Search results for: rectangular embedded foundations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1765

Search results for: rectangular embedded foundations

925 Finite Element Analysis of Cold Formed Steel Screwed Connections

Authors: Jikhil Joseph, S. R. Satish Kumar

Abstract:

Steel Structures are commonly used for rapid erections and multistory constructions due to its inherent advantages. However, the high accuracy required in detailing and heavier sections, make it difficult to erect in place and transport. Cold Formed steel which are specially made by reducing carbon and other alloys are used nowadays to make thin-walled structures. Various types of connections are being reported as well as practiced for the thin-walled members such as bolting, riveting, welding and other mechanical connections. Commonly self-drilling screw connections are used for cold-formed purlin sheeting connection. In this paper an attempt is made to develop a moment resting frame which can be rapidly and remotely constructed with thin walled sections and self-drilling screws. Semi-rigid Moment connections are developed with Rectangular thin-walled tubes and the screws. The Finite Element Analysis programme ABAQUS is used for modelling the screwed connections. The various modelling procedures for simulating the connection behavior such as tie-constraint model, oriented spring model and solid interaction modelling are compared and are critically reviewed. From the experimental validations the solid-interaction modelling identified to be the most accurate one and are used for predicting the connection behaviors. From the finite element analysis, hysteresis curves and the modes of failure were identified. Parametric studies were done on the connection model to optimize the connection configurations to get desired connection characteristics.

Keywords: buckling, cold formed steel, finite element analysis, screwed connections

Procedia PDF Downloads 176
924 The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites

Authors: Pooria Pasbakhsh, Rangika T. De Silva, Vahdat Vahedi, Hanafi Ismail

Abstract:

The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA, and CLA, respectively with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites.

Keywords: aspect ratio, halloysite nanotubes (HNTs), mechanical properties, rubber/clay nanocomposites

Procedia PDF Downloads 366
923 Service Delivery Disparity Conundrum at Winnie Madikizela Mandela Local Municipality: Exploration of the Enhanced Future

Authors: Mandisi Matyana

Abstract:

Although the South African local government is doing all the best in ensuring improved service delivery for the citizens, service delivery disparity still remains the real challenge for other municipalities. The unequal distribution of services within municipal wards is causing unequal happiness among the citizens; hence others do enjoy different provided municipal services, while others do not. It is acknowledged that less access to municipal services infringes one’s rights, such as the right to human dignity and the right to life. Some of the municipal services are basic services and they are the mainstay of human survival, such as water, housing, etc. It is quite evident that the service delivery disparity could be caused by the various factors within the local municipality affairs, including both administrative and political factors. Therefore, this study is undertaken to check and evaluate the main foundations of service delivery disparity in ensuring equal development of the state, particularly for local communities. The study used the qualitative method to collect the data from the citizens of Winnie Madikizela Mandela Local Municipality. An extensive literature was also conducted in understanding the causes of service delivery disparity. Study findings prove that the service delivery disparity could be caused by factors such as political interference in administration, corruption and fraud, elevated unemployment levels, inadequate institutional capacity, etc. Therefore, the study recommends strong community participation and constant external supervision in the local government so as to encourage openness in local government to ensure fair administration towards services to be provided.

Keywords: administration, development, municipal services, service delivery disparity, Winnie Madikizela Mandela local municipality

Procedia PDF Downloads 105
922 Satellite Technology Usage for Greenhouse Gas Emissions Monitoring and Verification: Policy Considerations for an International System

Authors: Timiebi Aganaba-Jeanty

Abstract:

Accurate and transparent monitoring, reporting and verification of Greenhouse Gas (GHG) emissions and removals is a requirement of the United Nations Framework Convention on Climate Change (UNFCCC). Several countries are obligated to prepare and submit an annual national greenhouse gas inventory covering anthropogenic emissions by sources and removals by sinks, subject to a review conducted by an international team of experts. However, the process is not without flaws. The self-reporting varies enormously in thoroughness, frequency and accuracy including inconsistency in the way such reporting occurs. The world’s space agencies are calling for a new generation of satellites that would be precise enough to map greenhouse gas emissions from individual nations. The plan is delicate politically because the global system could verify or cast doubt on emission reports from the member states of the UNFCCC. A level playing field is required and an idea that an international system should be perceived as an instrument to facilitate fairness and equality rather than to spy on or punish. This change of perspective is required to get buy in for an international verification system. The research proposes the viability of a satellite system that provides independent access to data regarding greenhouse gas emissions and the policy and governance implications of its potential use as a monitoring and verification system for the Paris Agreement. It assesses the foundations of the reporting monitoring and verification system as proposed in Paris and analyzes this in light of a proposed satellite system. The use of remote sensing technology has been debated for verification purposes and as evidence in courts but this is not without controversy. Lessons can be learned from its use in this context.

