Search results for: predictive mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2056

Search results for: predictive mining

1216 Pregnant Women in Substance Abuse: Transition of Characteristics and Mining of Association from Teds-a 2011 to 2018

Authors: Md Tareq Ferdous Khan, Shrabanti Mazumder, MB Rao

Abstract:

Background: Substance use during pregnancy is a longstanding public health problem that results in severe consequences for pregnant women and fetuses. Methods: Eight (2011-2018) datasets on pregnant women’s admissions are extracted from TEDS-A. Distributions of sociodemographic, substance abuse behaviors, and clinical characteristics are constructed and compared over the years for trends by the Cochran-Armitage test. Market basket analysis is used in mining the association among polysubstance abuse. Results: Over the years, pregnant woman admissions as the percentage of total and female admissions remain stable, where total annual admissions range from 1.54 to about 2 million with the female share of 33.30% to 35.61%. Pregnant women aged 21-29, 12 or more years of education, white race, unemployed, holding independent living status are among the most vulnerable. Concerns prevail on a significant number of polysubstance users, young age at first use, frequency of daily users, and records of prior admissions (60%). Trends of abused primary substances show a significant rise in heroin (66%) and methamphetamine (46%) over the years, although the latest year shows a considerable downturn. On the other hand, significant decreasing patterns are evident for alcohol (43%), marijuana or hashish (24%), cocaine or crack (23%), other opiates or synthetics (36%), and benzodiazepines (29%). Basket analysis reveals some patterns of co-occurrence of substances consistent over the years. Conclusions: This comprehensive study can work as a reference to identify the most vulnerable groups based on their characteristics and deal with the most hazardous substances from their evidence of co-occurrence.

Keywords: basket analysis, pregnant women, substance abuse, trend analysis

Procedia PDF Downloads 197
1215 Modelling Spatial Dynamics of Terrorism

Authors: André Python

Abstract:

To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.

Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling

Procedia PDF Downloads 351
1214 Early Predictive Signs for Kasai Procedure Success

Authors: Medan Isaeva, Anna Degtyareva

Abstract:

Context: Biliary atresia is a common reason for liver transplants in children, and the Kasai procedure can potentially be successful in avoiding the need for transplantation. However, it is important to identify factors that influence surgical outcomes in order to optimize treatment and improve patient outcomes. Research aim: The aim of this study was to develop prognostic models to assess the outcomes of the Kasai procedure in children with biliary atresia. Methodology: This retrospective study analyzed data from 166 children with biliary atresia who underwent the Kasai procedure between 2002 and 2021. The effectiveness of the operation was assessed based on specific criteria, including post-operative stool color, jaundice reduction, and bilirubin levels. The study involved a comparative analysis of various parameters, such as gestational age, birth weight, age at operation, physical development, liver and spleen sizes, and laboratory values including bilirubin, ALT, AST, and others, measured pre- and post-operation. Ultrasonographic evaluations were also conducted pre-operation, assessing the hepatobiliary system and related quantitative parameters. The study was carried out by two experienced specialists in pediatric hepatology. Comparative analysis and multifactorial logistic regression were used as the primary statistical methods. Findings: The study identified several statistically significant predictors of a successful Kasai procedure, including the presence of the gallbladder and levels of cholesterol and direct bilirubin post-operation. A detectable gallbladder was associated with a higher probability of surgical success, while elevated post-operative cholesterol and direct bilirubin levels were indicative of a reduced chance of positive outcomes. Theoretical importance: The findings of this study contribute to the optimization of treatment strategies for children with biliary atresia undergoing the Kasai procedure. By identifying early predictive signs of success, clinicians can modify treatment plans and manage patient care more effectively and proactively. Data collection and analysis procedures: Data for this analysis were obtained from the health records of patients who received the Kasai procedure. Comparative analysis and multifactorial logistic regression were employed to analyze the data and identify significant predictors. Question addressed: The study addressed the question of identifying predictive factors for the success of the Kasai procedure in children with biliary atresia. Conclusion: The developed prognostic models serve as valuable tools for early detection of patients who are less likely to benefit from the Kasai procedure. This enables clinicians to modify treatment plans and manage patient care more effectively and proactively. Potential limitations of the study: The study has several limitations. Its retrospective nature may introduce biases and inconsistencies in data collection. Being single centered, the results might not be generalizable to wider populations due to variations in surgical and postoperative practices. Also, other potential influencing factors beyond the clinical, laboratory, and ultrasonographic parameters considered in this study were not explored, which could affect the outcomes of the Kasai operation. Future studies could benefit from including a broader range of factors.

