Search results for: magnetic analysis
28174 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging
Authors: Balakrishna Shetty
Abstract:
Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.Keywords: stem cells, imaging, DWI, peripheral vascular disease
Procedia PDF Downloads 7528173 Radioprotective Effects of Super-Paramagnetic Iron Oxide Nanoparticles Used as Magnetic Resonance Imaging Contrast Agent for Magnetic Resonance Imaging-Guided Radiotherapy
Authors: Michael R. Shurin, Galina Shurin, Vladimir A. Kirichenko
Abstract:
Background. Visibility of hepatic malignancies is poor on non-contrast imaging for daily verification of liver malignancies prior to radiation therapy on MRI-guided Linear Accelerators (MR-Linac). Ferumoxytol® (Feraheme, AMAG Pharmaceuticals, Waltham, MA) is a SPION agent that is increasingly utilized off-label as hepatic MRI contrast. This agent has the advantage of providing a functional assessment of the liver based upon its uptake by hepatic Kupffer cells proportionate to vascular perfusion, resulting in strong T1, T2 and T2* relaxation effects and enhanced contrast of malignant tumors, which lack Kupffer cells. The latter characteristic has been recently utilized for MRI-guided radiotherapy planning with precision targeting of liver malignancies. However potential radiotoxicity of SPION has never been addressed for its safe use as an MRI-contrast agent during liver radiotherapy on MRI-Linac. This study defines the radiomodulating properties of SPIONs in vitro on human monocyte and macrophage cell lines exposed to 60Go gamma-rays within clinical radiotherapy dose range. Methods. Human monocyte and macrophages cell line in cultures were loaded with a clinically relevant concentration of Ferumoxytol (30µg/ml) for 2 and 24 h and irradiated to 3Gy, 5Gy and 10Gy. Cells were washed and cultured for additional 24 and 48 h prior to assessing their phenotypic activation by flow cytometry and function, including viability (Annexin V/PI assay), proliferation (MTT assay) and cytokine expression (Luminex assay). Results. Our results reveled that SPION affected both human monocytes and macrophages in vitro. Specifically, iron oxide nanoparticles decreased radiation-induced apoptosis and prevented radiation-induced inhibition of human monocyte proliferative activity. Furthermore, Ferumoxytol protected monocytes from radiation-induced modulation of phenotype. For instance, while irradiation decreased polarization of monocytes to CD11b+CD14+ and CD11bnegCD14neg phenotype, Ferumoxytol prevented these effects. In macrophages, Ferumoxytol counteracted the ability of radiation to up-regulate cell polarization to CD11b+CD14+ phenotype and prevented radiation-induced down-regulation of expression of HLA-DR and CD86 molecules. Finally, Ferumoxytol uptake by human monocytes down-regulated expression of pro-inflammatory chemokines MIP-1α (Macrophage inflammatory protein 1α), MIP-1β (CCL4) and RANTES (CCL5). In macrophages, Ferumoxytol reversed the expression of IL-1RA, IL-8, IP-10 (CXCL10) and TNF-α, and up-regulates expression of MCP-1 (CCL2) and MIP-1α in irradiated macrophages. Conclusion. SPION agent Ferumoxytol increases resistance of human monocytes to radiation-induced cell death in vitro and supports anti-inflammatory phenotype of human macrophages under radiation. The effect is radiation dose-dependent and depends on the duration of Feraheme uptake. This study also finds strong evidence that SPIONs reversed the effect of radiation on the expression of pro-inflammatory cytokines involved in initiation and development of radiation-induced liver damage. Correlative translational work at our institution will directly assess the cyto-protective effects of Ferumoxytol on human Kupfer cells in vitro and ex vivo analysis of explanted liver specimens in a subset of patients receiving Feraheme-enhanced MRI-guided radiotherapy to the primary liver tumors as a bridge to liver transplant.Keywords: superparamagnetic iron oxide nanoparticles, radioprotection, magnetic resonance imaging, liver
Procedia PDF Downloads 7528172 Dimensionality and Superconducting Parameters of YBa2Cu3O7 Foams
Authors: Michael Koblischka, Anjela Koblischka-Veneva, XianLin Zeng, Essia Hannachi, Yassine Slimani
Abstract:
Superconducting foams of YBa2Cu3O7 (abbreviated Y-123) were produced using the infiltration growth (IG) technique from Y2BaCuO5 (Y-211) foams. The samples were investigated by SEM (scanning electron microscopy) and electrical resistivity measurements. SEM observations indicated the specific microstructure of the foam struts with numerous tiny Y-211 particles (50-100 nm diameter) embedded in channel-like structures between the Y-123 grains. The investigation of the excess conductivity of different prepared composites was analyzed using Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuations regimes. The coherence length along the c-axis at zero-temperature (ξc(0)), lower and upper critical magnetic fields (Bc1 and Bc2), critical current density (Jc) and numerous other superconducting parameters were estimated from the data. The analysis reveals that the presence of the tiny Y-211 particles alters the excess conductivity and the fluctuation behavior observed in standard YBCO samples.Keywords: Excess conductivity, Foam, Microstructure, Superconductor YBa2Cu3Oy
