Search results for: nappe flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4777

Search results for: nappe flow

3937 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments

Authors: William J. Crowther, Conor Marsh

Abstract:

Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.

Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics

Procedia PDF Downloads 103
3936 Magnetohydrodynamic Flows in a Conduit with Multiple Channels under a Magnetic Field Applied Perpendicular to the Plane of Flow

Authors: Yang Luo, Chang Nyung Kim

Abstract:

This study numerically analyzes a steady-state, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows in the inflow channel, then turns 1800 in the transition segment, finally flows into three different outflow channels simultaneously. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before. The axial velocity in the side layer near the first partitioning wall, which is located between the inflow channel and the first outflow channel, is the highest. ‘M-shaped’ velocity profiles are obtained in the side layers of the inflow and outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.

Keywords: liquid-metal, multiple channels, magnetic field, magnetohydrodynamic

Procedia PDF Downloads 281
3935 Students' ExperiEnce Enhancement Through Simulaton. A Process Flow in Logistics and Transportation Field

Authors: Nizamuddin Zainuddin, Adam Mohd Saifudin, Ahmad Yusni Bahaudin, Mohd Hanizan Zalazilah, Roslan Jamaluddin

Abstract:

Students’ enhanced experience through simulation is a crucial factor that brings reality to the classroom. The enhanced experience is all about developing, enriching and applications of a generic process flow in the field of logistics and transportations. As educational technology has improved, the effective use of simulations has greatly increased to the point where simulations should be considered a valuable, mainstream pedagogical tool. Additionally, in this era of ongoing (some say never-ending) assessment, simulations offer a rich resource for objective measurement and comparisons. Simulation is not just another in the long line of passing fads (or short-term opportunities) in educational technology. It is rather a real key to helping our students understand the world. It is a way for students to acquire experience about how things and systems in the world behave and react, without actually touching them. In short, it is about interactive pretending. Simulation is all about representing the real world which includes grasping the complex issues and solving intricate problems. Therefore, it is crucial before stimulate the real process of inbound and outbound logistics and transportation a generic process flow shall be developed. The paper will be focusing on the validization of the process flow by looking at the inputs gains from the sample. The sampling of the study focuses on multi-national and local manufacturing companies, third party companies (3PL) and government agency, which are selected in Peninsular Malaysia. A simulation flow chart was proposed in the study that will be the generic flow in logistics and transportation. A qualitative approach was mainly conducted to gather data in the study. It was found out from the study that the systems used in the process of outbound and inbound are System Application Products (SAP) and Material Requirement Planning (MRP). Furthermore there were some companies using Enterprises Resources Planning (ERP) and Electronic Data Interchange (EDI) as part of the Suppliers Own Inventories (SOI) networking as a result of globalized business between one countries to another. Computerized documentations and transactions were all mandatory requirement by the Royal Custom and Excise Department. The generic process flow will be the basis of developing a simulation program that shall be used in the classroom with the objective of further enhanced the students’ learning experience. Thus it will contributes to the body of knowledge on the enrichment of the student’s employability and also shall be one of the way to train new workers in the logistics and transportation filed.

Keywords: enhancement, simulation, process flow, logistics, transportation

Procedia PDF Downloads 330
3934 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 199
3933 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: non-isothermal wedge, thermal radiation, nanofluid, magnetic field, soret and dufour effects

Procedia PDF Downloads 236
3932 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts

Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh

Abstract:

In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.

Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain

Procedia PDF Downloads 175
3931 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis

Procedia PDF Downloads 421
3930 A Mathematical Equation to Calculate Stock Price of Different Growth Model

Authors: Weiping Liu

Abstract:

This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.

Keywords: stock price, multistage model, different growth model, discounted cash flow method

Procedia PDF Downloads 407
3929 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium

Authors: Pradeepa Teegala, Ramreddy Chitteti

Abstract:

This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method

Procedia PDF Downloads 277
3928 Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment

Authors: Sercan Altundemir, Pinar Eribol, A. Kerem Uguz

Abstract:

Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established.

Keywords: droplet formation, electrohydrodynamics, microfluidics, two-phase flow

Procedia PDF Downloads 176
3927 Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration

Authors: Mariia Timofeeva, Andrew Ooi, Eric K. W. Poon, Peter Barlis

Abstract:

Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry.

Keywords: computational fluid dynamics, coronary artery, fractional flow reserve, serial stenoses

Procedia PDF Downloads 183
3926 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long

Abstract:

Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.

