Search results for: marine hydrodynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 943

Search results for: marine hydrodynamics

103 Sympatric Calanus Species: A High Temporal Resolution of Reproductive Timing and Stage Composition

Authors: Mads Schultz, Galice Hoarau, Marvin Choquet

Abstract:

Members of the genus Calanus are key species in the North Atlantic and Arctic marine ecosystems due to their vast abundance and their ability to accumulate high amounts of lipid. As a link between primary producers and higher trophic levels, the temporal presence of each Calanus species is important in a time of changing communities and northward distribution shifts. This study focused on the temporal niches of the sympatric species Calanus helgolandicus, Calanus finmarchicus, Calanus glacialis, and Calanus hyperboreus in Skjerstad fjord, a Norwegian fjord (67˚14’N, 14 ˚44’E). Three depth intervals were sampled monthly over a year, targeting copepodite stages of the genus Calanus. Species determination was carried out genetically using insertion/deletion markers. In addition, during the reproductive season (Jan-May), weekly samples of the upper 50 meters of the water column targeting nauplii and 5 depth intervals targeting copepodites were collected. Nauplii samples were sorted into two groups (NI-NIII and NIV-NVI), and species were genetically identified. Specimens from stage CIV to adults from each depth interval of copepodite sampling were photographed in order to generate a supporting timeline of visual traits, including gonad maturation stage, presence of stomach content, and total lipid content. The most abundant species were Calanus finmarchicus and Calanus glacialis, followed by Calanus hyperboreus. These species were present in the water column throughout the year, whereas Calanus helgolandicus, the least abundant species, was only present during the summer and autumn period. Each species showed distinct temporal niches, with Calanus finmarchicus occupying the upper 50 meters longer than any of the other species. Calanus hyperboreus dominates in abundance early in the spring but are outnumbered by Calanus glacialis and Calanus finmarchicus after spring bloom sets in. In Skjerstad fjord, Calanus hyperboreus is a clear capital breeder with a long period of nauplii presence before the spring bloom. Calanus glacialis and Calanus finmarchicus both utilize income breeding, with Calanus glacialis developing to the larger nauplii stages quicker than Calanus finmarchicus, but also having a shorter reproduction period. Indeed, the “traditional Arctic” species Calanus hyperboreus and Calanus glacialis appear to end their reproduction period earlier than the North Atlantic Calanus finmarchicus.

Keywords: calanus, depth distribution, reproduction, stage composition, temporal niches

Procedia PDF Downloads 150
102 Ecosystem, Environment Being Threatened by the Activities of Major Industries

Authors: Charles Akinola Imolehin

Abstract:

According to the news on world population record, over 6.6 billion people on earth, and almost a quarter million added each day, the scale of human activity and environmental impact is unprecedented. Soaring human population growth over the past century has created a visible challenge to earth’s life support systems. Critical natural resources such as clean ground water, fertile topsoil, and biodiversity are diminishing at an exponential rate, orders of magnitude above that at which they can be regenerated. In addition, the world faces an onslaught of other environmental threats including degenerated global climate change, global warming, intensified acid rain, stratospheric ozone depletion and health threatening pollution. Overpopulation and the use of deleterious technologies combine to increase the scale of human activities to a level that underlies these entire problems. These intensifying trends cannot continue indefinitely, hopefully, through increased understanding and valuation of ecosystems and their services, earth’s basic life-support system will be protected for the future. To say the fact, human civilization is now the dominant cause of change in the global environment. Now that human relationship to the earth has change so utterly, there is need to see to that change and understand its implication. These are two aspects to the challenges which all should believe. The first is to realize that human activity has power to harm the earth and can indeed have global and even permanent effects. Second is to realize that the only way to understand human new role as a co-architect of nature is to see human activities as part of a complex system that does operate according to the same simple rules of cause and effect commonly used to. So, understanding the physical/biological dimension of earth system is an important precondition for making sensible policy to protect our environment. Because believing in Sustainable Development is a matter of reconciling respect for the environment, social equity, and economic profitability. Also, there is strong believe that environmental protection is naturally about reducing air and water pollution, but it also includes the improvement of the environmental performance of existing process. That is why is important to always have it at the heart of business policy that the environmental problem is not our effect on the environment so much as the relationship of production activities on the environment. There should be this positive thinking in all operation to always be environmentally friendly especially in projection and considering Sustainable ALL awareness in all sites of operation.

Keywords: earth's ocean, marine animals life under treat, flooding, ctritical natiural resouces polluted

Procedia PDF Downloads 17
101 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.

Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability

Procedia PDF Downloads 157
100 Bibliometric Analysis of Risk Assessment of Inland Maritime Accidents in Bangladesh

Authors: Armana Huq, Wahidur Rahman, Sanwar Kader

Abstract:

Inland waterways in Bangladesh play an important role in providing comfortable and low-cost transportation. However, a maritime accident takes away many lives and creates unwanted hazards every year. This article deals with a comprehensive review of inland waterway accidents in Bangladesh. Additionally, it includes a comparative study between international and local inland research studies based on maritime accidents. Articles from inland waterway areas are analyzed in-depth to make a comprehensive overview of the nature of the academic work, accident and risk management process and different statistical analyses. It is found that empirical analysis based on the available statistical data dominates the research domain. For this study, major maritime accident-related works in the last four decades in Bangladesh (1981-2020) are being analyzed for preparing a bibliometric analysis. A study of maritime accidents of passenger's vessels during (1995-2005) indicates that the predominant causes of accidents in the inland waterways of Bangladesh are collision and adverse weather (77%), out of which collision due to human error alone stands (56%) of all accidents. Another study refers that the major causes of waterway accidents are the collision (60.3%) during 2005-2015. About 92% of this collision occurs due to direct contact with another vessel during this period. Rest 8% of the collision occurs by contact with permanent obstruction on waterway roots. The overall analysis of another study from the last 25 years (1995-2019) shows that one of the main types of accidents is collisions, with about 50.3% of accidents being caused by collisions. The other accident types are cyclone or storm (17%), overload (11.3%), physical failure (10.3%), excessive waves (5.1%), and others (6%). Very few notable works are available in testing or comparing the methods, proposing new methods for risk management, modeling, uncertainty treatment. The purpose of this paper is to provide an overview of the evolution of marine accident-related research domain regarding inland waterway of Bangladesh and attempts to introduce new ideas and methods to abridge the gap between international and national inland maritime-related work domain which can be a catalyst for a safer and sustainable water transportation system in Bangladesh. Another fundamental objective of this paper is to navigate various national maritime authorities and international organizations to implement risk management processes for shipping accident prevention in waterway areas.

Keywords: inland waterways, safety, bibliometric analysis, risk management, accidents

Procedia PDF Downloads 182
99 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations

Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang

Abstract:

Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.

Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments

Procedia PDF Downloads 170
98 Unmanned Aerial System Development for the Remote Reflectance Sensing Using Above-Water Radiometers

Authors: Sunghun Jung, Wonkook Kim

Abstract:

Due to the difficulty of the utilization of satellite and an aircraft, conventional ocean color remote sensing has a disadvantage in that it is difficult to obtain images of desired places at desired times. These disadvantages make it difficult to capture the anomalies such as the occurrence of the red tide which requires immediate observation. It is also difficult to understand the phenomena such as the resuspension-precipitation process of suspended solids and the spread of low-salinity water originating in the coastal areas. For the remote sensing reflectance of seawater, above-water radiometers (AWR) have been used either by carrying portable AWRs on a ship or installing those at fixed observation points on the Ieodo ocean research station, Socheongcho base, and etc. In particular, however, it requires the high cost to measure the remote reflectance in various seawater environments at various times and it is even not possible to measure it at the desired frequency in the desired sea area at the desired time. Also, in case of the stationary observation, it is advantageous that observation data is continuously obtained, but there is the disadvantage that data of various sea areas cannot be obtained. It is possible to instantly capture various marine phenomena occurring on the coast using the unmanned aerial system (UAS) including vertical takeoff and landing (VTOL) type unmanned aerial vehicles (UAV) since it could move and hover at the one location and acquire data of the desired form at a high resolution. To remotely estimate seawater constituents, it is necessary to install an ultra-spectral sensor. Also, to calculate reflected light from the surface of the sea in consideration of the sun’s incident light, a total of three sensors need to be installed on the UAV. The remote sensing reflectance of seawater is the most basic optical property for remotely estimating color components in seawater and we could remotely estimate the chlorophyll concentration, the suspended solids concentration, and the dissolved organic amount. Estimating seawater physics from the remote sensing reflectance requires the algorithm development using the accumulation data of seawater reflectivity under various seawater and atmospheric conditions. The UAS with three AWRs is developed for the remote reflection sensing on the surface of the sea. Throughout the paper, we explain the details of each UAS component, system operation scenarios, and simulation and experiment results. The UAS consists of a UAV, a solar tracker, a transmitter, a ground control station (GCS), three AWRs, and two gimbals.

Keywords: above-water radiometers (AWR), ground control station (GCS), unmanned aerial system (UAS), unmanned aerial vehicle (UAV)

Procedia PDF Downloads 162
97 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 149
96 The Impact of Climate Change on Sustainable Aquaculture Production

Authors: Peyman Mosberian-Tanha, Mona Rezaei

Abstract:

Aquaculture sector is the fastest growing food sector with annual growth rate of about 10%. The sustainability of aquaculture production, however, has been debated mainly in relation to the feed ingredients used for farmed fish. The industry has been able to decrease its dependency on marine-based ingredients in line with policies for more sustainable production. As a result, plant-based ingredients have increasingly been incorporated in aquaculture feeds, especially in feeds for popular carnivorous species, salmonids. The effect of these ingredients on salmonids’ health and performance has been widely studied. In most cases, plant-based diets are associated with varying degrees of health and performance issues across salmonids, partly depending on inclusion levels of plant ingredients and the species in question. However, aquaculture sector is facing another challenge of concern. Environmental challenges in association with climate change is another issue the aquaculture sector must deal with. Data from trials in salmonids subjected to environmental challenges of various types show adverse physiological responses, partly in relation to stress. To date, there are only a limited number of studies reporting the interactive effects of adverse environmental conditions and dietary regimens on salmonids. These studies have shown that adverse environmental conditions exacerbate the detrimental effect of plant-based diets on digestive function and health in salmonids. This indicates an additional challenge for the aquaculture sector to grow in a sustainable manner. The adverse environmental conditions often studied in farmed fish is the change in certain water quality parameters such as oxygen and/or temperature that are typically altered in response to climate change and, more specifically, global warming. In a challenge study, we observed that the in the fish fed a plant-based diet, the fish’s ability to absorb dietary energy was further reduced when reared under low oxygen level. In addition, gut health in these fish was severely impaired. Some other studies also confirm the adverse effect of environmental challenge on fish’s gut health. These effects on the digestive function and gut health of salmonids may result in less resistance to diseases and weaker performance with significant economic and ethical implications. Overall, various findings indicate the multidimensional negative effects of climate change, as a major environmental issue, in different sectors, including aquaculture production. Therefore, a comprehensive evaluation of different ways to cope with climate change is essential for planning more sustainable strategies in aquaculture sector.

Keywords: aquaculture, climate change, sustainability, salmonids

Procedia PDF Downloads 188
95 Optimization Based Design of Decelerating Duct for Pumpjets

Authors: Mustafa Sengul, Enes Sahin, Sertac Arslan

Abstract:

Pumpjets are one of the marine propulsion systems frequently used in underwater vehicles nowadays. The reasons for frequent use of pumpjet as a propulsion system are that it has higher relative efficiency at high speeds, better cavitation, and acoustic performance than its rivals. Pumpjets are composed of rotor, stator, and duct, and there are two different types of pumpjet configurations depending on the desired hydrodynamic characteristic, which are with accelerating and decelerating duct. Pumpjet with an accelerating channel is used at cargo ships where it works at low speeds and high loading conditions. The working principle of this type of pumpjet is to maximize the thrust by reducing the pressure of the fluid through the channel and throwing the fluid out from the channel with high momentum. On the other hand, for decelerating ducted pumpjets, the main consideration is to prevent the occurrence of the cavitation phenomenon by increasing the pressure of the fluid about the rotor region. By postponing the cavitation, acoustic noise naturally falls down, so decelerating ducted systems are used at noise-sensitive vehicle systems where acoustic performance is vital. Therefore, duct design becomes a crucial step during pumpjet design. This study, it is aimed to optimize the duct geometry of a decelerating ducted pumpjet for a highly speed underwater vehicle by using proper optimization tools. The target output of this optimization process is to obtain a duct design that maximizes fluid pressure around the rotor region to prevent from cavitation and minimizes drag force. There are two main optimization techniques that could be utilized for this process which are parameter-based optimization and gradient-based optimization. While parameter-based algorithm offers more major changes in interested geometry, which makes user to get close desired geometry, gradient-based algorithm deals with minor local changes in geometry. In parameter-based optimization, the geometry should be parameterized first. Then, by defining upper and lower limits for these parameters, design space is created. Finally, by proper optimization code and analysis, optimum geometry is obtained from this design space. For this duct optimization study, a commercial codedparameter-based optimization algorithm is used. To parameterize the geometry, duct is represented with b-spline curves and control points. These control points have x and y coordinates limits. By regarding these limits, design space is generated.

Keywords: pumpjet, decelerating duct design, optimization, underwater vehicles, cavitation, drag minimization

Procedia PDF Downloads 209
94 The Analysis of Swales Model (Cars Model) in the UMT Final Year Engineering Students

Authors: Kais Amir Kadhim

Abstract:

Context: The study focuses on the rhetorical structure of chapters in engineering final year projects, specifically the Introduction chapter, written by UMT (University of Marine Technology) engineering students. Existing research has explored the use of genre-based approaches to analyze the writing of final year projects in various disciplines. Research Aim: The aim of this study is to investigate the rhetorical structure of Introduction chapters in engineering final year projects by UMT students. The study aims to identify the frequency of communicative moves and their constituent steps within the Introduction chapters, as well as understand how students justify their research projects. Methodology: The research design will utilize a mixed method approach, combining both quantitative and qualitative methods. Forty Introduction chapters from two different fields in UMT engineering undergraduate programs will be selected for analysis. Findings: The study intends to identify the types of moves present in the Introduction chapters of engineering final year projects by UMT students. Additionally, it aims to determine if these moves and steps are obligatory, conventional, or optional. Theoretical Importance: The study draws upon Bunton's modified CARS (Creating a Research Space) model, which is a conceptual framework used for analyzing the introduction sections of theses. By applying this model, the study contributes to the understanding of the rhetorical structure of Introduction chapters in engineering final year projects. Data Collection: The study will collect data from forty Introduction chapters of engineering final year projects written by UMT engineering students. These chapters will be selected from two different fields within UMT's engineering undergraduate programs. Analysis Procedures: The analysis will involve identifying and categorizing the communicative moves and their constituent steps within the Introduction chapters. The study will utilize both quantitative and qualitative analysis methods to examine the frequency and nature of these moves. Question Addressed: The study aims to address the question of how UMT engineering students structure and justify their research projects within the Introduction chapters of their final year projects. Conclusion: The study aims to contribute to the knowledge of rhetorical structure in engineering final year projects by investigating the Introduction chapters written by UMT engineering students. By using a mixed method research design and applying the modified CARS model, the study intends to identify the types of moves and steps employed by students and explore their justifications for their research projects. The findings have the potential to enhance the understanding of effective academic writing in engineering disciplines.