Procedia PDF Downloads 17128171 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator
Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh
Abstract:
Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.Keywords: environmental industry, separator, CFD, fine aggregate
Procedia PDF Downloads 59628170 Evaluation of Hepatic Metabolite Changes for Differentiation Between Non-Alcoholic Steatohepatitis and Simple Hepatic Steatosis Using Long Echo-Time Proton Magnetic Resonance Spectroscopy
Authors: Tae-Hoon Kim, Kwon-Ha Yoon, Hong Young Jun, Ki-Jong Kim, Young Hwan Lee, Myeung Su Lee, Keum Ha Choi, Ki Jung Yun, Eun Young Cho, Yong-Yeon Jeong, Chung-Hwan Jun
Abstract:
Purpose: To assess the changes of hepatic metabolite for differentiation between non-alcoholic steatohepatitis (NASH) and simple steatosis on proton magnetic resonance spectroscopy (1H-MRS) in both humans and animal model. Methods: The local institutional review board approved this study and subjects gave written informed consent. 1H-MRS measurements were performed on a localized voxel of the liver using a point-resolved spectroscopy (PRESS) sequence and hepatic metabolites of alanine (Ala), lactate/triglyceride (Lac/TG), and TG were analyzed in NASH, simple steatosis and control groups. The group difference was tested with the ANOVA and Tukey’s post-hoc tests, and diagnostic accuracy was tested by calculating the area under the receiver operating characteristics (ROC) curve. The associations between metabolic concentration and pathologic grades or non-alcoholic fatty liver disease(NAFLD) activity scores were assessed by the Pearson’s correlation. Results: Patient with NASH showed the elevated Ala(p<0.001), Lac/TG(p < 0.001), TG(p < 0.05) concentration when compared with patients who had simple steatosis and healthy controls. The NASH patients were higher levels in Ala(mean±SEM, 52.5±8.3 vs 2.0±0.9; p < 0.001), Lac/TG(824.0±168.2 vs 394.1±89.8; p < 0.05) than simple steatosis. The area under the ROC curve to distinguish NASH from simple steatosis was 1.00 (95% confidence interval; 1.00, 1.00) with Ala and 0.782 (95% confidence interval; 0.61, 0.96) with Lac/TG. The Ala and Lac/TG levels were well correlated with steatosis grade, lobular inflammation, and NAFLD activity scores. The metabolic changes in human were reproducible to a mice model induced by streptozotocin injection and a high-fat diet. Conclusion: 1H-MRS would be useful for differentiation of patients with NASH and simple hepatic steatosis.Keywords: non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, 1H MR spectroscopy, hepatic metabolites
Procedia PDF Downloads 32728169 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution
Authors: Clémence Royer, Stéphane Mazouffre
Abstract:
Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations
Procedia PDF Downloads 9128168 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.Keywords: coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator
Procedia PDF Downloads 17628167 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection
Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili
Abstract:
The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).Keywords: EM induction sensing, detector, plastic mines, remote sensing
Procedia PDF Downloads 15028166 The Advancements in Non-Invasive Brain Stimulation Techniques and Their Application to Parkinson’s Disease
Authors: Izadpanh Shaghayegh, Adli Fateme
Abstract:
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms, including tremors, bradykinesia, rigidity, and freezing of gait (FOG), which arise from degeneration of the basal ganglia. While pharmacological treatments, particularly dopaminergic therapies, remain the primary approach for managing PD, their long-term effectiveness diminishes due to complications such as dyskinesia and motor fluctuations. Deep brain stimulation (DBS) has emerged as an alternative for symptom management but remains invasive, costly, and associated with significant risks. In light of these challenges, non-invasive brain stimulation (NIBS) techniques are gaining attention as promising alternatives for treating PD. These methods, including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and microwave brain stimulation (MBS), offer advantages such as reduced risk and non-invasiveness while providing targeted modulation of brain activity. Recent innovations, such as hemispherical antenna arrays for focused stimulation and