group 2 (tulathromycin)(p=0.60). The necropsy of piglets that died during the study period revealed no macroscopic lesions of the respiratory tract. In conclusion, Zuprevo® (tildipirosin, 40 mg/mL) was shown to be a safe and efficacious alternative to Draxxin® (tulathromycin, 100 mg/mL) for the early treatment of swine respiratory disease at weaning age.

Keywords: antibiotic treatment, safety, swine respiratory disease, tildipirosin

Procedia PDF Downloads 394
1252 Enhancement of Shelflife of Malta Fruit with Active Packaging

Authors: Rishi Richa, N. C. Shahi, J. P. Pandey, S. S. Kautkar

Abstract:

Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months.

Keywords: Malta fruit, scavenger, packaging, shelf life

Procedia PDF Downloads 279
1251 Lacustrine Sediments of the Poljanska Locality in the Miocene Climatic Optimum North Croatian Basin, Croatia

Authors: Marijan KovačIć, Davor Pavelić, Darko Tibljaš, Ivo Galić, Frane Marković, Ivica PavičIć

Abstract:

The North Croatian Basin (NCB) occupies the southwestern part of the Pannonian Basin System and belongs to the Central Paratethys realm. In a quarry near the village of Poljanska, on the southern slopes of Mt. Papuk in eastern Croatia, a 40-meter-thick section is exposed, consisting of well-bedded, mixed, carbonate-siliciclastic deposits with occurrences of pyroclastics. Sedimentological investigation indicates that a salina lake developed in the central NCB during the late early Miocene. Field studies and mineralogical and petrological analyses indicate that alternations of laminated crypto- characterize the lower part of the section to microcrystalline dolomite and analcimolite (sedimentary rocks composed essentially of authigenic analcime) associated with tuffites and marls. The pyroclastic material is a product of volcanic activity at the end of the early Miocene, while the formation of analcime, the zeolite group mineral, is a result of an alteration of pyroclastic material in an alkaline lacustrine environment. These sediments were deposited in a shallow, hydrologically closed lake that was controlled by an arid climate during the first phase of its development. The middle part of the section consists of dolomites interbedded with analcimolites and sandstones. The sandstone beds are a result of the increased supply of clastic material derived from the locally uplifted metamorphic and granitoid basement. The emplacement of sandstones and dolomites reflects a distinct alternation of hydrologically open and closed lacustrine environments controlled by the frequent alternation of humid and arid climates, representing the second phase of lake development. The siliciclastics of the third phase of lake development were deposited during the Middle Miocene in a hydrologically mostly open lake. All lacustrine deposition coincides with the Miocene Climatic Optimum, which was characterized by a hot and warm climate. The sedimentological data confirm the mostly wet conditions previously identified by paleobotanical studies in the region. The exception is the relatively long interval of arid climate in the late early Miocene that controlled the first phase of lake evolution, i.e., the salina-type lake.

Keywords: early Miocene, Pannonian basin System, pyroclastics, salina-type lake

Procedia PDF Downloads 208
1250 Analysis of Road Risk in Four French Overseas Territories Compared with Metropolitan France

Authors: Mohamed Mouloud Haddak, Bouthayna Hayou

Abstract:

Road accidents in French overseas territories have been understudied, with relevant data often collected late and incompletely. Although these territories account for only 3% to 4% of road traffic injuries in France, their unique characteristics merit closer attention. Despite lower mobility and, consequently, lower exposure to road risks, the actual road risk in Overseas France is as high or even higher than in Metropolitan France. Significant disparities exist not only between Metropolitan France and Overseas territories but also among the overseas territories themselves. The varying population densities in these regions do not fully explain these differences, as each territory has its own distinct vulnerabilities and road safety challenges. This analysis, based on BAAC data files from 2005 to 2018 for both Metropolitan France and the overseas departments and regions, examines key variables such as gender, age, type of road user, type of obstacle hit, type of trip, road category, traffic conditions, weather, and location of accidents. Logistic regression models were built for each region to investigate the risk factors associated with fatal road accidents, focusing on the probability of being killed versus injured. Due to insufficient data, Mayotte and the Overseas Communities (French Polynesia and New Caledonia) were not included in the models. The findings reveal that road safety is worse in the overseas territories compared to Metropolitan France, particularly for vulnerable road users such as pedestrians and motorized two-wheelers. These territories present an accident profile that sits between that of Metropolitan France and middle-income countries. A pressing need exists to standardize accident data collection between Metropolitan and Overseas France to allow for more detailed comparative analyses. Further epidemiological studies could help identify the specific road safety issues unique to each territory, particularly with regards to socio-economic factors such as social cohesion, which may influence road safety outcomes. Moreover, the lack of data on new modes of travel, such as electric scooters, and the absence of socio-economic details of accident victims complicate the evaluation of emerging risk factors. Additional research, including sociological and psychosocial studies, is essential for understanding road users' behavior and perceptions of road risk, which could also provide valuable insights into accident trends in peri-urban areas in France.