Keywords: 3D fiber, void formation, RTM, process modelling

Procedia PDF Downloads 96
3925 An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems

Authors: Anthony John Walker, Glen Bright

Abstract:

The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy.

Keywords: assembly system constraint, custom products, discrete sequence disorder, flow control

Procedia PDF Downloads 178
3924 Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor

Authors: Ik–Tae Im, H. M. Abdelmotalib, M. A. Youssef, S. B. Young

Abstract:

In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer.

Keywords: computational fluid dynamics, heat transfer coefficient, hydrodynamics, renewable energy

Procedia PDF Downloads 417
3923 A Survey of Dynamic QoS Methods in Sofware Defined Networking

Authors: Vikram Kalekar

Abstract:

Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN.

Keywords: QoS, policy, congestion, flow management, latency, delay index terms-SDN, delay

Procedia PDF Downloads 194
3922 Numerical Simulation of Unsteady Cases of Fluid Flow Using Modified Dynamic Boundary Condition (mDBC) in Smoothed Particle Hydrodynamics Models

Authors: Exa Heydemans, Jessica Sjah, Dwinanti Rika Marthanty

Abstract:

This paper presents numerical simulations using an open boundary algorithm with modified dynamic boundary condition (mDBC) for weakly compressible smoothed particle hydrodynamics models from particle-based code Dualsphysics. The problems of piping erosion in dams and dikes are aimed for studying the algorithm. The case 2D model of unsteady fluid flow past around a fixed cylinder is simulated, where various values of Reynold’s numbers (Re40, Re60, Re80, and Re100) and different model’s resolution are considered. A constant velocity with different values of viscosity for generating various Reynold’s numbers and different numbers of particles over a cylinder for the resolution are modeled. The interaction between solid particles of the cylinder and fluid particles is concerned. The cylinder is affected by the hydrodynamics force caused by the flow of fluid particles. The solid particles of the cylinder are the observation points to obtain force and pressure due to the hydrodynamics forces. As results of the simulation, which is to show the capability to model 2D unsteady with various Reynold’s numbers, the pressure coefficient, drag coefficient, lift coefficient, and Strouhal number are compared to the previous work from literature.

Keywords: hydrodynamics, internal erosion, dualsphysics, viscous fluid flow

Procedia PDF Downloads 165
3921 Numerical Simulation of Convective Flow of Nanofluids with an Oriented Magnetic Field in a Half Circular-Annulus

Authors: M. J. Uddin, M. M. Rahman

Abstract:

The unsteady convective heat transfer flow of nanofluids in a half circular-annulus shape enclosure using nonhomogeneous dynamic model has been investigated numerically. The round upper wall of the enclosure is maintained at constant low temperature whereas the bottom wall is heated by three different thermal conditions. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To discover the best performer, the average Nusselt number is demonstrated for different types of nanofluids. The heat transfer rate for different flow parameters, positions of the annulus, thicknesses of the half circular-annulus and thermal conditions is also exhibited.

Keywords: nanofluid, convection, semicircular-annulus, nonhomogeneous dynamic model, finite element method

Procedia PDF Downloads 222
3920 Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

High quality air filters production using nanofibers, as a functional material, has frequently been investigated. As it is more environmentally friendly, melting method has been selected to produce nanofibers. Spun-bond production systems consist of extruder, spin-pump, nozzle package and attenuators. Spin-pump makes molten polymer steady, which flows through extruder. Fibers are formed by regular melts passing through nuzzle holes under high pressure. Attenuator prolongs fibers to micron size to be collected on a conveyor. Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis have been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper.

Keywords: attenuator, CFD, nanofiber, spun-bond

Procedia PDF Downloads 449
3919 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor

Authors: Ejaz Ahmed, Huang Yong

Abstract:

The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.

Keywords: CFD, combustion, gas turbine combustor, lean blowout

Procedia PDF Downloads 268
3918 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde

Abstract:

MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.

Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer

Procedia PDF Downloads 539
3917 Volatile Organic Compounds (VOCS) Destruction by Catalytic Oxidation for Environmental Applications

Authors: Mohammed Nasir Kajama, Ngozi Claribelle Nwogu, Edward Gobina

Abstract:

Pt/γ-Al2O3 membrane catalysts were prepared via an evaporative-crystallization deposition method. The obtained Pt/γ-Al2O3 catalyst activity was tested after characterization (SEM-EDAX observation, BET measurement, permeability assessment) in the catalytic oxidation of selected volatile organic compound (VOC) i.e. propane, fed in mixture of oxygen. The VOC conversion (nearly 90%) obtained by varying the operating temperature showed that flow-through membrane reactor might do better in the abatement of VOCs.