Keywords: cohesive markers, learning, meaning, students

Procedia PDF Downloads 75
93 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 148
92 Analysis of Sea Waves Characteristics and Assessment of Potential Wave Power in Egyptian Mediterranean Waters

Authors: Ahmed A. El-Gindy, Elham S. El-Nashar, Abdallah Nafaa, Sameh El-Kafrawy

Abstract:

The generation of energy from marine energy became one of the most preferable resources since it is a clean source and friendly to environment. Egypt has long shores along Mediterranean with important cities that need energy resources with significant wave energy. No detailed studies have been done on wave energy distribution in the Egyptian waters. The objective of this paper is to assess the energy wave power available in the Egyptian waters for the choice of the most suitable devices to be used in this area. This paper deals the characteristics and power of the offshore waves in the Egyptian waters. Since the field observations of waves are not frequent and need much technical work, the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis data in Mediterranean, with a grid size 0.75 degree, which is a relatively course grid, are considered in the present study for preliminary assessment of sea waves characteristics and power. The used data covers the period from 2012 to 2014. The data used are significant wave height (swh), mean wave period (mwp) and wave direction taken at six hourly intervals, at seven chosen stations, and at grid points covering the Egyptian waters. The wave power (wp) formula was used to calculate energy flux. Descriptive statistical analysis including monthly means and standard deviations of the swh, mwp, and wp. The percentiles of wave heights and their corresponding power are done, as a tool of choice of the best technology suitable for the site. The surfer is used to show spatial distributions of wp. The analysis of data at chosen 7 stations determined the potential of wp off important Egyptian cities. Offshore of Al Saloum and Marsa Matruh, the highest wp occurred in January and February (16.93-18.05) ± (18.08-22.12) kw/m while the lowest occurred in June and October (1.49-1.69) ± (1.45-1.74) kw/m. In front of Alexandria and Rashid, the highest wp occurred in January and February (16.93-18.05) ± (18.08-22.12) kw/m while the lowest occurred in June and September (1.29-2.01) ± (1.31-1.83) kw/m. In front of Damietta and Port Said, the highest wp occurred in February (14.29-17.61) ± (21.61-27.10) kw/m and the lowest occurred in June (0.94-0.96) ± (0.71-0.72) kw/m. In winter, the probabilities of waves higher than 0.8 m in percentage were, at Al Saloum and Marsa Matruh (76.56-80.33) ± (11.62-12.05), at Alexandria and Rashid (73.67-74.79) ± (16.21-18.59) and at Damietta and Port Said (66.28-68.69) ± (17.88-17.90). In spring, the percentiles were, at Al Saloum and Marsa Matruh, (48.17-50.92) ± (5.79-6.56), at Alexandria and Rashid, (39.38-43.59) ± (9.06-9.34) and at Damietta and Port Said, (31.59-33.61) ± (10.72-11.25). In summer, the probabilities were, at Al Saloum and Marsa Matruh (57.70-66.67) ± (4.87-6.83), at Alexandria and Rashid (59.96-65.13) ± (9.14-9.35) and at Damietta and Port Said (46.38-49.28) ± (10.89-11.47). In autumn, the probabilities were, at Al Saloum and Marsa Matruh (58.75-59.56) ± (2.55-5.84), at Alexandria and Rashid (47.78-52.13) ± (3.11-7.08) and at Damietta and Port Said (41.16-42.52) ± (7.52-8.34).

Keywords: distribution of sea waves energy, Egyptian Mediterranean waters, waves characteristics, waves power

Procedia PDF Downloads 191
91 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman

Authors: Aysha Al Sha'aibi

Abstract:

Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.

Keywords: abundance, feeding activities, Noctiluca scintillans, Oman

Procedia PDF Downloads 435
90 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems

Authors: Marine Shavlakadze

Abstract:

Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.