Keywords: biliary atresia, kasai operation, prognostic model, native liver survival

Procedia PDF Downloads 56
1213 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 137
1212 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics

Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich

Abstract:

Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.

Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes

Procedia PDF Downloads 75
1211 Linguistic Summarization of Structured Patent Data

Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay

Abstract:

Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.

Keywords: data mining, fuzzy sets, linguistic summarization, patent data

Procedia PDF Downloads 272
1210 Characterization of Tailings From Traditional Panning of Alluvial Gold Ore (A Case Study of Ilesa - Southwestern Nigeria Goldfield Tailings Dumps)

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Field observation revealed a lot of artisanal gold mining activities in Ilesa gold belt of southwestern Nigeria. The possibility of alluvial and lode gold deposits in commercial quantities around this location is very high, as there are many resident artisanal gold miners who have been mining and trading alluvial gold ore for decades and to date in the area. Their major process of solid gold recovery from its ore is by gravity concentration using the convectional panning method. This method is simple to learn and fast to recover gold from its alluvial ore, but its effectiveness is based on rules of thumb and the artisanal miners' experience in handling gold ore panning tool while processing the ore. Research samples from five alluvial gold ore tailings dumps were collected and studied. Samples were subjected to particle size analysis and mineralogical and elemental characterization using X-Ray Diffraction (XRD) and Particle-Induced X-ray Emission (PIXE) methods, respectively. The results showed that the tailings were of major quartz in association with albite, plagioclase, mica, gold, calcite and sulphide minerals. The elemental composition analysis revealed a 15ppm of gold concentration in particle size fraction of -90 microns in one of the tailings dumps investigated. These results are significant. It is recommended that heaps of panning tailings should be further reprocessed using other gold recovery methods such as shaking tables, flotation and controlled cyanidation that can efficiently recover fine gold particles that were previously lost into the gold panning tailings. The tailings site should also be well controlled and monitored so that these heavy minerals do not find their way into surrounding water streams and rivers, thereby causing health hazards.

Keywords: gold ore, panning, PIXE, tailings, XRD

Procedia PDF Downloads 90
1209 Finding the Association Rule between Nursing Interventions and Early Evaluation Results of In-Hospital Cardiac Arrest to Improve Patient Safety

Authors: Wei-Chih Huang, Pei-Lung Chung, Ching-Heng Lin, Hsuan-Chia Yang, Der-Ming Liou

Abstract:

Background: In-Hospital Cardiac Arrest (IHCA) threaten life of the inpatients, cause serious effect to patient safety, quality of inpatients care and hospital service. Health providers must identify the signs of IHCA early to avoid the occurrence of IHCA. This study will consider the potential association between early signs of IHCA and the essence of patient care provided by nurses and other professionals before an IHCA occurs. The aim of this study is to identify significant associations between nursing interventions and abnormal early evaluation results of IHCA that can assist health care providers in monitoring inpatients at risk of IHCA to increase opportunities of IHCA early detection and prevention. Materials and Methods: This study used one of the data mining techniques called association rules mining to compute associations between nursing interventions and abnormal early evaluation results of IHCA. The nursing interventions and abnormal early evaluation results of IHCA were considered to be co-occurring if nursing interventions were provided within 24 hours of last being observed in abnormal early evaluation results of IHCA. The rule based methods were utilized 23.6 million electronic medical records (EMR) from a medical center in Taipei, Taiwan. This dataset includes 733 concepts of nursing interventions that coded by clinical care classification (CCC) codes and 13 early evaluation results of IHCA with binary codes. The values of interestingness and lift were computed as Q values to measure the co-occurrence and associations’ strength between all in-hospital patient care measures and abnormal early evaluation results of IHCA. The associations were evaluated by comparing the results of Q values and verified by medical experts. Results and Conclusions: The results show that there are 4195 pairs of associations between nursing interventions and abnormal early evaluation results of IHCA with their Q values. The indication of positive association is 203 pairs with Q values greater than 5. Inpatients with high blood sugar level (hyperglycemia) have positive association with having heart rate lower than 50 beats per minute or higher than 120 beats per minute, Q value is 6.636. Inpatients with temporary pacemaker (TPM) have significant association with high risk of IHCA, Q value is 47.403. There is significant positive correlation between inpatients with hypovolemia and happened abnormal heart rhythms (arrhythmias), Q value is 127.49. The results of this study can help to prevent IHCA from occurring by making health care providers early recognition of inpatients at risk of IHCA, assist with monitoring patients for providing quality of care to patients, improve IHCA surveillance and quality of in-hospital care.