Keywords: VOC combustion, flow-through membrane reactor, platinum supported alumina catalysts

Procedia PDF Downloads 544
3916 How Children Synchronize with Their Teacher: Evidence from a Real-World Elementary School Classroom

Authors: Reiko Yamamoto

Abstract:

This paper reports on how synchrony occurs between children and their teacher, and what prevents or facilitates synchrony. The aim of the experiment conducted in this study was to precisely analyze their movements and synchrony and reveal the process of synchrony in a real-world classroom. Specifically, the experiment was conducted for around 20 minutes during an English as a foreign language (EFL) lesson. The participants were 11 fourth-grade school children and their classroom teacher in a public elementary school in Japan. Previous researchers assert that synchrony causes the state of flow in a class. For checking the level of flow, Short Flow State Scale (SFSS) was adopted. The experimental procedure had four steps: 1) The teacher read aloud the first half of an English storybook to the children. Both the teacher and the children were at their own desks. 2) The children were subjected to an SFSS check. 3) The teacher read aloud the remaining half of the storybook to the children. She made the children remove their desks before reading. 4) The children were again subjected to an SFSS check. The movements of all participants were recorded with a video camera. From the movement analysis, it was found that the children synchronized better with the teacher in Step 3 than in Step 1, and that the teacher’s movement became free and outstanding without a desk. This implies that the desk acted as a barrier between the children and the teacher. Removal of this barrier resulted in the children’s reactions becoming synchronized with those of the teacher. The SFSS results proved that the children experienced more flow without a barrier than with a barrier. Apparently, synchrony is what caused flow or social emotions in the classroom. The main conclusion is that synchrony leads to cognitive outcomes such as children’s academic performance in EFL learning.

Keywords: engagement in a class, English as a foreign language (EFL) learning, interactional synchrony, social emotions

Procedia PDF Downloads 145
3915 Oil Water Treatment by Nutshell and Dates Pits

Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren

Abstract:

The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.

Keywords: date pits, nutshell, oil water, TSS

Procedia PDF Downloads 157
3914 Experimental, Computational Fluid Dynamics and Theoretical Study of Cyclone Performance Based on Inlet Velocity and Particle Loading Rate

Authors: Sakura Ganegama Bogodage, Andrew Yee Tat Leung

Abstract:

This paper describes experimental, Computational Fluid Dynamics (CFD) and theoretical analysis of a cyclone performance, operated 1.0 g/m3 solid loading rate, at two different inlet velocities (5 m/s and 10 m/s). Comparing experimental results with theoretical and CFD simulation results, it is pronounced that the influence of solid in processing flow is significant than expected. Experimental studies based on gas- solid flows of cyclone separators are complicated as they required advanced sensitive measuring techniques, especially flow characteristics. Thus, CFD modelling and theoretical analysis are economical in analyzing cyclone separator performance but detailed clarifications of the application of these in cyclone separator performance evaluation is not yet discussed. The present study shows the limitations of influencing parameters of CFD and theoretical considerations, comparing experimental results and flow characteristics from CFD modelling.

Keywords: cyclone performance, inlet velocity, pressure drop, solid loading rate

Procedia PDF Downloads 237
3913 The Practice of Low Flow Anesthesia to Reduce Carbon Footprints Sustainability Project

Authors: Ahmed Eid, Amita Gupta

Abstract:

Abstract: Background: Background Medical gases are estimated to contribute to 5% of the carbon footprints produced by hospitals, Desflurane has the largest impact, but all increase significantly when used with N2O admixture. Climate Change Act 2008, we must reduce our carbon emission by 80% of the 1990 baseline by 2050.NHS carbon emissions have reduced by 18.5% (2007-2017). The NHS Long Term Plan has outlined measures to achieve this objective, including a 2% reduction by transforming anaesthetic practices. FGF is an important variable that determines the utilization of inhalational agents and can be tightly controlled by the anaesthetist. Aims and Objectives Environmental safety, Identification of areas of high N20 and different anaesthetic agents used across the St Helier operating theatres and consider improvising on the current practice. Methods: Data was collected from St Helier operating theatres and retrieved daily from Care Station 650 anaesthetic machines. 60 cases were included in the sample. Collected data (average flow rate, amount and type of agent used, duration of surgery, type of surgery, duration, and the total amount of Air, O2 and N2O used. AAGBI impact anaesthesia calculator was used to identify the amount of CO2 produced and also the cost per hour for every pt. Communication via reminder emails to staff emphasized the significance of low-flow anaesthesia and departmental meeting presentations aimed at heightening awareness of LFA, Distribution of AAGBI calculator QR codes in all theatres enables the calculation of volatile anaesthetic consumption and CO2e post each case, facilitating informed environmental impact assessment. Results: A significant reduction in the flow rate use in the 2nd sample was observed, flow rate usage between 0-1L was 60% which means a great reduction of the consumption of volatile anaesthetics and also Co2e. By using LFA we can save money but most importantly we can make our lives much greener and save the planet.

