Search results for: optimal reaction network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9789

Search results for: optimal reaction network

8949 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network

Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour

Abstract:

Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.

Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network

Procedia PDF Downloads 169
8948 Capacitated Multiple Allocation P-Hub Median Problem on a Cluster Based Network under Congestion

Authors: Çağrı Özgün Kibiroğlu, Zeynep Turgut

Abstract:

This paper considers a hub location problem where the network service area partitioned into predetermined zones (represented by node clusters is given) and potential hub nodes capacity levels are determined a priori as a selection criteria of hub to investigate congestion effect on network. The objective is to design hub network by determining all required hub locations in the node clusters and also allocate non-hub nodes to hubs such that the total cost including transportation cost, opening cost of hubs and penalty cost for exceed of capacity level at hubs is minimized. A mixed integer linear programming model is developed introducing additional constraints to the traditional model of capacitated multiple allocation hub location problem and empirically tested.

Keywords: hub location problem, p-hub median problem, clustering, congestion

Procedia PDF Downloads 492
8947 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: computer vision, pose estimation, pose tracking, Siamese network

Procedia PDF Downloads 153
8946 Hydro-Mechanical Behavior of a Tuff and Calcareous Sand Mixture for Use in Pavement in Arid Region

Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat

Abstract:

The aim of the paper is to study the hydro-mechanical behavior of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying-wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction

Procedia PDF Downloads 440
8945 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 550
8944 Design and Implementation of Campus Wireless Networking for Sharing Resources in Federal Polytechnic Bauchi, Bauchi State, Nigeria

Authors: Hassan Abubakar

Abstract:

This paper will serve as a guide to good design and implementation of wireless networking for campus institutions in Nigeria. It can be implemented throughout the primary, secondary and tertiary institutions. This paper describe the some technical functions, standard configurations and layouts of the 802.11 wireless LAN(Local Area Network) that can be implemented across the campus network. The paper also touches upon the wireless infrastructure standards involved with enhanced services, such as voice over wireless and wireless guest hotspot. The paper also touch the benefits derived from implementing campus wireless network and share some lights on how to arrive at the success in increasing the performance of wireless and using the campus wireless to share resources like software applications, printer and documents.

Keywords: networking, standards, wireless local area network (WLAN), radio frequency (RF), campus

Procedia PDF Downloads 416
8943 Node Optimization in Wireless Sensor Network: An Energy Approach

Authors: Y. B. Kirankumar, J. D. Mallapur

Abstract:

Wireless Sensor Network (WSN) is an emerging technology, which has great invention for various low cost applications both for mass public as well as for defence. The wireless sensor communication technology allows random participation of sensor nodes with particular applications to take part in the network, which results in most of the uncovered simulation area, where fewer nodes are located at far distances. The drawback of such network would be that the additional energy is spent by the nodes located in a pattern of dense location, using more number of nodes for a smaller distance of communication adversely in a region with less number of nodes and additional energy is again spent by the source node in order to transmit a packet to neighbours, thereby transmitting the packet to reach the destination. The proposed work is intended to develop Energy Efficient Node Placement Algorithm (EENPA) in order to place the sensor node efficiently in simulated area, where all the nodes are equally located on a radial path to cover maximum area at equidistance. The total energy consumed by each node compared to random placement of nodes is less by having equal burden on fewer nodes of far location, having distributed the nodes in whole of the simulation area. Calculating the network lifetime also proves to be efficient as compared to random placement of nodes, hence increasing the network lifetime, too. Simulation is been carried out in a qualnet simulator, results are obtained on par with random placement of nodes with EENP algorithm.

Keywords: energy, WSN, wireless sensor network, energy approach

Procedia PDF Downloads 312
8942 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 128
8941 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.