Keywords: multivariate logistic regression, french overseas regions, road safety, road traffic accidents, territorial inequalities

Procedia PDF Downloads 9
1249 Unmanned Aerial System Development for the Remote Reflectance Sensing Using Above-Water Radiometers

Authors: Sunghun Jung, Wonkook Kim

Abstract:

Due to the difficulty of the utilization of satellite and an aircraft, conventional ocean color remote sensing has a disadvantage in that it is difficult to obtain images of desired places at desired times. These disadvantages make it difficult to capture the anomalies such as the occurrence of the red tide which requires immediate observation. It is also difficult to understand the phenomena such as the resuspension-precipitation process of suspended solids and the spread of low-salinity water originating in the coastal areas. For the remote sensing reflectance of seawater, above-water radiometers (AWR) have been used either by carrying portable AWRs on a ship or installing those at fixed observation points on the Ieodo ocean research station, Socheongcho base, and etc. In particular, however, it requires the high cost to measure the remote reflectance in various seawater environments at various times and it is even not possible to measure it at the desired frequency in the desired sea area at the desired time. Also, in case of the stationary observation, it is advantageous that observation data is continuously obtained, but there is the disadvantage that data of various sea areas cannot be obtained. It is possible to instantly capture various marine phenomena occurring on the coast using the unmanned aerial system (UAS) including vertical takeoff and landing (VTOL) type unmanned aerial vehicles (UAV) since it could move and hover at the one location and acquire data of the desired form at a high resolution. To remotely estimate seawater constituents, it is necessary to install an ultra-spectral sensor. Also, to calculate reflected light from the surface of the sea in consideration of the sun’s incident light, a total of three sensors need to be installed on the UAV. The remote sensing reflectance of seawater is the most basic optical property for remotely estimating color components in seawater and we could remotely estimate the chlorophyll concentration, the suspended solids concentration, and the dissolved organic amount. Estimating seawater physics from the remote sensing reflectance requires the algorithm development using the accumulation data of seawater reflectivity under various seawater and atmospheric conditions. The UAS with three AWRs is developed for the remote reflection sensing on the surface of the sea. Throughout the paper, we explain the details of each UAS component, system operation scenarios, and simulation and experiment results. The UAS consists of a UAV, a solar tracker, a transmitter, a ground control station (GCS), three AWRs, and two gimbals.

Keywords: above-water radiometers (AWR), ground control station (GCS), unmanned aerial system (UAS), unmanned aerial vehicle (UAV)

Procedia PDF Downloads 161
1248 A Study on the Current State and Policy Implications of Engineer Operated National Research Facility and Equipment in Korea

Authors: Chang-Yong Kim, Dong-Woo Kim, Whon-Hyun Lee, Yong-Joo Kim, Tae-Won Chung, Kyung-Mi Lee, Han-Sol Kim, Eun-Joo Lee, Euh Duck Jeong

Abstract:

In the past, together with the annual increase in investment on national R&D projects, the government’s budget investment in FE has steadily maintained. In the case of major developed countries, R&D and its supporting works are distinguished and professionalized in their own right, in so far as having a training system for facilities, equipment operation, and maintenance personnel. In Korea, however, research personnel conduct both research and equipment operation, leading to quantitative shortages of operational manpower and qualitative problems due to insecure employment such as maintenance issues or the loss of effectiveness of necessary equipment. Therefore, the purpose of this study was to identify the current status of engineer operated national research FE in Korea based on a 2017 survey results of domestic facilities and to suggest policy implications. A total of 395 research institutes that carried out national R&D projects and registered more than two FE since 2005 were surveyed on-line for two months. The survey showed that 395 non-profit research facilities were operating 45,155 pieces of equipment with 2,211 engineer operated national research FE, meaning that each engineer had to manage 21 items of FE. Among these, 43.9% of the workers were employed in temporary positions, including indefinite term contracts. Furthermore, the salary and treatment of the engineer personnel were relatively low compared to researchers. In short, engineers who exclusively focused on managing and maintaining FE play a very important role in increasing research immersion and obtaining highly reliable research results. Moreover, institutional efforts and government support for securing operators are severely lacking as domestic national R&D policies are mostly focused on researchers. The 2017 survey on FE also showed that 48.1% of all research facilities did not even employ engineers. In order to solve the shortage of the engineer personnel, the government will start the pilot project in 2012, and then only the 'research equipment engineer training project' from 2013. Considering the above, a national long-term manpower training plan that addresses the quantitative and qualitative shortage of operators needs to be established through a study of the current situation. In conclusion, the findings indicate that this should not only include a plan which connects training to employment but also measures the creation of additional jobs by re-defining and re-establishing operator roles and improving working conditions.

Keywords: engineer, Korea, maintenance, operation, research facilities and equipment

Procedia PDF Downloads 188
1247 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System

Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich

Abstract:

The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.

Keywords: automated vehicle, driver behavior, human factors, human-machine system

Procedia PDF Downloads 144
1246 Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kalangi Rodrigo

Abstract:

Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone.

Keywords: paleoecology, prehistory, zooarchaeology, reconstruction, palaeo-climate

Procedia PDF Downloads 139
1245 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 61
1244 A Novel Approach to 3D Thrust Vectoring CFD via Mesh Morphing

Authors: Umut Yıldız, Berkin Kurtuluş, Yunus Emre Muslubaş

Abstract:

Thrust vectoring, especially in military aviation, is a concept that sees much use to improve maneuverability in already agile aircraft. As this concept is fairly new and cost intensive to design and test, computational methods are useful in easing the preliminary design process. Computational Fluid Dynamics (CFD) can be utilized in many forms to simulate nozzle flow, and there exist various CFD studies in both 2D mechanical and 3D injection based thrust vectoring, and yet, 3D mechanical thrust vectoring analyses, at this point in time, are lacking variety. Additionally, the freely available test data is constrained to limited pitch angles and geometries. In this study, based on a test case provided by NASA, both steady and unsteady 3D CFD simulations are conducted to examine the aerodynamic performance of a mechanical thrust vectoring nozzle model and to validate the utilized numerical model. Steady analyses are performed to verify the flow characteristics of the nozzle at pitch angles of 0, 10 and 20 degrees, and the results are compared with experimental data. It is observed that the pressure data obtained on the inner surface of the nozzle at each specified pitch angle and under different flow conditions with pressure ratios of 1.5, 2 and 4, as well as at azimuthal angle of 0, 45, 90, 135, and 180 degrees exhibited a high level of agreement with the corresponding experimental results. To validate the CFD model, the insights from the steady analyses are utilized, followed by unsteady analyses covering a wide range of pitch angles from 0 to 20 degrees. Throughout the simulations, a mesh morphing method using a carefully calculated mathematical shape deformation model that simulates the vectored nozzle shape exactly at each point of its travel is employed to dynamically alter the divergent part of the nozzle over time within this pitch angle range. The mesh morphing based vectored nozzle shapes were compared with the drawings provided by NASA, ensuring a complete match was achieved. This computational approach allowed for the creation of a comprehensive database of results without the need to generate separate solution domains. The database contains results at every 0.01° increment of nozzle pitch angle. The unsteady analyses, generated using the morphing method, are found to be in excellent agreement with experimental data, further confirming the accuracy of the CFD model.

Keywords: thrust vectoring, computational fluid dynamics, 3d mesh morphing, mathematical shape deformation model

Procedia PDF Downloads 81
1243 Further Development of Offshore Floating Solar and Its Design Requirements

Authors: Madjid Karimirad

Abstract:

Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.

Keywords: floating solar, offshore renewable energy, wind and wave loading, design space

Procedia PDF Downloads 77