Keywords: greenhouse gas emissions, reporting, monitoring and verification, satellite, UNFCCC

Procedia PDF Downloads 280
921 Qualitative Case Study Research in Accounting: Challenges and Prospects the Libyan Case Study

Authors: Bubaker F. Shareia

Abstract:

Much of the literature on research design has focussed on research conducted in developed, uni-cultural or primarily English speaking countries. Studies of qualitative case study research, the challenges and prospects have been embedded in Western/Euro-centric society and social theories. Although there have been some theoretical studies, few empirical studies have been conducted to explore the nature of the challenges of qualitative case study in developing countries. These challenges include accessibility to organizations, conducting interviews in developing countries, accessing documents and observing official meetings, language and cultural challenges, the use of consent forms, issues affecting access to companies, respondent issues and data analysis. The author, while conducting qualitative case study research in Libya, faced all these issues. The discussion in this paper examines these issues in order to make a contribution toward the literature in this area.

Keywords: accounting, challenges, prospects, developing countries, Libya, qualitative case study

Procedia PDF Downloads 297
920 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 233
919 Evaluation of Inceptor Design for Manned Multicopter

Authors: Jędrzej Minda

Abstract:

In aviation, a very narrow spectrum of control inceptors exists, namely centre sticks, side-sticks, pedals, and yokes. However, new types of aircraft are emerging, and with them, a need for new inceptors. A manned multicopter created at AGH University of Science and Technology is an aircraft in which the pilot takes a specific orientation in which classical inceptors may be impractical to use. In this paper, a unique kind of control inceptor is described, which aims to provide a handling quality not unlike standard solutions, and provide a firm grip point for the pilot without the risk of involuntary stick movement. Simulations of the pilot-inceptor model were performed in order to compare the dynamic amplification factors of the design described in this paper with the classical one. A functional prototype is built on which drone pilots carry out a comfort-of-use evaluation. This paper provides a general overview of the project, including a literature review, reasoning behind components selection, and mechanism design finalized by conclusions.

Keywords: mechanisms, mechatronics, embedded control, serious gaming for training rescue missions, rescue robotics

Procedia PDF Downloads 74
918 Finite State Markov Chain Model of Pollutants from Service Stations

Authors: Amina Boukelkoul, Rahil Boukelkoul, Leila Maachia

Abstract:

The cumulative vapors emitted from the service stations may represent a hazard to the environment and the population. Besides fuel spill and their penetration into deep soil layers are the main contributors to soil and ground-water contamination in the vicinity of the petrol stations. The amount of the effluents from the service stations depends on strategy of maintenance and the policy adopted by the management to reduce the pollution. One key of the proposed approach is the idea of managing the effluents from the service stations which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating a probabilistic percentage of the amount of emitted pollutants is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the amount according to various options of operation.

Keywords: environment, markov modeling, pollution, service station

Procedia PDF Downloads 462
917 Immunohistochemical Expression of β-catenin and Epidermal Growth Factor Receptor in Adamantinomatous Craniopharyngioma

Authors: Ghada Esheba, Fatimah Alturkistani, Arwa Obaid, Ahdab Bashehab, Moayad Alturkistani

Abstract:

Introduction: Craniopharyngiomas (CPs) are rare epithelial tumors located mainly in the sellar/parasellar region. CPs have been classified histopathologically, genetically, clinically and prognostically into two distinctive subtypes: adamantinomatous and papillary variants. Aim: To examine the pattern of expression of both the β-catenin and epidermal growth factor receptor (EGFR) in surgically resected samples of adamantinomatous CP, and to asses for the possibility of using anti-EGFR in the management of ACP patients. Materials and methods: β-catenin and EGFR immunostaining was performed on paraffin-embedded tissue sections of 18 ACP cases. Result: 17 out of 18 cases (94%) of ACP exhibited strong nuclear/cytoplasmic expression of β-catenin, 15 (83%) of APC cases were positive for EGFR. Conclusion: Nuclear accumulation of β-catenin is a diagnostic hallmark of ACP. EGFR positivity in most cases of ACP could qualify the use of anti-EGFR therapy. 

