Search results for: project classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7077

Search results for: project classification

6237 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 136
6236 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, fault location, underground cable, wavelet transform

Procedia PDF Downloads 513
6235 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification

Authors: Hung-Sheng Lin, Cheng-Hsuan Li

Abstract:

Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.

Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction

Procedia PDF Downloads 344
6234 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving

Authors: Aly Elshafei, Daniela Romano

Abstract:

With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.

Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG

Procedia PDF Downloads 119
6233 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour

Procedia PDF Downloads 350
6232 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi

Abstract:

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management

Procedia PDF Downloads 321
6231 Role of Community Participation in Sustainability of Projects: A Multiple Case Study of Developmental Projects in Khyber Pakhtunkhwa, Pakistan

Authors: Sajid Ali Khan, Karim Ullah, Usman Ghani

Abstract:

Community participation is the collaboration of project beneficiaries; voluntarily or because of some incentives or persuasion agree to put effort and work with development projects. Sustainability of projects is the ability to maintain its services, operations, and other benefits during its anticipated time. This study investigated the dynamics of community participation and its contribution to the sustainability of projects. In multiple case-study designs with semi-structured questionnaires and interviews, this study analyzes community participation with the help of individual case analysis followed by cross-case analysis in the RAHA & CDLD developmental project. Finally, the study outcomes are linked with the specified literature in order to comprehend the phenomena. The findings of the study suggest an Analytical framework developed by the current study covering different barriers and enablers to community participation and its implications.

Keywords: community participation, enablers, barriers, project sustainability

Procedia PDF Downloads 247
6230 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 138
6229 Linking Excellence in Biomedical Knowledge and Computational Intelligence Research for Personalized Management of Cardiovascular Diseases within Personal Health Care

Authors: T. Rocha, P. Carvalho, S. Paredes, J. Henriques, A. Bianchi, V. Traver, A. Martinez

Abstract:

The main goal of LINK project is to join competences in intelligent processing in order to create a research ecosystem to address two central scientific and technical challenges for personal health care (PHC) deployment: i) how to merge clinical evidence knowledge in computational decision support systems for PHC management and ii) how to provide achieve personalized services, i.e., solutions adapted to the specific user needs and characteristics. The final goal of one of the work packages (WP2), designated Sustainable Linking and Synergies for Excellence, is the definition, implementation and coordination of the necessary activities to create and to strengthen durable links between the LiNK partners. This work focuses on the strategy that has been followed to achieve the definition of the Research Tracks (RT), which will support a set of actions to be pursued along the LiNK project. These include common research activities, knowledge transfer among the researchers of the consortium, and PhD student and post-doc co-advisement. Moreover, the RTs will establish the basis for the definition of concepts and their evolution to project proposals.

Keywords: LiNK Twin European Project, personal health care, cardiovascular diseases, research tracks

Procedia PDF Downloads 216
6228 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 110
6227 Impact of Construction Risk Factors into Actual Construction Price in PPP Projects

Authors: Saleh Alzahrani, Halim Boussabaine

Abstract:

The majority of Public Private Partnership (PPP) are developed based on the rationale that the design, construction, operation, and financing of a public project is to be awarded to a private party within a single contractual framework. PPP project risks normally include the development and construction of a new asset as well as its operation for decades. Undoubtedly the most serious consequences of risks during the construction period are price and time overruns. These events are amongst the most broadly used scenarios in value for money analysis risks. The sources of risk change over the life cycle of a PPP project. In traditional procurement, the public sector normally has to cover all price distress from these risks. At least there is plenty evidence to suggest that price distress is a norm in some of the projects that are delivered under traditional procurement. This paper will find the impact of construction risk factors into actual construction price into PPP projects. The paper will present a brief literature review on PPP risk pricing strategies, and then using system dynamics (SD) to analyses of the risks associated with the estimated project price. Based on the finding from these analyses a risk pricing association model is presented and discussed. The paper concludes with thoughts for future research.