Keywords: low flow anesthesia, sustainability project, N₂0, Co2e

Procedia PDF Downloads 68
3912 Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction

Authors: Malik I. Al-Amayreh, Mohammad I. Kilani, Ahmed S. Al-Salaymeh

Abstract:

This works presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting. The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the velocity distributions, streamlines and path lines. Frequency spectrum of the pressure pulsations downstream the valves, and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance. These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe. CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.

Keywords: butterfly valve vibration analysis, computational fluid dynamics, fluid flow circuit design, fluctuation

Procedia PDF Downloads 436
3911 Efficient Monolithic FEM for Compressible Flow and Conjugate Heat Transfer

Authors: Santhosh A. K.

Abstract:

This work presents an efficient monolithic finite element strategy for solving thermo-fluid-structure interaction problems involving compressible fluids and linear-elastic structure. This formulation uses displacement variables for structure and velocity variables for the fluid, with no additional variables required to ensure traction, velocity, temperature, and heat flux continuity at the fluid-structure interface. Rate of convergence in each time step is quadratic, which is achieved in this formulation by deriving an exact tangent stiffness matrix. The robustness and good performance of the method is ascertained by applying the proposed strategy on a wide spectrum of problems taken from the literature pertaining to steady, transient, two dimensional, axisymmetric, and three dimensional fluid flow and conjugate heat transfer. It is shown that the current formulation gives excellent results on all the case studies conducted, which includes problems involving compressibility effects as well as problems where fluid can be treated as incompressible.

Keywords: linear thermoelasticity, compressible flow, conjugate heat transfer, monolithic FEM

Procedia PDF Downloads 199
3910 Improving the Efficiency of Pelton Wheel and Cross-Flow Micro Hydro Power Plants

Authors: Loice K. Gudukeya, Charles Mbohwa

Abstract:

The research investigates hydropower plant efficiency with a view to improving the power output while keeping the overall project cost per kilowatt produced within an acceptable range. It reviews the commonly used Pelton and Cross-flow turbines which are employed in the region for micro-hydro power plants. Turbine parameters such as surface texture, material used and fabrication processes are dealt with the intention of increasing the efficiency by 20 to 25 percent for the micro hydro-power plants.

Keywords: hydro, power plant, efficiency, manufacture

Procedia PDF Downloads 431
3909 Modeling of Gas Migration in High-Pressure–High-Temperature Fields

Authors: Deane Roehl, Roberto Quevedo

Abstract:

Gas migration from pressurized formations is a problem reported in the oil and gas industry. This means increased risks for drilling, production, well integrity, and hydrocarbon escape. Different processes can contribute to the development of pressurized formations, particularly in High-Pressure–High-Temperature (HPHT) gas fields. Over geological time-scales, the different formations of those fields have maintained and/or developed abnormal pressures owing to low permeability and the presence of an impermeable seal. However, if this seal is broken, large volumes of gas could migrate into other less pressurized formations. Three main mechanisms for gas migration have been identified in the literature –molecular diffusion, continuous-phase flow, and continuous-phase flow coupled with mechanical effects. In relation to the latter, gas migration can occur as a consequence of the mechanical effects triggered by reservoir depletion. The compaction of the reservoir can redistribute the in-situ stresses sufficiently to induce deformations that may increase the permeability of rocks and lead to fracture processes or reactivate nearby faults. The understanding of gas flow through discontinuities is still under development. However, some models based on porosity changes and fracture aperture have been developed in order to obtain enhanced permeabilities in numerical simulations. In this work, a simple relationship to integrate fluid flow through rock matrix and discontinuities has been implemented in a fully thermo-hydro-mechanical simulator developed in-house. Numerical simulations of hydrocarbon production in an HPHT field were carried out. Results suggest that rock permeability can be considerably affected by the deformation of the field, creating preferential flow paths for the transport of large volumes of gas.

Keywords: gas migration, pressurized formations, fractured rocks, numerical modeling

Procedia PDF Downloads 150
3908 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows

Authors: C. D. Ellis, H. Xia, X. Chen

Abstract:

Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.

Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics

Procedia PDF Downloads 232