Keywords: in-hospital cardiac arrest, patient safety, nursing intervention, association rule mining

Procedia PDF Downloads 271
1208 Predictive Factors of Prognosis in Acute Stroke Patients Receiving Traditional Chinese Medicine Therapy: A Retrospective Study

Authors: Shaoyi Lu

Abstract:

Background: Traditional Chinese medicine has been used to treat stroke, which is a major cause of morbidity and mortality. There is, however, no clear agreement about the optimal timing, population, efficacy, and predictive prognosis factors of traditional Chinese medicine supplemental therapy. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend. Key words: traditional Chinese medicine, acupuncture, Stroke, NIH stroke scale, Barthel index, predictive factor. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend.

Keywords: traditional Chinese medicine, complementary and alternative medicine, stroke, acupuncture

Procedia PDF Downloads 360
1207 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings

Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian

Abstract:

Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.

Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM

Procedia PDF Downloads 111
1206 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 320
1205 Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial

Authors: Ami Fadhillah Amir Abdul Nasir, Amanda C. Niehaus, Skye F. Cameron, Frank A. Von Hippel, John Postlethwait​, Robbie S. Wilson

Abstract:

For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival.

Keywords: ecotoxicology, heavy metal, manganese, telomere length, cortisol, locomotor

Procedia PDF Downloads 318
1204 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: linked open data, information integration, digital libraries, data mining

Procedia PDF Downloads 428
1203 Impact of Diabetes Mellitus Type 2 on Clinical In-Stent Restenosis in First Elective Percutaneous Coronary Intervention Patients

Authors: Leonard Simoni, Ilir Alimehmeti, Ervina Shirka, Endri Hasimi, Ndricim Kallashi, Verona Beka, Suerta Kabili, Artan Goda

Abstract:

Background: Diabetes Mellitus type 2, small vessel calibre, stented length of vessel, complex lesion morphology, and prior bypass surgery have resulted risk factors for In-Stent Restenosis (ISR). However, there are some contradictory results about body mass index (BMI) as a risk factor for ISR. Purpose: We want to identify clinical, lesional and procedural factors that can predict clinical ISR in our patients. Methods: Were enrolled 759 patients who underwent first-time elective PCI with Bare Metal Stents (BMS) from September 2011 to December 2013 in our Department of Cardiology and followed them for at least 1.5 years with a median of 862 days (2 years and 4 months). Only the patients re-admitted with ischemic heart disease underwent control coronary angiography but no routine angiographic control was performed. Patients were categorized in ISR and non-ISR groups and compared between them. Multivariate analysis - Binary Logistic Regression: Forward Conditional Method was used to identify independent predictive risk factors. P was considered statistically significant when <0.05. Results: ISR compared to non-ISR individuals had a significantly lower BMI (25.7±3.3 vs. 26.9±3.7, p=0.004), higher risk anatomy (LM + 3-vessel CAD) (23% vs. 14%, p=0.03), higher number of stents/person used (2.1±1.1 vs. 1.75±0.96, p=0.004), greater length of stents/person used (39.3±21.6 vs. 33.3±18.5, p=0.01), and a lower use of clopidogrel and ASA (together) (95% vs. 99%, p=0.012). They also had a higher, although not statistically significant, prevalence of Diabetes Mellitus (42% vs. 32%, p=0.072) and a greater number of treated vessels (1.36±0.5 vs. 1.26±0.5, p=0.08). In the multivariate analysis, Diabetes Mellitus type 2 and multiple stents used were independent predictors risk factors for In-Stent Restenosis, OR 1.66 [1.03-2.68], p=0.039, and OR 1.44 [1.16-1.78,] p=0.001, respectively. On the other side higher BMI and use of clopidogrel and ASA together resulted protective factors OR 0.88 [0.81-0.95], p=0.001 and OR 0.2 [0.06-0.72] p=0.013, respectively. Conclusion: Diabetes Mellitus and multiple stents are strong predictive risk factors, whereas the use of clopidogrel and ASA together are protective factors for clinical In-Stent Restenosis. Paradoxically High BMI is a protective factor for In-stent Restenosis, probably related to a larger diameter of vessels and consequently a larger diameter of stents implanted in these patients. Further studies are needed to clarify this finding.