Keywords: Public Private Partnership (PPP), Risk, Risk Pricing, System Dynamics (SD), construction price

Procedia PDF Downloads 565
6226 The Impact of Bim Technology on the Whole Process Cost Management of Civil Engineering Projects in Kenya

Authors: Nsimbe Allan

Abstract:

The study examines the impact of Building Information Modeling (BIM) on the cost management of engineering projects, focusing specifically on the Mombasa Port Area Development Project. The objective of this research venture is to determine the mechanisms through which Building Information Modeling (BIM) facilitates stakeholder collaboration, reduces construction-related expenses, and enhances the precision of cost estimation. Furthermore, the study investigates barriers to execution, assesses the impact on the project's transparency, and suggests approaches to maximize resource utilization. The study, selected for its practical significance and intricate nature, conducted a Systematic Literature Review (SLR) using credible databases, including ScienceDirect and IEEE Xplore. To constitute the diverse sample, 69 individuals, including project managers, cost estimators, and BIM administrators, were selected via stratified random sampling. The data were obtained using a mixed-methods approach, which prioritized ethical considerations. SPSS and Microsoft Excel were applied to the analysis. The research emphasizes the crucial role that project managers, architects, and engineers play in the decision-making process (47% of respondents). Furthermore, a significant improvement in cost estimation accuracy was reported by 70% of the participants. It was found that the implementation of BIM resulted in enhanced project visibility, which in turn optimized resource allocation and facilitated the process of budgeting. In brief, the study highlights the positive impacts of Building Information Modeling (BIM) on collaborative decision-making and cost estimation, addresses challenges related to implementation, and provides solutions for the efficient assimilation and understanding of BIM principles.

Keywords: cost management, resource utilization, stakeholder collaboration, project transparency

Procedia PDF Downloads 67
6225 Economic Factors Affecting Greenfield Petroleum Refinery and Petrochemical Projects in Africa

Authors: Daniel Muwooya

Abstract:

This paper analyses economic factors that have affected the competitiveness of petroleum refinery and petrochemical projects in sub-Saharan Africa in the past and continue to plague greenfield projects today. Traditional factors like plant sizing and complexity, low-capacity utilization, changing regulatory environment, and tighter product specifications have been important in the past. Additional factors include the development of excess refinery capacity in Asia and the growth of renewable sources of energy – especially for transportation. These factors create both challenges and opportunities for the development of greenfield refineries and petrochemical projects in areas of increased demand growth and new low-cost crude oil production – like sub-Saharan Africa. This paper evaluates the strategies available to project developers and host countries to address contemporary issues of energy transition and the apparent reduction of funds available for greenfield oil and gas projects. The paper also evaluates the structuring of greenfield refinery and petrochemical projects for limited recourse project finance bankability. The methodology of this paper includes analysis of current industry data, conference proceedings, academic papers, and academic books on the subjects of petroleum refinery economics, refinery financing, refinery operations, and project finance generally and specifically in the oil and gas industry; evaluation of expert opinions from journal articles; working papers from international bodies like the World Bank and the International Energy Agency; and experience from playing an active role in the development and financing of US$ 10 Billion greenfield oil development project in Uganda. The paper also applies the discounted cash flow modelling to illustrate the circumstances of an inland greenfield refinery project in Uganda. Greenfield refinery and petrochemical projects are still necessary in sub-Saharan Africa to, among other aspirations, support the transition from traditional sources of energy like biomass to such modern forms as liquefied petroleum gas. Project developers and host governments will be required to structure projects that support global climate change goals without occasioning undue delays to project execution.