Keywords: hydroponics, micro-fertilizers, manganese-containing materials, industrial wastes

Procedia PDF Downloads 129
89 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 98
88 Structural and Biochemical Characterization of Red and Green Emitting Luciferase Enzymes

Authors: Wael M. Rabeh, Cesar Carrasco-Lopez, Juliana C. Ferreira, Pance Naumov

Abstract:

Bioluminescence, the emission of light from a biological process, is found in various living organisms including bacteria, fireflies, beetles, fungus and different marine organisms. Luciferase is an enzyme that catalyzes a two steps oxidation of luciferin in the presence of Mg2+ and ATP to produce oxyluciferin and releases energy in the form of light. The luciferase assay is used in biological research and clinical applications for in vivo imaging, cell proliferation, and protein folding and secretion analysis. The luciferase enzyme consists of two domains, a large N-terminal domain (1-436 residues) that is connected to a small C-terminal domain (440-544) by a flexible loop that functions as a hinge for opening and closing the active site. The two domains are separated by a large cleft housing the active site that closes after binding the substrates, luciferin and ATP. Even though all insect luciferases catalyze the same chemical reaction and share 50% to 90% sequence homology and high structural similarity, they emit light of different colors from green at 560nm to red at 640 nm. Currently, the majority of the structural and biochemical studies have been conducted on green-emitting firefly luciferases. To address the color emission mechanism, we expressed and purified two luciferase enzymes with blue-shifted green and red emission from indigenous Brazilian species Amydetes fanestratus and Phrixothrix, respectively. The two enzymes naturally emit light of different colors and they are an excellent system to study the color-emission mechanism of luciferases, as the current proposed mechanisms are based on mutagenesis studies. Using a vapor-diffusion method and a high-throughput approach, we crystallized and solved the crystal structure of both enzymes, at 1.7 Å and 3.1 Å resolution respectively, using X-ray crystallography. The free enzyme adopted two open conformations in the crystallographic unit cell that are different from the previously characterized firefly luciferase. The blue-shifted green luciferase crystalized as a monomer similar to other luciferases reported in literature, while the red luciferases crystalized as an octamer and was also purified as an octomer in solution. The octomer conformation is the first of its kind for any insect’s luciferase, which might be relate to the red color emission. Structurally designed mutations confirmed the importance of the transition between the open and close conformations in the fine-tuning of the color and the characterization of other interesting mutants is underway.

Keywords: bioluminescence, enzymology, structural biology, x-ray crystallography

Procedia PDF Downloads 326
87 Geological Characteristics and Hydrocarbon Potential of M’Rar Formation Within NC-210, Atshan Saddle Ghadamis-Murzuq Basins, Libya

Authors: Sadeg M. Ghnia, Mahmud Alghattawi

Abstract:

The NC-210 study area is located in Atshan Saddle between both Ghadamis and Murzuq basins, west Libya. The preserved Palaeozoic successions are predominantly clastics reaching thickness of more than 20,000 ft in northern Ghadamis Basin depocenter. The Carboniferous series consist of interbedded sandstone, siltstone, shale, claystone and minor limestone deposited in a fluctuating shallow marine to brackish lacustrine/fluviatile environment which attain maximum thickness of over 5,000ft in the area of Atshan Saddle and recorded 3,500 ft. in outcrops of Murzuq Basin flanks. The Carboniferous strata was uplifted and eroded during Late Paleozoic and early Mesozoic time in northern Ghadamis Basin and Atshan Saddle. The M'rar Formation age is Tournaisian to Late Serpukhovian based on palynological markers and contains about 12 cycles of sandstone and shale deposited in shallow to outer neritic deltaic settings. The hydrocarbons in the M'rar reservoirs possibly sourced from the Lower Silurian and possibly Frasinian radioactive hot shales. The M'rar Formation lateral, vertical and thickness distribution is possibly influenced by the reactivation of Tumarline Strik-Slip fault and its conjugate faults. A pronounced structural paleohighs and paleolows, trending SE & NW through the Gargaf Saddle, is possibly indicative of the present of two sub-basins in the area of Atshan Saddle. A number of identified seismic reflectors from existing 2D seismic covering Atshan Saddle reflect M’rar deltaic 12 sandstone cycles. M’rar7, M’rar9, M’rar10 and M’rar12 are characterized by high amplitude reflectors, while M’rar2 and M’rar6 are characterized by medium amplitude reflectors. These horizons are productive reservoirs in the study area. Available seismic data in the study area contributed significantly to the identification of M’rar potential traps, which are prominently 3- way dip closure against fault zone. Also seismic data indicates the presence of a significant strikeslip component with the development of flower-structure. The M'rar Formation hydrocarbon discoveries are concentrated mainly in the Atshan Saddle located in southern Ghadamis Basin, Libya and Illizi Basin in southeast of Algeria. Significant additional hydrocarbons may be present in areas adjacent to the Gargaf Uplift, along structural highs and fringing the Hoggar Uplift, providing suitable migration pathways.

Keywords: hydrocarbon potential, stratigraphy, Ghadamis basin, seismic, well data integration

Procedia PDF Downloads 74
86 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems

Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen Münch, Elke K. Arendt

Abstract:

Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.

Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient

Procedia PDF Downloads 80
85 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages

Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall

Abstract:

Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.

Keywords: emergency management, sydney, tide-tsunami interaction, tsunami impact

Procedia PDF Downloads 240
84 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea

Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng

Abstract:

During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.

Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea

Procedia PDF Downloads 169
83 Detailed Ichnofacies and Sedimentological Analysis of the Cambrian Succession (Tal Group) of the Nigalidhar Syncline, Lesser Himalaya, India and the Interpretation of Its Palaeoenvironment

Authors: C. A. Sharma, Birendra P. Singh

Abstract:

Ichnofacies analysis is considered the best paleontological tool for interpreting ancient depositional environments. Nineteen (19) ichnogenera (namely: Bergaueria, Catenichnus, Cochlichnus, Cruziana, Diplichnites, Dimorphichnus, Diplocraterion, Gordia, Guanshanichnus, Lockeia, Merostomichnites, Monomorphichnus, Palaeophycus, Phycodes, Planolites, Psammichnites, Rusophycus, Skolithos and Treptichnus) are recocered from the Tal Group (Cambrian) of the Nigalidhar Syncline. The stratigraphic occurrences of these ichnogenera represent alternating proximal Cruziana and Skolithos ichnofacies along the contact of Sankholi and Koti-Dhaman formations of the Tal Group. Five ichnogenera namely Catenichnus, Guanshanichnus, Lockeia, Merostomichnites and Psammichnites are recorded for the first time from the Nigalidhar Syncline. Cruziana ichnofacies is found in the upper part of the Sankholi Formation to the lower part of the Koti Dhaman Formation in the NigaliDhar Syncline. The preservational characters here indicate a subtidal environmental condition with poorly sorted, unconsolidated substrate. Depositional condition ranging from moderate to high energy levels below the fair weather base but above the storm wave base under nearshore to foreshore setting in a wave dominated shallow water environment is also indicated. The proximal Cruziana-ichnofacies is interrupted by the Skolithos ichnofacies in the Tal Group of the Nigalidhar Syncline which indicate fluctuating high energy condition which was unfavorable for the opportunistic organism which were dominant during the proximal Cruziana ichnofacies. The excursion of Skolithos ichnofacies (as a pipe rock in the upper part of Sankholi Formation) into the proximal Cruziana ichnofacies in the Tal Group indicate that increased energy and allied parameters attributed to the high rate of sedimentation near the proximal part of the basin. The level bearing the Skolithos ichnofacies in the Nigalidhar Syncline at the juncture of Sankholi and Koti-Dhaman formations can be correlated to the level marked as unconformity in between the Deo-Ka-Tibba and the Dhaulagiri formations by the conglomeratic horizon in the Mussoorie Syncline, Lesser Himalaya, India. Thus, the Tal Group of the Nigalidhar syncline at this stratigraphic level represent slightly deeper water condition than the Mussoorie Syncline, where in the later the aerial exposure dominated which leads to the deposition of conglomeratic horizon and subsequent formation of unconformity. The overall ichnological and sedimentological dataset allow us to infer that the Cambrian successions of Nigalidhar Syncline were deposited in a wave-dominated proximal part of the basin under the foreshore to close to upper shoreface regimes of the shallow marine setting.

Keywords: Cambrian, Ichnofacies, Lesser Himalaya, Nigalidhar, Tal Group

Procedia PDF Downloads 257
82 Developing Methodology of Constructing the Unified Action Plan for External and Internal Risks in University

Authors: Keiko Tamura, Munenari Inoguchi, Michiyo Tsuji

Abstract:

When disasters occur, in order to raise the speed of each decision making and response, it is common that delegation of authority is carried out. This tendency is particularly evident when the department or branch of the organization are separated by the physical distance from the main body; however, there are some issues to think about. If the department or branch is too dependent on the head office in the usual condition, they might feel lost in the disaster response operation when they are face to the situation. Avoiding this problem, an organization should decide how to delegate the authority and also who accept the responsibility for what before the disaster. This paper will discuss about the method which presents an approach for executing the delegation of authority process, implementing authorities, management by objectives, and preparedness plans and agreement. The paper will introduce the examples of efforts for the three research centers of Niigata University, Japan to arrange organizations capable of taking necessary actions for disaster response. Each center has a quality all its own. One is the center for carrying out the research in order to conserve the crested ibis (or Toki birds in Japanese), the endangered species. The another is the marine biological laboratory. The third one is very unique because of the old growth forests maintained as the experimental field. Those research centers are in the Sado Island, located off the coast of Niigata Prefecture, is Japan's second largest island after Okinawa and is known for possessing a rich history and culture. It takes 65 minutes jetfoil (high-speed ferry) ride to get to Sado Island from the mainland. The three centers are expected to be easily isolated at the time of a disaster. A sense of urgency encourages 3 centers in the process of organizational restructuring for enhancing resilience. The research team from the risk management headquarters offer those procedures; Step 1: Offer the hazard scenario based on the scientific evidence, Step 2: Design a risk management organization for disaster response function, Step 3: Conduct the participatory approach to make consensus about the overarching objectives, Step 4: Construct the unified operational action plan for 3 centers, Step 5: Simulate how to respond in each phase based on the understanding the various phases of the timeline of a disaster. Step 6: Document results to measure performance and facilitate corrective action. This paper shows the result of verifying the output and effects.