Keywords: body mass index, diabetes mellitus, in-stent restenosis, percutaneous coronary intervention

Procedia PDF Downloads 210
1202 Mining Scientific Literature to Discover Potential Research Data Sources: An Exploratory Study in the Field of Haemato-Oncology

Authors: A. Anastasiou, K. S. Tingay

Abstract:

Background: Discovering suitable datasets is an important part of health research, particularly for projects working with clinical data from patients organized in cohorts (cohort data), but with the proliferation of so many national and international initiatives, it is becoming increasingly difficult for research teams to locate real world datasets that are most relevant to their project objectives. We present a method for identifying healthcare institutes in the European Union (EU) which may hold haemato-oncology (HO) data. A key enabler of this research was the bibInsight platform, a scientometric data management and analysis system developed by the authors at Swansea University. Method: A PubMed search was conducted using HO clinical terms taken from previous work. The resulting XML file was processed using the bibInsight platform, linking affiliations to the Global Research Identifier Database (GRID). GRID is an international, standardized list of institutions, including the city and country in which the institution exists, as well as a category of the main business type, e.g., Academic, Healthcare, Government, Company. Countries were limited to the 28 current EU members, and institute type to 'Healthcare'. An article was considered valid if at least one author was affiliated with an EU-based healthcare institute. Results: The PubMed search produced 21,310 articles, consisting of 9,885 distinct affiliations with correspondence in GRID. Of these articles, 760 were from EU countries, and 390 of these were healthcare institutes. One affiliation was excluded as being a veterinary hospital. Two EU countries did not have any publications in our analysis dataset. The results were analysed by country and by individual healthcare institute. Networks both within the EU and internationally show institutional collaborations, which may suggest a willingness to share data for research purposes. Geographical mapping can ensure that data has broad population coverage. Collaborations with industry or government may exclude healthcare institutes that may have embargos or additional costs associated with data access. Conclusions: Data reuse is becoming increasingly important both for ensuring the validity of results, and economy of available resources. The ability to identify potential, specific data sources from over twenty thousand articles in less than an hour could assist in improving knowledge of, and access to, data sources. As our method has not yet specified if these healthcare institutes are holding data, or merely publishing on that topic, future work will involve text mining of data-specific concordant terms to identify numbers of participants, demographics, study methodologies, and sub-topics of interest.

Keywords: data reuse, data discovery, data linkage, journal articles, text mining

Procedia PDF Downloads 117
1201 Metal Contaminants in River Water and Human Urine after an Episode of Major Pollution by Mining Wastes in the Kasai Province of DR Congo

Authors: Remy Mpulumba Badiambile, Paul Musa Obadia, Malick Useni Mutayo, Jeef Numbi Mukanya, Patient Nkulu Banza, Tony Kayembe Kitenge, Erik Smolders, Jean-François Picron, Vincent Haufroid, Célestin Banza Lubaba Nkulu, Benoit Nemery

Abstract:

Background: In July 2021, the Tshikapa river became heavily polluted by mining wastes from a diamond mine in neighboring Angola, leading to massive killing of fish, as well as disease and even deaths among residents living along the Tshikapa and Kasai rivers, a major contributory of the Congo river. The exact nature of the pollutants was unknown. Methods: In a cross-sectional study conducted in the city of Tshikapa in August 2021, we enrolled by opportunistic sampling 65 residents (11 children < 16y) living alongside the polluted rivers and 65 control residents (5 children) living alongside a non-affected portion of the Kasai river (upstream from the Tshikapa-Kasai confluence). We administered a questionnaire and obtained spot urine samples for measurements of thiocyanate (a metabolite of cyanide) and 26 trace metals (by ICP-MS). Metals (and pH) were also measured in samples of river water. Results: Participants from both groups consumed river water. In the area affected by the pollution, most participants had eaten dead fish. Prevalences of reported health symptoms were higher in the exposed group than among controls: skin rashes (52% vs 0%), diarrhea (40% vs 8%), abdominal pain (8% vs 3%), nausea (3% vs 0%). In polluted water, concentrations [median (range)] were only higher for nickel [(2.2(1.4–3.5)µg/L] and uranium [78(71–91)ng/L] than in non-polluted water [0.8(0.6–1.9)µg/L; 9(7–19)ng/L]. In urine, concentrations [µg/g creatinine, median(IQR)] were significantly higher in the exposed group than in controls for lithium [19.5(12.4–27.3) vs 6.9(5.9–12.1)], thallium [0.41(0.31–0.57) vs 0.19(0.16–0.39)], and uranium [0.026(0.013–0.037)] vs 0.012(0.006–0.024)]. Other elements did not differ between the groups, but levels were higher than reference values for several metals (including manganese, cobalt, nickel, and lead). Urinary thiocyanate concentrations did not differ. Conclusion: This study, after an ecological disaster in the DRC, has documented contamination of river water by nickel and uranium and high urinary levels of some trace metals among affected riverine populations. However, the exact cause of the massive fish kill and disease among residents remains elusive. The capacity to rapidly investigate toxic pollution events must be increased in the area.

Keywords: metal contaminants, river water and human urine, pollution by mining wastes, DR Congo

Procedia PDF Downloads 158
1200 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 259
1199 Recent Findings of Late Bronze Age Mining and Archaeometallurgy Activities in the Mountain Region of Colchis (Southern Lechkhumi, Georgia)

Authors: Rusudan Chagelishvili, Nino Sulava, Tamar Beridze, Nana Rezesidze, Nikoloz Tatuashvili

Abstract:

The South Caucasus is one of the most important centers of prehistoric metallurgy, known for its Colchian bronze culture. Modern Lechkhumi – historical Mountainous Colchis where the existence of prehistoric metallurgy is confirmed by the discovery of many artifacts is a part of this area. Studies focused on prehistoric smelting sites, related artefacts, and ore deposits have been conducted during last ten years in Lechkhumi. More than 20 prehistoric smelting sites and artefacts associated with metallurgical activities (ore roasting furnaces, slags, crucible, and tuyères fragments) have been identified so far. Within the framework of integrated studies was established that these sites were operating in 13-9 centuries B.C. and used for copper smelting. Palynological studies of slags revealed that chestnut (Castanea sativa) and hornbeam (Carpinus sp.) wood were used as smelting fuel. Geological exploration-analytical studies revealed that copper ore mining, processing, and smelting sites were distributed close to each other. Despite recent complex data, the signs of prehistoric mines (trenches) haven’t been found in this part of the study area so far. Since 2018 the archaeological-geological exploration has been focused on the southern part of Lechkhumi and covered the areas of villages Okureshi and Opitara. Several copper smelting sites (Okureshi 1 and 2, Opitara 1), as well as a Colchian Bronze culture settlement, have been identified here. Three mine workings have been found in the narrow gorge of the river Rtkhmelebisgele in the vicinities of the village Opitara. In order to establish a link between the Opitara-Okureshi archaeometallurgical sites, Late Bronze Age settlements, and mines, various scientific analytical methods -mineralized rock and slags petrography and atomic absorption spectrophotometry (AAS) analysis have been applied. The careful examination of Opitara mine workings revealed that there is a striking difference between the mine #1 on the right bank of the river and mines #2 and #3 on the left bank. The first one has all characteristic features of the Soviet period mine working (e. g. high portal with angular ribs and roof showing signs of blasting). In contrast, mines #2 and #3, which are located very close to each other, have round-shaped portals/entrances, low roofs, and fairly smooth ribs and are filled with thick layers of river sediments and collapsed weathered rock mass. A thorough review of the publications related to prehistoric mine workings revealed some striking similarities between mines #2 and #3 with their worldwide analogues. Apparently, the ore extraction from these mines was conducted by fire-setting applying primitive tools. It was also established that mines are cut in Jurassic mineralized volcanic rocks. Ore minerals (chalcopyrite, pyrite, galena) are related to calcite and quartz veins. The results obtained through the petrochemical and petrography studies of mineralized rock samples from Opitara mines and prehistoric slags are in complete correlation with each other, establishing the direct link between copper mining and smelting within the study area. Acknowledgment: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (grant # FR-19-13022).