Keywords: craniopharyngioma, adamantinomatous, papillary, epidermal growth factor receptor, B-catenin

Procedia PDF Downloads 218
916 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 359
915 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: analytical solution, free-surface wave, hydraulic channel, inviscid fluid

Procedia PDF Downloads 186
914 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 62
913 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 202
912 Multi-Subpopulation Genetic Algorithm with Estimation of Distribution Algorithm for Textile Batch Dyeing Scheduling Problem

Authors: Nhat-To Huynh, Chen-Fu Chien

Abstract:

Textile batch dyeing scheduling problem is complicated which includes batch formation, batch assignment on machines, batch sequencing with sequence-dependent setup time. Most manufacturers schedule their orders manually that are time consuming and inefficient. More power methods are needed to improve the solution. Motivated by the real needs, this study aims to propose approaches in which genetic algorithm is developed with multi-subpopulation and hybridised with estimation of distribution algorithm to solve the constructed problem for minimising the makespan. A heuristic algorithm is designed and embedded into the proposed algorithms to improve the ability to get out of the local optima. In addition, an empirical study is conducted in a textile company in Taiwan to validate the proposed approaches. The results have showed that proposed approaches are more efficient than simulated annealing algorithm.

Keywords: estimation of distribution algorithm, genetic algorithm, multi-subpopulation, scheduling, textile dyeing

Procedia PDF Downloads 292
911 Topology Optimization of Heat Exchanger Manifolds for Aircraft

Authors: Hanjong Kim, Changwan Han, Seonghun Park

Abstract:

Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.

Keywords: topology optimization, manifold, heat exchanger, 3D printing

Procedia PDF Downloads 235
910 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 157
909 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 142
908 Adaptation Actions in Companies as Theoretical and Practical Aspects: A Case Study of a Food Ingredients and Additives Producer

Authors: Maja Sajdak

Abstract:

The aim of this article is to identify the measures companies undertake in order to adapt to the environment as well as discussing their diversity and effectiveness. The research methods used in the study include an in-depth analysis of the literature and a case study, which helps to illustrate the issue in question. Referring to the concept of agility, which is firmly embedded in the theory of strategic management and has been developed with the aim of adapting to the environment and its changes, the paper first examines different types of adaptation measures for companies. Then the issue under discussion is illustrated with the example of the company Hortimex. This company is an eminent representative of the world’s leading manufacturers of food additives and ingredients. The company was established in 1988 and is a family business, which in practice means that it conducts business in a responsible manner, observing the law and respecting the interests of society and the environment. The company’s mission is to develop a market in Poland for the products and solutions offered by their partners and to share their knowledge of additives in food production and consumption.

Keywords: adaptation measures, agile enterprise, flexibility, unanticipated changes

Procedia PDF Downloads 215
907 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure

Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand

Abstract:

In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.

Keywords: Depth of fixity, Lateral bearing capacity, Oblique pile, Pile group, Soil-structure interaction

Procedia PDF Downloads 216
906 ViraPart: A Text Refinement Framework for Automatic Speech Recognition and Natural Language Processing Tasks in Persian

Authors: Narges Farokhshad, Milad Molazadeh, Saman Jamalabbasi, Hamed Babaei Giglou, Saeed Bibak

Abstract:

The Persian language is an inflectional subject-object-verb language. This fact makes Persian a more uncertain language. However, using techniques such as Zero-Width Non-Joiner (ZWNJ) recognition, punctuation restoration, and Persian Ezafe construction will lead us to a more understandable and precise language. In most of the works in Persian, these techniques are addressed individually. Despite that, we believe that for text refinement in Persian, all of these tasks are necessary. In this work, we proposed a ViraPart framework that uses embedded ParsBERT in its core for text clarifications. First, used the BERT variant for Persian followed by a classifier layer for classification procedures. Next, we combined models outputs to output cleartext. In the end, the proposed model for ZWNJ recognition, punctuation restoration, and Persian Ezafe construction performs the averaged F1 macro scores of 96.90%, 92.13%, and 98.50%, respectively. Experimental results show that our proposed approach is very effective in text refinement for the Persian language.