Keywords: policy monitoring, water management, social network, stakeholder, shemiranat

Procedia PDF Downloads 274
8940 Exploring Research Trends and Topics in Intervention on Metabolic Syndrome Using Network Analysis

Authors: Lee Soo-Kyoung, Kim Young-Su

Abstract:

This study established a network related to metabolic syndrome intervention by conducting a social network analysis of titles, keywords, and abstracts, and it identified emerging topics of research. It visualized an interconnection between critical keywords and investigated their frequency of appearance to construe the trends in metabolic syndrome intervention measures used in studies conducted over 38 years (1979–2017). It examined a collection of keywords from 8,285 studies using text rank analyzer, NetMiner 4.0. The analysis revealed 5 groups of newly emerging keywords in the research. By examining the relationship between keywords with reference to their betweenness centrality, the following clusters were identified. Thus if new researchers refer to existing trends to establish the subject of their study and the direction of the development of future research on metabolic syndrome intervention can be predicted.

Keywords: intervention, metabolic syndrome, network analysis, research, the trend

Procedia PDF Downloads 200
8939 Household Wealth and Portfolio Choice When Tail Events Are Salient

Authors: Carlson Murray, Ali Lazrak

Abstract:

Robust experimental evidence of systematic violations of expected utility (EU) establishes that individuals facing risk overweight utility from low probability gains and losses when making choices. These findings motivated development of models of preferences with probability weighting functions, such as rank dependent utility (RDU). We solve for the optimal investing strategy of an RDU investor in a dynamic binomial setting from which we derive implications for investing behavior. We show that relative to EU investors with constant relative risk aversion, commonly measured probability weighting functions produce optimal RDU terminal wealth with significant downside protection and upside exposure. We additionally find that in contrast to EU investors, RDU investors optimally choose a portfolio that contains fair bets that provide payo↵s that can be interpreted as lottery outcomes or exposure to idiosyncratic returns. In a calibrated version of the model, we calculate that RDU investors would be willing to pay 5% of their initial wealth for the freedom to trade away from an optimal EU wealth allocation. The dynamic trading strategy that supports the optimal wealth allocation implies portfolio weights that are independent of initial wealth but requires higher risky share after good stock return histories. Optimal trading also implies the possibility of non-participation when historical returns are poor. Our model fills a gap in the literature by providing new quantitative and qualitative predictions that can be tested experimentally or using data on household wealth and portfolio choice.

Keywords: behavioral finance, probability weighting, portfolio choice

Procedia PDF Downloads 420
8938 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: parameter linear programming, objective function, sensitivity analysis, optimize profit

Procedia PDF Downloads 205
8937 Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature

Authors: Enayat Enayati, Reza Behtash

Abstract:

The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm.

Keywords: catalyst, converter, poisoning, temperature

Procedia PDF Downloads 819
8936 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 403
8935 Participation, Network, Women’s Competency, and Government Policy Affecting on Community Development

Authors: Nopsarun Vannasirikul

Abstract:

The purposes of this research paper were to study the current situations of community development, women’s potentials, women’s participation, network, and government policy as well as to study the factors influencing women’s potentials, women’s participation, network, and government policy that have on the community development. The population included the women age of 18 years old who were living in the communities of Bangkok areas. This study was a mix research method of quantitative and qualitative method. A simple random sampling method was utilized to obtain 400 sample groups from 50 districts of Bangkok and to perform data collection by using questionnaire. Also, a purposive sampling method was utilized to obtain 12 informants for an in-depth interview to gain an in-sight information for quantitative method.

Keywords: community development, participation, network, women’s right, management

Procedia PDF Downloads 173
8934 A Review of In-Vehicle Network for Cloud Connected Vehicle

Authors: Hanbhin Ryu, Ilkwon Yun

Abstract:

Automotive industry targets to provide an improvement in safety and convenience through realizing fully autonomous vehicle. For partially realizing fully automated driving, Current vehicles already feature varieties of advanced driver assistance system (ADAS) for safety and infotainment systems for the driver’s convenience. This paper presents Cloud Connected Vehicle (CCV) which connected vehicles with cloud data center via the access network to control the vehicle for achieving next autonomous driving form and describes its features. This paper also describes the shortcoming of the existing In-Vehicle Network (IVN) to be a next generation IVN of CCV and organize the 802.3 Ethernet, the next generation of IVN, related research issue to verify the feasibility of using Ethernet. At last, this paper refers to additional considerations to adopting Ethernet-based IVN for CCV.