Keywords: archaeometallurgy, Mountainous Colchis, mining, ore minerals

Procedia PDF Downloads 181
1198 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 478
1197 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 99
1196 A 0-1 Goal Programming Approach to Optimize the Layout of Hospital Units: A Case Study in an Emergency Department in Seoul

Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee

Abstract:

This paper proposes a method to optimize the layout of an emergency department (ED) based on real executions of care processes by considering several planning objectives simultaneously. Recently, demand for healthcare services has been dramatically increased. As the demand for healthcare services increases, so do the need for new healthcare buildings as well as the need for redesign and renovating existing ones. The importance of implementation of a standard set of engineering facilities planning and design techniques has been already proved in both manufacturing and service industry with many significant functional efficiencies. However, high complexity of care processes remains a major challenge to apply these methods in healthcare environments. Process mining techniques applied in this study to tackle the problem of complexity and to enhance care process analysis. Process related information such as clinical pathways extracted from the information system of an ED. A 0-1 goal programming approach is then proposed to find a single layout that simultaneously satisfies several goals. The proposed model solved by optimization software CPLEX 12. The solution reached using the proposed method has 42.2% improvement in terms of walking distance of normal patients and 47.6% improvement in walking distance of critical patients at minimum cost of relocation. It has been observed that lots of patients must unnecessarily walk long distances during their visit to the emergency department because of an inefficient design. A carefully designed layout can significantly decrease patient walking distance and related complications.

Keywords: healthcare operation management, goal programming, facility layout problem, process mining, clinical processes

Procedia PDF Downloads 297
1195 Utilization of Standard Paediatric Observation Chart to Evaluate Infants under Six Months Presenting with Non-Specific Complaints

Authors: Michael Zhang, Nicholas Marriage, Valerie Astle, Marie-Louise Ratican, Jonathan Ash, Haddijatou Hughes

Abstract:

Objective: Young infants are often brought to the Emergency Department (ED) with a variety of complaints, some of them are non-specific and present as a diagnostic challenge to the attending clinician. Whilst invasive investigations such as blood tests and lumbar puncture are necessary in some cases to exclude serious infections, some basic clinical tools in additional to thorough clinical history can be useful to assess the risks of serious conditions in these young infants. This study aimed to examine the utilization of one of clinical tools in this regard. Methods: This retrospective observational study examined the medical records of infants under 6 months presenting to a mixed urban ED between January 2013 and December 2014. The infants deemed to have non-specific complaints or diagnoses by the emergency clinicians were selected for analysis. The ones with clear systemic diagnoses were excluded. Among all relevant clinical information and investigation results, utilization of Standard Paediatric Observation Chart (SPOC) was particularly scrutinized in these medical records. This specific chart was developed by the expert clinicians in local health department. It categorizes important clinical signs into some color-coded zones as a visual cue for serious implication of some abnormalities. An infant is regarded as SPOC positive when fulfills 1 red zone or 2 yellow zones criteria, and the attending clinician would be prompted to investigate and treat for potential serious conditions accordingly. Results: Eight hundred and thirty-five infants met the inclusion criteria for this project. The ones admitted to the hospital for further management were more likely to have SPOC positive criteria than the discharged infants (Odds ratio: 12.26, 95% CI: 8.04 – 18.69). Similarly, Sepsis alert criteria on SPOC were positive in a higher percentage of patients with serious infections (56.52%) in comparison to those with mild conditions (15.89%) (p < 0.001). The SPOC sepsis criteria had a sensitivity of 56.5% (95% CI: 47.0% - 65.7%) and a moderate specificity of 84.1% (95% CI: 80.8% - 87.0%) to identify serious infections. Applying to this infant population, with a 17.4% prevalence of serious infection, the positive predictive value was only 42.8% (95% CI: 36.9% - 49.0%). However, the negative predictive value was high at 90.2% (95% CI: 88.1% - 91.9%). Conclusions: Standard Paediatric Observation Chart has been applied as a useful clinical tool in the clinical practice to help identify and manage young sick infants in ED effectively.