Keywords: Persian Ezafe, punctuation, ZWNJ, NLP, ParsBERT, transformers

Procedia PDF Downloads 203
905 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

The collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to the problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm, and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for the experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with a higher thickness of MS media indicated recharge rate slightly more than that of all treatment with a lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: groundwater, medium sand-mixed storm water filter, inflow sediment load

Procedia PDF Downloads 384
904 Fashion, Art and Culture in the Anthropological Management Model

Authors: Lucia Perez, Maria Gaton y Santa Palella

Abstract:

Starting from the etymology of the word culture, the Latin term ‘colere’, whose meaning is to cultivate, we understand that the society that cultivates its knowledge is laying the foundations for new possibilities. In this sense, art and fashion contain the same attributes: concept, aesthetic principles, and refined techniques. Both play a crucial role, communication, and this implies a sense of community, relationship with tradition, and innovation. This is the mirror in which to contemplate, but also the space that helps to grow. This is the framework where our object of study opens up: the anthropological management or the mission management model applied to fashion exhibitions in museums and cultural institutions. For this purpose, a bibliographic review has been carried out with its subsequent analysis, a case study of three successful exhibitions: ‘Christian Dior: designer of dreams’, ‘Balenciaga and the Spanish painting’, and ‘China: Through the Looking Glass’. The methodology has been completed with interviews focused on the curators. Amongst the results obtained, it is worth highlighting the fundamental role of transcendent leadership, which, in addition to being results-oriented, must align the motivations of the collaborators with the mission. The anthropological management model conceives management as a service, and it is oriented to the interests of the staff and the public, in short, of the person; this is what enables the objectives of effectiveness, efficiency, and social value to be achieved; dimensions, all necessary for the proper development of the mission of the exhibitions. Fashion, understood as art, is at the service of culture, and therefore of the human being, which defines a transcendent mission. We conclude that the profile of an anthropological management model applied to fashion exhibitions in museums is the ideal one to achieve the purpose of these institutions.

Keywords: art, culture, fashion, anthropological model, fashion exhibitions

Procedia PDF Downloads 96
903 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 92
902 Experimental Study of Flow Characteristics for a Cylinder with Respect to Attached Flexible Strip Body of Various Reynolds Number

Authors: S. Teksin, S. Yayla

Abstract:

The aim of the present study was to investigate details of flow structure in downstream of a circular cylinder base mounted on a flat surface in a rectangular duct with the dimensions of 8000 x 1000 x 750 mm in deep water flow for the Reynolds number 2500, 5000 and 7500. A flexible strip was attached to behind the cylinder and compared the bare body. Also, it was analyzed that how boundary layer affects the structure of flow around the cylinder. Diameter of the cylinder was 60 mm and the length of the flexible splitter plate which had a certain modulus of elasticity was 150 mm (L/D=2.5). Time-averaged velocity vectors, vortex contours, streamwise and transverse velocity components were investigated via Particle Image Velocimetry (PIV). Velocity vectors and vortex contours were displayed through the sections in which boundary layer effect was not present. On the other hand, streamwise and transverse velocity components were monitored for both cases, i.e. with and without boundary layer effect. Experiment results showed that the vortex formation occured in a larger area for L/D=2.5 and the point where the vortex was maximum from the base of the cylinder was shifted. Streamwise and transverse velocity component contours were symmetrical with reference to the center of the cylinder for all cases. All Froud numbers based on the Reynolds numbers were quite smaller than 1. The flow characteristics of velocity component values of attached circular cylinder arrangement decreased approximately twenty five percent comparing to bare cylinder case.

Keywords: partical image velocimetry, elastic plate, cylinder, flow structure

Procedia PDF Downloads 308
901 Deep Well-Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification

Authors: Mohamed Ahmed Khalil

Abstract:

The number of deep well anode ground beds (GBs) have been retrieved due to unoperated anode chains. New identical magnetite anode chains (MAC) have been installed at Raslanuf complex impressed current Cathodic protection (ICCP) system, distributed at different plants (Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB-associated severely corroded wellhead casings were well maintained and/or replaced by new fabricated and modified ones. The main cause of the wellhead casing's severe internal corrosion was discussed and the conducted remedy action to overcome future corrosion problems is presented. All GB-connected anode junction boxes (AJBs) and shunts were closely inspected, maintained and necessary replacement and/or modifications were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB-associated Transformer-Rectifiers Units (TRU) were subjected to thorough inspection and necessary maintenance was performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated, alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded and all obtained test results are presented. DC current outputs have been adjusted and DC current outputs of each MAC have been recorded for each GB AJB.