Keywords: financing, refinery and petrochemical economics, Africa, project finance

Procedia PDF Downloads 59
6224 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 198
6223 Energy Enterprise Information System for Strategic Decision-Making

Authors: Woosik Jang, Seung H. Han, Seung Won Baek, Chan Young Park

Abstract:

Natural gas (NG) is a local energy resource that exists in certain countries, and most NG producers operate within unstable governments. Moreover, about 90% of the liquefied natural gas (LNG) market is governed by a small number of international oil companies (IOCs) and national oil companies (NOCs), market entry of second movers is extremely limited. To overcome these barriers, project viability should be assessed based on limited information at the project screening perspective. However, there have been difficulties at the early stages of projects as follows: (1) What factors should be considered? (2) How many experts are needed to make a decision? and (3) How to make an optimal decision with limited information? To answer these questions, this research suggests a LNG project viability assessment model based on the Dempster-Shafer theory (DST). Total of 11 indices for the gas field analysis and 23 indices for the market environment analysis are identified that reflect unique characteristics of LNG industry. Moreover, the proposed model evaluates LNG projects based on questionnaire survey and it provides not only quantified results but also uncertainty level of results based on DST. Consequently, the proposed model as a systematic framework can support the decision-making process from the gas field projects using quantitative results, and it is developed to a stand-alone system to enhance the practical usability. It is expected to improve the decision-making quality and opportunity in LNG projects for enterprise through informed decision.

Keywords: project viability, LNG project, enterprise information system, Dempster-Shafer Theory, strategic decision-making

Procedia PDF Downloads 258
6222 Scheduling Building Projects: The Chronographical Modeling Concept

Authors: Adel Francis

Abstract:

Most of scheduling methods and software apply the critical path logic. This logic schedule activities, apply constraints between these activities and try to optimize and level the allocated resources. The extensive use of this logic produces a complex an erroneous network hard to present, follow and update. Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic, and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. The objective of the space planning is to link the spatial and temporal aspects, promote efficient use of the site, define optimal site occupancy rates, and ensures suitable rotation of the workforce in the different spaces. The Chronographic scheduling modelling belongs to this category and models construction operations as well as their processes, logical constraints, association and organizational models, which help to better illustrate the schedule information using multiple flexible approaches. The model defined three categories of areas (punctual, surface and linear) and four different layers (space creation, systems, closing off space, finishing, and reduction of space). The Chronographical modelling is a more complete communication method, having the ability to alternate from one visual approach to another by manipulation of graphics via a set of parameters and their associated values. Each individual approach can help to schedule a certain project type or specialty. Visual communication can also be improved through layering, sheeting, juxtaposition, alterations, and permutations, allowing for groupings, hierarchies, and classification of project information. In this way, graphic representation becomes a living, transformable image, showing valuable information in a clear and comprehensible manner, simplifying the site management while simultaneously utilizing the visual space as efficiently as possible.

Keywords: building projects, chronographic modelling, CPM, critical path, precedence diagram, scheduling

Procedia PDF Downloads 155
6221 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 384
6220 Key Issues in Transfer Stage of BOT Project: Experience from China

Authors: Wang Liguang, Zhang Xueqing

Abstract:

The build-operate-transfer (BOT) project delivery system has provided effective routes to mobilize private sector funds, innovative technologies, management skills and operational efficiencies for public infrastructure development and have been widely used in China during the last 20 years. Many BOT projects in China will be smoothly transferred to the government soon and the transfer stage, which is considered as the last stage, must be studied carefully and handled well to achieve the overall success of BOT projects. There will be many issues faced by both the public sector and private sector in the transfer stage of BOT projects, including project post-assessment, technology and documents transfer, personal training and staff transition, etc. and sometimes additional legislation is needed for future operation and management of facilities. However, most previous studies focused on the bidding, financing, and building and operation stages instead of transfer stage. This research identifies nine key issues in the transfer stage of BOT projects through a comprehensive study on three cases in China, and the expert interview and expert discussion meetings are held to validate the key issues and give detail analysis. A proposed framework of transfer management is prepared based on the experiences derived and lessons drawn from the case studies and expert interview and discussions, which is expected to improve the transfer management of BOT projects in practice.