Keywords: delegation of authority, disaster response, risk management, unified command

Procedia PDF Downloads 125
81 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef

Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan

Abstract:

Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.

Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment

Procedia PDF Downloads 91
80 Harmful Algal Poisoning Symptoms in Coastal Areas of Nigeria

Authors: Medina Kadiri

Abstract:

Nigeria has an extensive coastline of 853 km long between latitude 4°10′ to 6°20′ N and longitude 2°45′ to 8°35′ E and situated in the Gulf of Guinea within the Guinea Current Large Marine Ecosystem. There is a substantial coastal community relying on this region for their livelihood of fishing, aquaculture, mariculture for various sea foods either for consumption or economic sustenance or both. Socio-economic study was conducted, using questionnaires and interview, to investigate the health symptoms of harmful algae experienced by these communities on consumption of sea foods. Eighteen symptoms were recorded. Of the respondents who experienced symptoms after consumption of sea foods, overall, more people (33.5%) experienced vomiting as a symptom, followed by nausea (14.03%) and then diarrhea (13.57%). Others were headache (9.95%), mouth tingling (8.6%) and tiredness (7.24%).The least were muscle pain, rashes, confusion, chills, burning sensation, breathing difficulty and balance difficulty which represented 0.45% each and the rest (dizziness, digestive tract tumors, itching, memory loss, & stomach pain) were less than 3% each. In terms of frequency, the most frequent symptom was diarrhea with 87.5% occurrence, closely followed by vomiting with 81.3%. Tiredness was 75% while nausea was 62.5% and headache 50%. Others such as dizziness, itching, memory loss, mouth tingling and stomach pain had about 40% occurrence or less. The least occurring symptoms were muscle pain, rashes, confusion, chills and balance difficulty and burning sensation occurring only once i.e 6.3%. Breathing difficulty was last but one with 12.5%. Visible symptom from seafood and the particular seafood consumed that prompted the visible symptoms, shows that 3.5% of the entire respondents who ate crab experienced various symptoms ranging from vomiting (2.4%), itching (0.5%) and headache (0.4%). For periwinkle, vomiting had 1.7%, while 1.2% represented diarrhea and nausea symptom comprised 0.8% of all the respondents who ate periwinkle. Some respondents who consumed fish shows that 0.4% of the respondents had Itching. From the respondents who preferred to consume shrimps/crayfish and crab, shrimps/crayfish, crab and periwinkle, the most common illness was tiredness (1.2%), while 0.5% had experienced diarrhea and many others. However, for most respondents who claimed to have no preference for any seafood, with 55.7% affirming this with vomiting being the highest (6.1%), followed closely by mouth tingling/ burning sensation (5.8%). Examining the seasonal influence on visible symptoms revealed that vomiting occurred more in the month of January with 5.5%, while headache and itching were predominant in October with (2.8%). Nausea has 3.1% in January than any season of the year, 2.6% of the entire respondents opined to have experience diarrhea in October than in any other season of the year. Regular evaluation of harmful algal poisoning symptoms is recommended for coastal communities.

Keywords: coastal, harmful algae, human poisoning symptoms, Nigeria, phycotoxins

Procedia PDF Downloads 286
79 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance

Authors: Giorgia Carratta

Abstract:

Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.

Keywords: environmental law, European union, governance, plastic pollution, sustainability

Procedia PDF Downloads 107
78 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 413
77 Grain Size Statistics and Depositional Pattern of the Ecca Group Sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa

Authors: Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicates the dominance of low energy environment. The bivariate plots that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function (LDF) analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are fluvial (deltaic) deposits. The graphic mean value shows the dominance of fine sand-size particles, which point to relatively low energy conditions of deposition. In addition, the LDF results point to low energy conditions during the deposition of the Prince Albert, Collingham and part of the Ripon Formation (Pluto Vale and Wonderfontein Shale Members), whereas the Trumpeters Member of the Ripon Formation and the overlying Fort Brown Formation accumulated under high energy conditions. The CM pattern shows a clustered distribution of sediments in the PQ and QR segments, indicating that the sediments were deposited mostly by suspension and rolling/saltation, and graded suspension. Furthermore, the plots also show that the sediments are mainly deposited by turbidity currents. Visher diagrams show the variability of hydraulic depositional conditions for the Permian Ecca Group sandstones. Saltation is the major process of transportation, although suspension and traction also played some role during deposition of the sediments. The sediments were mainly in saltation and suspension before being deposited.