Keywords: magnetite anodes, deep well, ground beds, cathodic protection, transformer rectifier, impressed current, junction boxes

Procedia PDF Downloads 107
900 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum

Procedia PDF Downloads 213
899 Effect of Fuel Injection Discharge Curve and Injection Pressure on Upgrading Power and Combustion Parameters in HD Diesel Engine with CFD Simulation

Authors: Saeed Chamehsara, Seyed Mostafa Mirsalim, Mehdi Tajdari

Abstract:

In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with respect to amount of injected fuel and nozzle hole diameter are changed. Injection pressure is calculated by an experimental equation which is for heavy duty diesel engines with common rail fuel injection system. Upgrading power for 1000 and 2000 bar injection pressure are discussed. For 1000 bar injection pressure with 188 mg injected fuel and 3 mm nozzle hole diameter in compare with first state which is semi-triangular discharge curve with 139 mg injected fuel and 3 mm nozzle hole diameter, upgrading power is about 19% whereas the special change has not been observed in cylinder pressure. On the other hand, both the NOX emission and the Soot emission decreased about 30% and 6% respectively. Compared with first state, for 2000 bar injection pressure that injected fuel and nozzle diameter are 196 mg and 2.6 mm respectively, upgrading power is about 22% whereas cylinder pressure has been fixed and NOX emission and the Soot emissions are decreased 36% and 20%, respectively.

Keywords: CFD simulation, HD diesel engine, upgrading power, injection pressure, fuel injection discharge curve, combustion process

Procedia PDF Downloads 514
898 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction

Authors: Hua Li, Hongwu Deng

Abstract:

The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.

Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary

Procedia PDF Downloads 95
897 Cooperative Jamming for Implantable Medical Device Security

Authors: Kim Lytle, Tim Talty, Alan Michaels, Jeff Reed

Abstract:

Implantable medical devices (IMDs) are medically necessary devices embedded in the human body that monitor chronic disorders or automatically deliver therapies. Most IMDs have wireless capabilities that allow them to share data with an offboard programming device to help medical providers monitor the patient’s health while giving the patient more insight into their condition. However, serious security concerns have arisen as researchers demonstrated these devices could be hacked to obtain sensitive information or harm the patient. Cooperative jamming can be used to prevent privileged information leaks by maintaining an adequate signal-to-noise ratio at the intended receiver while minimizing signal power elsewhere. This paper uses ray tracing to demonstrate how a low number of friendly nodes abiding by Bluetooth Low Energy (BLE) transmission regulations can enhance IMD communication security in an office environment, which in turn may inform how companies and individuals can protect their proprietary and personal information.

Keywords: implantable biomedical devices, communication system security, array signal processing, ray tracing

Procedia PDF Downloads 96
896 PUF-Based Lightweight Iot Secure Authentication Chip Design

Authors: Wenxuan Li, Lei Li, Jin Li, Yuanhang He

Abstract:

This paper designed a secure chip for IoT communication security integrated with the PUF-based firmware protection scheme. Then, the Xilinx Kintex-7 and STM-32 were used for the prototype verification. Firmware protection worked well on FPGA and embedded platforms. For the ASIC implementation of the PUF module, contact PUF is chosen. The post-processing method and its improvement are analyzed with emphasis. This paper proposed a more efficient post-processing method for contact PUF named SXOR, which has practical value for realizing lightweight security modules in IoT devices. The analysis was carried out under the hypothesis that the contact holes are independent and combine the existing data in the open literature. The post-processing effects of SXOR and XOR are basically the same under the condition that the proposed post-processing circuit occupies only 50.6% of the area of XOR. The average Hamming weight of the PUF output bit sequence obtained by the proposed post-processing method is 0.499735, and the average Hamming weight obtained by the XOR-based post-processing method is 0.499999.

Keywords: PUF, IoT, authentication, secure communication, encryption, XOR

Procedia PDF Downloads 131