Keywords: BOT project, key issues, transfer management, transfer stage

Procedia PDF Downloads 256
6219 Modeling and Simulating Productivity Loss Due to Project Changes

Authors: Robert Pellerin, Michel Gamache, Remi Trudeau, Nathalie Perrier

Abstract:

The context of large engineering projects is particularly favorable to the appearance of engineering changes and contractual modifications. These elements are potential causes for claims. In this paper, we investigate one of the critical components of the claim management process: the calculation of the impacts of changes in terms of losses of productivity due to the need to accelerate some project activities. When project changes are initiated, delays can arise. Indeed, project activities are often executed in fast-tracking in an attempt to respect the completion date. But the acceleration of project execution and the resulting rework can entail important costs as well as induce productivity losses. In the past, numerous methods have been proposed to quantify the duration of delays, the gains achieved by project acceleration, and the loss of productivity. The calculation related to those changes can be divided into two categories: direct cost and indirect cost. The direct cost is easily quantifiable as opposed to indirect costs which are rarely taken into account during the calculation of the cost of an engineering change or contract modification despite several research projects have been made on this subject. However, proposed models have not been accepted by companies yet, nor they have been accepted in court. Those models require extensive data and are often seen as too specific to be used for all projects. These techniques are also ignoring the resource constraints and the interdependencies between the causes of delays and the delays themselves. To resolve this issue, this research proposes a simulation model that mimics how major engineering changes or contract modifications are handled in large construction projects. The model replicates the use of overtime in a reactive scheduling mode in order to simulate the loss of productivity present when a project change occurs. Multiple tests were conducted to compare the results of the proposed simulation model with statistical analysis conducted by other researchers. Different scenarios were also conducted in order to determine the impact the number of activities, the time of occurrence of the change, the availability of resources, and the type of project changes on productivity loss. Our results demonstrate that the number of activities in the project is a critical variable influencing the productivity of a project. When changes occur, the presence of a large number of activities leads to a much lower productivity loss than a small number of activities. The speed of reducing productivity for 30-job projects is about 25 percent faster than the reduction speed for 120-job projects. The moment of occurrence of a change also shows a significant impact on productivity. Indeed, the sooner the change occurs, the lower the productivity of the labor force. The availability of resources also impacts the productivity of a project when a change is implemented. There is a higher loss of productivity when the amount of resources is restricted.

Keywords: engineering changes, indirect costs overtime, productivity, scheduling, simulation

Procedia PDF Downloads 238
6218 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 161
6217 Decolonizing Print Culture and Bibliography Through Digital Visualizations of Artists’ Books at the University of Miami

Authors: Alejandra G. Barbón, José Vila, Dania Vazquez

Abstract:

This study seeks to contribute to the advancement of library and archival sciences in the areas of records management, knowledge organization, and information architecture, particularly focusing on the enhancement of bibliographical description through the incorporation of visual interactive designs aimed to enrich the library users’ experience. In an era of heightened awareness about the legacy of hiddenness across special and rare collections in libraries and archives, along with the need for inclusivity in academia, the University of Miami Libraries has embarked on an innovative project that intersects the realms of print culture, decolonization, and digital technology. This proposal presents an exciting initiative to revitalize the study of Artists’ Books collections by employing digital visual representations to decolonize bibliographic records of some of the most unique materials and foster a more holistic understanding of cultural heritage. Artists' Books, a dynamic and interdisciplinary art form, challenge conventional bibliographic classification systems, making them ripe for the exploration of alternative approaches. This project involves the creation of a digital platform that combines multimedia elements for digital representations, interactive information retrieval systems, innovative information architecture, trending bibliographic cataloging and metadata initiatives, and collaborative curation to transform how we engage with and understand these collections. By embracing the potential of technology, we aim to transcend traditional constraints and address the historical biases that have influenced bibliographic practices. In essence, this study showcases a groundbreaking endeavor at the University of Miami Libraries that seeks to not only enhance bibliographic practices but also confront the legacy of hiddenness across special and rare collections in libraries and archives while strengthening conventional bibliographic description. By embracing digital visualizations, we aim to provide new pathways for understanding Artists' Books collections in a manner that is more inclusive, dynamic, and forward-looking. This project exemplifies the University’s dedication to fostering critical engagement, embracing technological innovation, and promoting diverse and equitable classifications and representations of cultural heritage.