Keywords: clinical tool, infants, non-specific complaints, Standard Paediatric Observation Chart

Procedia PDF Downloads 253
1194 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 149
1193 Is School Misbehavior a Decision: Implications for School Guidance

Authors: Rachel C. F. Sun

Abstract:

This study examined the predictive effects of moral competence, prosocial norms and positive behavior recognition on school misbehavior among Chinese junior secondary school students. Results of multiple regression analysis showed that students were more likely to misbehave in school when they had lower levels of moral competence and prosocial norms, and when they perceived their positive behavior being less likely recognized. Practical implications were discussed on how to guide students to make the right choices to behave appropriately in school. Implications for future research were also discussed.

Keywords: moral competence, positive behavior recognition, prosocial norms, school misbehavior

Procedia PDF Downloads 386
1192 Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN

Authors: Zakarya Kourdi, Mohammed Khaouani, Benyounes Bouazza, Ahlam Guen-Bouazza, Amine Boursali

Abstract:

In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places.

Keywords: HEMT, Thermal Effect, Silvaco, InAlN/GaN

Procedia PDF Downloads 469
1191 Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection

Authors: Hang Yang, Jichao Li, Kewei Yang, Tianyang Lei

Abstract:

Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis.

Keywords: data mining, industrial system, multivariate time series, anomaly detection

Procedia PDF Downloads 17
1190 Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves

Authors: Abdullah M. Alzahrani

Abstract:

Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39). There was no correlation between u-PA and PAI-1 (r = 0.3) but t-PA and PAI-1 were strongly correlated with each other (r = 0.6). Over expression of PAI-1 was proportional to the calcium content of theAS valves. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The over expression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.

Keywords: aortic valve, PAI-1, tPA gene, uPA gene

Procedia PDF Downloads 475
1189 Reducing the Risk of Alcohol Relapse after Liver-Transplantation

Authors: Rebeca V. Tholen, Elaine Bundy

Abstract:

Background: Liver transplantation (LT) is considered the only curative treatment for end-stage liver disease Background: Liver transplantation (LT) is considered the only curative treatment for end-stage liver disease (ESLD). The effects of alcoholism can cause irreversible liver damage, cirrhosis and subsequent liver failure. Alcohol relapse after transplant occurs in 20-50% of patients and increases the risk for recurrent cirrhosis, organ rejection, and graft failure. Alcohol relapse after transplant has been identified as a problem among liver transplant recipients at a large urban academic transplant center in the United States. Transplantation will reverse the complications of ESLD, but it does not treat underlying alcoholism or reduce the risk of relapse after transplant. The purpose of this quality improvement project is to implement and evaluate the effectiveness of a High-Risk Alcoholism Relapse (HRAR) Scale to screen and identify patients at high-risk for alcohol relapse after receiving an LT. Methods: The HRAR Scale is a predictive tool designed to determine the severity of alcoholism and risk of relapse after transplant. The scale consists of three variables identified as having the highest predictive power for early relapse including, daily number of drinks, history of previous inpatient treatment for alcoholism, and the number of years of heavy drinking. All adult liver transplant recipients at a large urban transplant center were screened with the HRAR Scale prior to hospital discharge. A zero to two ordinal score is ranked for each variable, and the total score ranges from zero to six. High-risk scores are between three to six. Results: Descriptive statistics revealed 25 patients were newly transplanted and discharged from the hospital during an 8-week period. 40% of patients (n=10) were identified as being high-risk for relapse and 60% low-risk (n=15). The daily number of drinks were determined by alcohol content (1 drink = 15g of ethanol) and number of drinks per day. 60% of patients reported drinking 9-17 drinks per day, and 40% reported ≤ 9 drinks. 50% of high-risk patients reported drinking ≥ 25 years, 40% for 11-25 years, and 10% ≤ 11 years. For number of inpatient treatments for alcoholism, 50% received inpatient treatment one time, 20% ≥ 1, and 30% reported never receiving inpatient treatment. Findings reveal the importance and value of a validated screening tool as a more efficient method than other screening methods alone. Integration of a structured clinical tool will help guide the drinking history portion of the psychosocial assessment. Targeted interventions can be implemented for all high-risk patients. Conclusions: Our findings validate the effectiveness of utilizing the HRAR scale to screen and identify patients who are a high-risk for alcohol relapse post-LT. Recommendations to help maintain post-transplant sobriety include starting a transplant support group within the organization for all high-risk patients. (ESLD). The effects of alcoholism can cause irreversible liver damage, cirrhosis and subsequent liver failure. Alcohol relapse after transplant occurs in 20-50% of patients, and increases the risk for recurrent cirrhosis, organ rejection, and graft failure. Alcohol relapse after transplant has been identified as a problem among liver transplant recipients at a large urban academic transplant center in the United States. Transplantation will reverse the complications of ESLD, but it does not treat underlying alcoholism or reduce the risk of relapse after transplant. The purpose of this quality improvement project is to implement and evaluate the effectiveness of a High-Risk Alcoholism Relapse (HRAR) Scale to screen and identify patients at high-risk for alcohol relapse after receiving a LT. Methods: The HRAR Scale is a predictive tool designed to determine severity of alcoholism and risk of relapse after transplant. The scale consists of three variables identified as having the highest predictive power for early relapse including, daily number of drinks, history of previous inpatient treatment for alcoholism, and the number of years of heavy drinking. All adult liver transplant recipients at a large urban transplant center were screened with the HRAR Scale prior to hospital discharge. A zero to two ordinal score is ranked for each variable, and the total score ranges from zero to six. High-risk scores are between three to six. Results: Descriptive statistics revealed 25 patients were newly transplanted and discharged from the hospital during an 8-week period. 40% of patients (n=10) were identified as being high-risk for relapse and 60% low-risk (n=15). The daily number of drinks were determined by alcohol content (1 drink = 15g of ethanol) and number of drinks per day. 60% of patients reported drinking 9-17 drinks per day, and 40% reported ≤ 9 drinks. 50% of high-risk patients reported drinking ≥ 25 years, 40% for 11-25 years, and 10% ≤ 11 years. For number of inpatient treatments for alcoholism, 50% received inpatient treatment one time, 20% ≥ 1, and 30% reported never receiving inpatient treatment. Findings reveal the importance and value of a validated screening tool as a more efficient method than other screening methods alone. Integration of a structured clinical tool will help guide the drinking history portion of the psychosocial assessment. Targeted interventions can be implemented for all high-risk patients. Conclusions: Our findings validate the effectiveness of utilizing the HRAR scale to screen and identify patients who are a high-risk for alcohol relapse post-LT. Recommendations to help maintain post-transplant sobriety include starting a transplant support group within the organization for all high-risk patients.

Keywords: alcoholism, liver transplant, quality improvement, substance abuse

Procedia PDF Downloads 116
1188 Effects of Sulphide Mining on AISI 304 Stainless Steel

Authors: Aguasanta Miguel Sarmiento, José Miguel Dávila, María Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV, and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz), and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyse the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned, and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components, but also because of the implications for human safety.

Keywords: acid mine drainage, corrosion, mechanical properties, stainless steel

Procedia PDF Downloads 22
1187 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

Keywords: adult, basal metabolic rate, fao/who/unu, obesity, prediction equations

Procedia PDF Downloads 133