advanced signal patterns like high-frequency prime harmonics and temporal interference (TI), have further enhanced the precision and efficacy of NIBS. These techniques have shown potential in modulating neuronal excitability, improving gait, and reducing motor symptoms in PD patients, with some approaches demonstrating effectiveness in treating FOG. Despite promising results, continued research is necessary to refine these technologies, optimize treatment protocols, and evaluate their long-term impact on PD progression. This review highlights recent advances in non-invasive brain stimulation for PD and discusses their potential as adjunctive therapies for managing motor symptoms and improving quality of life in PD patients.Keywords: Parkinson’s disease, non-invasive brain stimulation, deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, freezing of gait, microwave brain stimulation, neuromodulation
Procedia PDF Downloads 728165 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process
Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae
Abstract:
This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: CMOS, vertical hall device, current mode, COMSOL
Procedia PDF Downloads 30528164 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study
Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li
Abstract:
Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture
Procedia PDF Downloads 48128163 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding
Authors: Ines Oliveira, Ana Reis
Abstract:
Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation
Procedia PDF Downloads 21228162 Accumulation of Phlorotannins in Abalone Haliotis discus Hannai after Feeding with Eisenia bicyclis
Authors: Bangoura Issa, Ji-Young Kang, M. T. H. Chowdhury, Ji-Eun Lee, Yong-Ki Hong
Abstract:
Investigation was carried out for the production of value-added abalone Haliotis discus hannai containing bioactive phlorotannin by feeding phlorotannin-rich seaweed Eisenia bicyclis 2 weeks prior to harvesting. Accumulation of phlorotannins was proceded by feeding with E. bicyclis after 4 days of starvation. HPLC purification afforded two major phlorotannins. Mass spectrometry and 1H-nuclear magnetic resonance analysis clarified their structures to be as 7-phloroeckol and eckol. Throughout the feeding period of 20 days, 7-phloroeckolol was accumulated in the muscle (foot muscle tissue) up to 0.18±0.12 mg g-1 dry weight of tissue after 12 days. Eckol reached 0.21±0.03 mg g-1 dry weight of tissue after 18 days. By feeding Laminaria japonica as reference, abalone showed no detection of phlorotannins in the muscle tissue. Seaweed consumption and growth rate of abalone revealed almost similar when feed with E. bicyclis or L. japonicain 20 days. Phlorotannins reduction to half-maximal accumulation values took 1.0 day and 2.7 days for 7-phloroeckol and eckol respectively, after replacing the feed to L. japonica.Keywords: abalone, accumulation, eisenia bicyclis, phlorotannins
Procedia PDF Downloads 38528161 Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion
Authors: Hossain A, Hossain S.
Abstract:
Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions.Keywords: metabolite ratio, MRI images, metastatic lesion, MR spectroscopy, N-acetyl-aspartate
Procedia PDF Downloads 9928160 Nonlinear Internal Waves in Rotating Ocean
Authors: L. A. Ostrovsky, Yu. A. Stepanyants
Abstract:
Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described.Keywords: Earth rotation, internal waves, nonlinear waves, solitons
Procedia PDF Downloads 67628159 Time-Domain Nuclear Magnetic Resonance as a Potential Analytical Tool to Assess Thermisation in Ewe's Milk
Authors: Alessandra Pardu, Elena Curti, Marco Caredda, Alessio Dedola, Margherita Addis, Massimo Pes, Antonio Pirisi, Tonina Roggio, Sergio Uzzau, Roberto Anedda
Abstract:
Some of the artisanal cheeses products of European Countries certificated as PDO (Protected Designation of Origin) are made from raw milk. To recognise potential frauds (e.g. pasteurisation or thermisation of milk aimed at raw milk cheese production), the alkaline phosphatase (ALP) assay is currently applied only for pasteurisation, although it is known to have notable limitations for the validation of ALP enzymatic state in nonbovine milk. It is known that frauds considerably impact on customers and certificating institutions, sometimes resulting in a damage of the product image and potential economic losses for cheesemaking producers. Robust, validated, and univocal analytical methods are therefore needed to allow Food Control and Security Organisms, to recognise a potential fraud. In an attempt to develop a new reliable method to overcome this issue, Time-Domain Nuclear Magnetic Resonance (TD-NMR) spectroscopy has been applied in the described work. Daily fresh milk was analysed raw (680.00 µL in each 10-mm NMR glass tube) at least