Keywords: decolonizing bibliographic cataloging frameworks, digital visualizations information architecture platforms, collaborative curation and inclusivity for records management, engagement and accessibility increasing interaction design and user experience

Procedia PDF Downloads 74
6216 Benefits of Using Social Media and Collaborative Online Platforms in PBL

Authors: Susanna Graziano, Lydia Krstic Ward

Abstract:

The purpose of this presentation is to demonstrate the steps of using multimedia and collaborative platforms in project-based learning. The presentation will demonstrate the stages of the learning project with various components of independent and collaborative learning, where students research the topic, share information, prepare a survey, use social media (Facebook, Instagram, WhasApp) and collaborative platforms (wikispaces.com and Google docs) to collect, analyze and process data, then produce reports and logos to be displayed as a final product. At the beginning of the presentation participants will answer a questionnaire about project based learning and share their experience on using social media, real–world project work and collaborative learning. Using a PPP, the presentation will walk participants through the steps of a completed project where tertiary education students are involved in putting together a multimedia campaign for safe driving in Kuwait. The research component of the project entails taking a holistic view on the problem of the high death rate in traffic accidents. The final goal of the project is to lead students to raise public awareness about the importance of safe driving. The project steps involve using the social media and collaborative platforms for collecting data and sharing the required materials to be used in the final product – a display of written reports, slogans and videos, as well as oral presentations. The same structure can be used to organize a multimedia campaign focusing on other issues, whilst scaffolding on students’ ability to brainstorm, retrieve information, organize it and engage in collaborative/ cooperative learning whilst being immersed in content-based learning as well as in authentic tasks. More specifically, the project we carried out at Box Hill College was a real-world one and involved a multimedia Campaign for Safe Driving since reckless driving is one of the major problems in the country. The idea for the whole project started by a presentation given by a board member of the Kuwaiti Society for Traffic Safety who was invited to college and spoke about: • Driving laws in the country, • What causes car accidents, • Driving safety tips. The principal goal of this project was to let students consider problems of traffic in Kuwait from different points of view. They also had to address the number and causes of accidents, evaluate the effectiveness of the local traffic law in order to send a warning about the importance of safe driving and, finally, suggest ways of its improvement. Benefits included: • Engagement, • Autonomy, • Motivation, • Content knowledge, • Language mastery, • Enhanced critical thinking, • Increased metacognitive awareness, • Improved social skills, • Authentic experience.

Keywords: social media, online learning platforms, collaborative platforms, project based learning

Procedia PDF Downloads 425
6215 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project

Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen

Abstract:

This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.

Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project

Procedia PDF Downloads 167
6214 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 86
6213 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 444
6212 Project Time and Quality Management during Construction

Authors: Nahed Al-Hajeri

Abstract:

Time and cost is an integral part of every construction plan and can affect each party’s contractual obligations. The performance of both time and cost are usually important to the client and contractor during the project. Almost all construction projects are experiencing time overrun. These time overruns always contributed as expensive to both client and contractor. Construction of any project inside the gathering centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. It also involves many agencies interdependent on each other like the vendors, structural and functional designers including various types of specialized engineers and it includes support of contractors and specialized contractors. This paper mainly highlights the types of construction delays due to which project suffer time and cost overrun. This paper also speaks about the delay causes and factors that contribute to the construction sequence delay for the oil and gas projects. Construction delay is supposed to be one of the repeated problems in the construction projects and it has an opposing effect on project success in terms of time, cost and quality. Some effective methods are identified to minimize delays in construction projects such as: 1. Site management and supervision, 2. Effective strategic planning, 3. Clear information and communication channel. Our research paper studies the types of delay with some real examples with statistic results and suggests solutions to overcome this problem.