Keywords: autonomous vehicle, cloud connected vehicle, ethernet, in-vehicle network

Procedia PDF Downloads 479
8933 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
8932 Rumour Containment Using Monitor Placement and Truth Propagation

Authors: Amrah Maryam

Abstract:

The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks.

Keywords: online social networks, monitor placement, independent cascade model, spread of misinformation

Procedia PDF Downloads 161
8931 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method

Authors: Satyendra Pratap Singh, S. P. Singh

Abstract:

This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.

Keywords: gravitational search algorithm (GSA), law of motion, law of gravity, observability, phasor measurement unit

Procedia PDF Downloads 507
8930 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 615
8929 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates

Authors: Sarra Boughaba

Abstract:

The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.

Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study

Procedia PDF Downloads 113
8928 Security Threats on Wireless Sensor Network Protocols

Authors: H. Gorine, M. Ramadan Elmezughi

Abstract:

In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issues of security in wireless sensor networks in an attempt to encourage more research into this area.

Keywords: wireless sensor networks, network security, light weight encryption, threats

Procedia PDF Downloads 526
8927 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory

Authors: Peter Thissen

Abstract:

In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.

Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction

Procedia PDF Downloads 363
8926 Application of Simulation of Discrete Events in Resource Management of Massive Concreting

Authors: Mohammad Amin Hamedirad, Seyed Javad Vaziri Kang Olyaei

Abstract:

Project planning and control are one of the most critical issues in the management of construction projects. Traditional methods of project planning and control, such as the critical path method or Gantt chart, are not widely used for planning projects with discrete and repetitive activities, and one of the problems of project managers is planning the implementation process and optimal allocation of its resources. Massive concreting projects is also a project with discrete and repetitive activities. This study uses the concept of simulating discrete events to manage resources, which includes finding the optimal number of resources considering various limitations such as limitations of machinery, equipment, human resources and even technical, time and implementation limitations using analysis of resource consumption rate, project completion time and critical points analysis of the implementation process. For this purpose, the concept of discrete-event simulation has been used to model different stages of implementation. After reviewing the various scenarios, the optimal number of allocations for each resource is finally determined to reach the maximum utilization rate and also to reduce the project completion time or reduce its cost according to the existing constraints. The results showed that with the optimal allocation of resources, the project completion time could be reduced by 90%, and the resulting costs can be reduced by up to 49%. Thus, allocating the optimal number of project resources using this method will reduce its time and cost.

Keywords: simulation, massive concreting, discrete event simulation, resource management

Procedia PDF Downloads 148
8925 Patient-Reported Adverse Drug Reactions, Medication Adherence and Clinical Outcomes among major depression disorder Patients in Ethiopia: A Prospective Hospital Based Study.

Authors: Tadesse Melaku Abegaz

Abstract:

Background: there was paucity of data on the self-reported adverse drug reactions (ADRs), level of adherence and clinical outcomes with antidepressants among major depressive disorder (MDD) patients in Ethiopia. Hence, the present study sought to determine the level of adherence for and clinical outcome with antidepressants and the magnitude of ADRs. Methods: A prospective cross-sectional study was employed on MDD patients from September 2016 to January 2017 at Gondar university hospital psychiatry clinic. All patients who were available during the study period were included under the study population. The Naranjo adverse drug reaction probability scale was employed to assess the adverse drug reaction. The rate of medication adherence was determined using morisky medication adherence measurement scale eight. Clinical Outcome of patients was measured by using patient health questionnaire. Multivariable logistic carried out to determine factors for adherence and patient outcome. Results: two hundred seventy patients were participated in the study. More than half of the respondents were males 122(56.2%). The mean age of the participants was 30.94 ± 8.853. More than one-half of the subjects had low adherence to their medications 124(57.1%). About 186(85.7%) of patients encountered ADR. The most common ADR was weight gain 29(13.2). Around 198(92.2%) ADRs were probable and 19(8.8%) were possible. Patients with long standing MDD had high risk of non-adherence COR: 2.458[4.413-4.227], AOR: 2.424[1.185-4.961]. More than one-half 125(57.6) of respondents showed improved outcome. Optimal level of medication adherence was found to be associated with reduced risk of progression of the diseases COR: 0.37[0.110-5.379] and AOR: 0.432[0.201-0.909]. Conclusion: Patient reported adverse drug reactions were more prevalent in major depressive disorder patients. Adherence to medications was very poor in the setup. However, the clinical outcome was relatively higher. Long standing depression was associated with non-adherence. In addition, clinical outcome of patients were affected by non-adherence. Therefore, adherence enhancing interventions should be provided to improve medication adherence and patient outcome.

Keywords: adverse drug reactions, clinical outcomes, Ethiopia, prospective study, medication adherence

Procedia PDF Downloads 247
8924 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 353
8923 Kinetics and Mechanism of Oxidation of Some Amino Acids by Peroxodisulphate

Authors: Abdelmahmod Saad

Abstract:

In this study two amino acids were chosen (DL.alanine,DL.serine) to determine their effect on dissociation of S2O8-2 ino. As the reaction was very slow, Ag+ ino was used as a catalyst. The kinetics measurement showed that the reactions in both cases were found in the first order with respect to S2O8-2, half order with respect to Ag+ and zero order with respect to substrates. Mechanisms were proposed for these reactions according to the determined orders. The energy of activation (AE) was determined for each reaction, and was found to by 30.50 k JmoI-1 in case of DL. Serine and 24.40 k JmoI-1 in case of DL.alanine.

Keywords: mechanism, oxidation, amino acids, peroxodisulphate

Procedia PDF Downloads 512
8922 Temperature Control Improvement of Membrane Reactor

Authors: Pornsiri Kaewpradit, Chalisa Pourneaw

Abstract:

Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.

Keywords: model predictive control, batch reactor, temperature control, membrane reactor

Procedia PDF Downloads 468
8921 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: support services, e-Network practice, Australian universities, United States universities

Procedia PDF Downloads 163
8920 A Case Study: Social Network Analysis of Construction Design Teams

Authors: Elif D. Oguz Erkal, David Krackhardt, Erica Cochran-Hameen

Abstract:

Even though social network analysis (SNA) is an abundantly studied concept for many organizations and industries, a clear SNA approach to the project teams has not yet been adopted by the construction industry. The main challenges for performing SNA in construction and the apparent reason for this gap is the unique and complex structure of each construction project, the comparatively high circulation of project team members/contributing parties and the variety of authentic problems for each project. Additionally, there are stakeholders from a variety of professional backgrounds collaborating in a high-stress environment fueled by time and cost constraints. Within this case study on Project RE, a design & build project performed at the Urban Design Build Studio of Carnegie Mellon University, social network analysis of the project design team will be performed with the main goal of applying social network theory to construction project environments. The research objective is to determine a correlation between the network of how individuals relate to each other on one’s perception of their own professional strengths and weaknesses and the communication patterns within the team and the group dynamics. Data is collected through a survey performed over four rounds conducted monthly, detailed follow-up interviews and constant observations to assess the natural alteration in the network with the effect of time. The data collected is processed by the means of network analytics and in the light of the qualitative data collected with observations and individual interviews. This paper presents the full ethnography of this construction design team of fourteen architecture students based on an elaborate social network data analysis over time. This study is expected to be used as an initial step to perform a refined, targeted and large-scale social network data collection in construction projects in order to deduce the impacts of social networks on project performance and suggest better collaboration structures for construction project teams henceforth.

Keywords: construction design teams, construction project management, social network analysis, team collaboration, network analytics

Procedia PDF Downloads 200