Keywords: grain size analysis, hydrodynamic condition, depositional environment, Ecca Group, South Africa

Procedia PDF Downloads 480
76 Facies Sedimentology and Astronomic Calibration of the Reinech Member (Lutetian)

Authors: Jihede Haj Messaoud, Hamdi Omar, Hela Fakhfakh Ben Jemia, Chokri Yaich

Abstract:

The Upper Lutetian alternating marl–limestone succession of Reineche Member was deposited over a warm shallow carbonate platform that permits Nummulites proliferation. High-resolution studies of 30 meters thick Nummulites-bearing Reineche Member, cropping out in Central Tunisia (Jebel Siouf), have been undertaken, regarding pronounced cyclical sedimentary sequences, in order to investigate the periodicity of cycles and their related orbital-scale oceanic and climatic changes. The palaeoenvironmental and palaeoclimatic data are preserved in several proxies obtainable through high-resolution sampling and laboratories measurement and analysis as magnetic susceptibility (MS) and carbonates contents in conjunction with a wireline logging tools. The time series analysis of proxies permits to establish cyclicity orders present in the studied intervals which could be linked to the orbital cycles. MS records provide high-resolution proxies for relative sea level change in Late Lutetian strata. The spectral analysis of MS fluctuations confirmed the orbital forcing by the presence of the complete suite of orbital frequencies in the precession of 23 ka, the obliquity of 41 ka, and notably the two modes of eccentricity of 100 and 405 ka. Regarding the two periodic sedimentary cycles detected by wavelet analysis of proxy fluctuations which coincide with the long-term 405 ka eccentricity cycle, the Reineche Member spanned 0,8 Myr. Wireline logging tools as gamma ray and sonic were used as a proxies to decipher cyclicity and trends in sedimentation and contribute to identifying and correlate units. There are used to constraint the highest frequency cyclicity modulated by a long term wavelength cycling apparently controlled by clay content. Interpreted as a result of variations in carbonate productivity, it has been suggested that the marl-limestone couplets, represent the sedimentary response to the orbital forcing. The calculation of cycle durations through Reineche Member, is used as a geochronometer and permit the astronomical calibration of the geologic time scale. Furthermore, MS coupled with carbonate contents, and fossil occurrences provide strong evidence for combined detrital inputs and marine surface carbonate productivity cycles. These two synchronous processes were driven by the precession index and ‘fingerprinted’ in the basic marl–limestone couplets, modulated by orbital eccentricity.

Keywords: magnetic susceptibility, cyclostratigraphy, orbital forcing, spectral analysis, Lutetian

Procedia PDF Downloads 294
75 Evaluation of Iron Application Method to Remediate Coastal Marine Sediment

Authors: Ahmad Seiar Yasser

Abstract:

Sediment is an important habitat for organisms and act as a store house for nutrients in aquatic ecosystems. Hydrogen sulfide is produced by microorganisms in the water columns and sediments, which is highly toxic and fatal to benthic organisms. However, the irons have the capacity to regulate the formation of sulfide by poising the redox sequence and to form insoluble iron sulfide and pyrite compounds. Therefore, we conducted two experiments aimed to evaluate the remediation efficiency of iron application to organically enrich and improve sediments environment. Experiments carried out in the laboratory using intact sediment cores taken from Mikawa Bay, Japan at every month from June to September 2017 and October 2018. In Experiment 1, after cores were collected, the iron powder or iron hydroxide were applied to the surface sediment with 5 g/ m2 or 5.6 g/ m2, respectively. In Experiment 2, we experimentally investigated the removal of hydrogen sulfide using (2mm or less and 2 to 5mm) of the steelmaking slag. Experiments are conducted both in the laboratory with the same boundary conditions. The overlying water were replaced with deoxygenated filtered seawater, and cores were sealed a top cap to keep anoxic condition with a stirrer to circulate the overlying water gently. The incubation experiments have been set in three treatments included the control, and each treatment replicated and were conducted with the same temperature of the in-situ conditions. Water samples were collected to measure the dissolved sulfide concentrations in the overlying water at appropriate time intervals by the methylene blue method. Sediment quality was also analyzed after the completion of the experiment. After the 21 days incubation, experimental results using iron powder and ferric hydroxide revealed that application of these iron containing materials significantly reduced sulfide release flux from the sediment into the overlying water. The average dissolved sulfides concentration in the overlying water of the treatment group was significantly decrease (p = .0001). While no significant difference was observed between the control group after 21 day incubation. Therefore, the application of iron to the sediment is a promising method to remediate contaminated sediments in a eutrophic water body, although ferric hydroxide has better hydrogen sulfide removal effects. Experiments using the steelmaking slag also clarified the fact that capping with (2mm or less and 2 to 5mm) of slag steelmaking is an effective technique for remediation of bottom sediments enriched organic containing hydrogen sulfide because it leads to the induction of chemical reaction between Fe and sulfides occur in sediments which did not occur in conditions naturally. Although (2mm or less) of slag steelmaking has better hydrogen sulfide removal effects. Because of economic reasons, the application of steelmaking slag to the sediment is a promising method to remediate contaminated sediments in the eutrophic water body.

Keywords: sedimentary, H2S, iron, iron hydroxide

Procedia PDF Downloads 163
74 Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice

Authors: S. R. Dehghani, Y. S. Muzychka, G. F. Naterer

Abstract:

The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures.

Keywords: method of lines, brine-spongy ice, heat conduction, salt water

Procedia PDF Downloads 217