Keywords: non-compensable delay, delays caused by force majeure, compensable delay, delays caused by the owner or the owner’s representative, non-excusable delay, delay caused by the contractor or the contractor’s representative, concurrent delay, delays resulting from two separate causes at the same time

Procedia PDF Downloads 242
6211 Building Information Management Advantages, Adaptation, and Challenges of Implementation in Kabul Metropolitan Area

Authors: Mohammad Rahim Rahimi, Yuji Hoshino

Abstract:

Building Information Management (BIM) at recent years has widespread consideration on the Architecture, Engineering and Construction (AEC). BIM has been bringing innovation in AEC industry and has the ability to improve the construction industry with high quality, reduction time and budget of project. Meanwhile, BIM support model and process in AEC industry, the process include the project time cycle, estimating, delivery and generally the way of management of project but not limited to those. This research carried the BIM advantages, adaptation and challenges of implementation in Kabul region. Capital Region Independence Development Authority (CRIDA) have responsibilities to implement the development projects in Kabul region. The method of study were considers on advantages and reasons of BIM performance in Afghanistan based on online survey and data. Besides that, five projects were studied, the reason of consideration were many times design revises and changes. Although, most of the projects had problems regard to designing and implementation stage, hence in canal project was discussed in detail with the main reason of problems. Which were many time changes and revises due to the lack of information, planning, and management. In addition, two projects based on BIM utilization in Japan were also discussed. The Shinsuizenji Station and Oita River dam projects. Those are implemented and implementing consequently according to the BIM requirements. The investigation focused on BIM usage, project implementation process. Eventually, the projects were the comparison with CRIDA and BIM utilization in Japan. The comparison will focus on the using of the model and the way of solving the problems based upon on the BIM. In conclusion, that BIM had the capacity to prevent many times design changes and revises. On behalf of achieving those objectives are required to focus on data management and sharing, BIM training and using new technology.

Keywords: construction information management, implementation and adaptation of BIM, project management, developing countries

Procedia PDF Downloads 129
6210 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 50
6209 An Effective Approach to Knowledge Capture in Whole Life Costing in Constructions Project

Authors: Ndibarafinia Young Tobin, Simon Burnett

Abstract:

In spite of the benefits of implementing whole life costing technique as a valuable approach for comparing alternative building designs allowing operational cost benefits to be evaluated against any initial cost increases and also as part of procurement in the construction industry, its adoption has been relatively slow due to the lack of tangible evidence, ‘know-how’ skills and knowledge of the practice, i.e. the lack of professionals in many establishments with knowledge and training on the use of whole life costing technique, this situation is compounded by the absence of available data on whole life costing from relevant projects, lack of data collection mechanisms and so on. This has proved to be very challenging to those who showed some willingness to employ the technique in a construction project. The knowledge generated from a project can be considered as best practices learned on how to carry out tasks in a more efficient way, or some negative lessons learned which have led to losses and slowed down the progress of the project and performance. Knowledge management in whole life costing practice can enhance whole life costing analysis execution in a construction project, as lessons learned from one project can be carried on to future projects, resulting in continuous improvement, providing knowledge that can be used in the operation and maintenance phases of an assets life span. Purpose: The purpose of this paper is to report an effective approach which can be utilised in capturing knowledge in whole life costing practice in a construction project. Design/methodology/approach: An extensive literature review was first conducted on the concept of knowledge management and whole life costing. This was followed by a semi-structured interview to explore the existing and good practice knowledge management in whole life costing practice in a construction project. The data gathered from the semi-structured interview was analyzed using content analysis and used to structure an effective knowledge capturing approach. Findings: From the results obtained in the study, it shows that the practice of project review is the common method used in the capturing of knowledge and should be undertaken in an organized and accurate manner, and results should be presented in the form of instructions or in a checklist format, forming short and precise insights. The approach developed advised that irrespective of how effective the approach to knowledge capture, the absence of an environment for sharing knowledge, would render the approach ineffective. Open culture and resources are critical for providing a knowledge sharing setting, and leadership has to sustain whole life costing knowledge capture, giving full support for its implementation. The knowledge capturing approach has been evaluated by practitioners who are experts in the area of whole life costing practice. The results have indicated that the approach to knowledge capture is suitable and efficient.

Keywords: whole life costing, knowledge capture, project review, construction industry, knowledge management

Procedia PDF Downloads 260
6208 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 444