in triplicate. Thermally treated samples were also produced, by putting each NMR tube of fresh raw milk in water pre-heated at temperatures from 68°C up to 72°C and for up to 3 min, with continuous agitation, and quench-cooled to 25°C in a water and ice solution. Raw and thermally treated samples were analysed in terms of 1H T2 transverse relaxation times with a CPMG sequence (Recycle Delay: 6 s, interpulse spacing: 0.05 ms, 8000 data points) and quasi-continuous distributions of T2 relaxation times were obtained by CONTIN analysis. In line with previous data collected by high field NMR techniques, a decrease in the spin-spin relaxation constant T2 of the predominant 1H population was detected in heat-treated milk as compared to raw milk. The decrease of T2 parameter is consistent with changes in chemical exchange and diffusive phenomena, likely associated to changes in milk protein (i.e. whey proteins and casein) arrangement promoted by heat treatment. Furthermore, experimental data suggest that molecular alterations are strictly dependent on the specific heat treatment conditions (temperature/time). Such molecular variations in milk, which are likely transferred to cheese during cheesemaking, highlight the possibility to extend the TD-NMR technique directly on cheese to develop a method for assessing a fraud related to the use of a milk thermal treatment in PDO raw milk cheese. Results suggest that TDNMR assays might pave a new way to the detailed characterisation of heat treatments of milk.Keywords: cheese fraud, milk, pasteurisation, TD-NMR
Procedia PDF Downloads 24428158 Flow and Heat Transfer Analysis of Copper-Water Nanofluid with Temperature Dependent Viscosity past a Riga Plate
Authors: Fahad Abbasi
Abstract:
Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity, as well as the temperature of the nanofluid and, is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.Keywords: heat transfer, peristaltic flows, radially varying magnetic field, curved channel
Procedia PDF Downloads 16728157 Evidence of Half-Metallicity in Cubic PrMnO3 Perovskite
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad
Abstract:
The electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3 were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, where U is on-site Coulomb interaction correction. The results show a half-metallic ferromagnetic ground state for PrMnO3 in GGA+U approached, while semi-metallic ferromagnetic character is observed in GGA. The results obtained, make the cubic PrMnO3 a promising candidate for application in spintronics.Keywords: first-principles, electronic properties, transition metal, materials science
Procedia PDF Downloads 46828156 Environmentally Benign Synthesis of 2-Pyrazolines and Cyclohexenones Incorporating Naphthalene Moiety and Their Antimicrobial Evaluation
Authors: Al-Bogami Abdullah Saad
Abstract:
We reported the environmental benign synthesis of chalcones, 2-pyrazolines and cyclohexanones under microwave irradiation. Chalcones were obtained by the condensation of each of 2-hydroxyacetophenone derivatives with α-naphthaldehyde under microwave irradiation. The condensation reactions of each of synthesized chalcones with phenyl hydrazine under microwave irradiation in the presence of dry acetic acid as a cyclizing agent gave 2-pyrazolines. Also, the new cyclohexenone derivatives, valuable intermediates to synthesize fused heterocycles, have been prepared by the cyclocondensation of each of hydroxychalcones with ethyl acetoacetate. The structures of the synthesized compounds were elucidated by Infrared (IR) spectrometry, Nuclear Magnetic Resonance (NMR), Mass Spectrometry(MS) and elmental analysis. The results indicate that unlike classical heating, microwave irradiation results in higher yields with shorter and cleaner reactions. The synthesized compounds were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Candida Albicans and Aspergillus niger. We clarified the effects of different substituents in the tested compounds on the obtaind antibacterial activities and antifungal activities.Keywords: microwave irradiation, 2-Hydroxyacetophenone, α-Naphthaldehyde, pyrazoline, cyclohexenone, antimicrobial activity
Procedia PDF Downloads 34228155 MR Enterography Findings in Pediatric and Adult Patients with Crohn's Disease
Authors: Karolina Siejka, Monika Piekarska, Monika Zbroja, Weronika Cyranka, Maryla Kuczynska, Magdalena Grzegorczyk, Malgorzata Nowakowska, Agnieszka Brodzisz, Magdalena Maria Wozniak
Abstract:
Crohn’s disease is one of chronic inflammatory bowel diseases. It is increasing in prevalence worldwide, especially with young people. The disease usually occurs in the second to the fourth decade of life. Traditionally is diagnosed by clinical indicates, endoscopic, and histological findings. Magnetic Resonance Enterography (MRE) can demonstrate mural and extramural inflammatory signs and complications, which make it a valuable diagnostic modality. The study included 76 adults and 36 children diagnosed with Crohn’s disease. Each patient underwent MRE with intravenous administration of a contrast agent. All the studies were performed using Siemens Aera 1.5T scanner according to a local study protocol. Whenever applicable, MR Enterography findings were verified with endoscopy. Forty adults and all 36 children had an active phase of Crohn’s disease; five adults had a chronic phase of the disease; one adult had both chronic and active inflammatory features. Thirty adults have no sings of pathology. In both adult and pediatric groups the most commonly observed manifestation of active disease was thickened edematous ileum wall (26 adults and 36 children). Adults had Bauhin’s valve edema in 58% cases (n=23) and mesenteric changes in 34% cases (n=9). To compare, 32 children had Bauhin’s valve edema (89%) and, in 23 cases, was found inflammatory infiltration of the peri-intestinal fat (64%). The involvement of the large intestine was more common among children (100%). Complications of Crohn’s disease were found commonly in adults (40% of adults, 22% of children). There were observed 18 fistulas (14 adults, four children) and six abscesses (2 adults, four children). MRE is a reliable method in the evaluation of Crohn’s disease activity, especially of its complications. The lack of radiations makes MRE well-tolerated modality, which can be often repeated, particularly in young patients. The disease had different medical sings depending on age – children often had a more active inflammatory process, but there were more complications in the adult group.Keywords: Crohn's disease, diagnostics, inflammatory bowel disease, magnetic resonance enterography, MRE
Procedia PDF Downloads 18428154 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition
Authors: H. Niranjan, S. Sivasankaran, Zailan Siri
Abstract:
This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, soret/dufour, stagnation-point
Procedia PDF Downloads 37628153 Analysis of Vertical Hall Effect Device Using Current-Mode
Authors: Kim Jin Sup
Abstract:
This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology
Procedia PDF Downloads 29428152 Approaches to Inducing Obsessional Stress in Obsessive-Compulsive Disorder (OCD): An Empirical Study with Patients Undergoing Transcranial Magnetic Stimulation (TMS) Therapy
Authors: Lucia Liu, Matthew Koziol
Abstract:
Obsessive-compulsive disorder (OCD), a long-lasting anxiety disorder involving recurrent, intrusive thoughts, affects over 2 million adults in the United States. Transcranial magnetic stimulation (TMS) stands out as a noninvasive, cutting-edge therapy that has been shown to reduce symptoms in patients with treatment-resistant OCD. The Food and Drug Administration (FDA) approved protocol pairs TMS sessions with individualized symptom provocation, aiming to improve the susceptibility of brain circuits to stimulation. However, limited standardization or guidance exists on how to conduct symptom provocation and which methods are most effective. This study aims to compare the effect of internal versus external techniques to induce obsessional stress in a clinical setting during TMS therapy. Two symptom provocation methods, (i) Asking patients thought-provoking questions about their obsessions (internal) and (ii) Requesting patients to perform obsession-related tasks (external), were employed in a crossover design with repeated measurement. Thirty-six treatments of NeuroStar TMS were administered to each of two patients over 8 weeks in an outpatient clinic. Patient One received 18 sessions of internal provocation followed by 18 sessions of external provocation, while Patient Two received 18 sessions of external provocation followed by 18 sessions of internal provocation. The primary outcome was the level of self-reported obsessional stress on a visual analog scale from 1 to 10. The secondary outcome was self-reported OCD severity, collected biweekly in a four-level Likert-scale (1 to 4) of bad, fair, good and excellent. Outcomes were compared and tested between provocation arms through repeated measures ANOVA, accounting for intra-patient correlations. Ages were 42 for Patient One (male, White) and 57 for Patient Two (male, White). Both patients had similar moderate symptoms at baseline, as determined through the Yale-Brown Obsessive Compulsive Scale (YBOCS). When comparing obsessional stress induced across the two arms of internal and external provocation methods, the mean (SD) was 6.03 (1.18) for internal and 4.01 (1.28) for external strategies (P=0.0019); ranges were 3 to 8 for internal and 2 to 8 for external strategies. Internal provocation yielded 5 (31.25%) bad, 6 (33.33%) fair, 3 (18.75%) good, and 2 (12.5%) excellent responses for OCD status, while external provocation yielded 5 (31.25%) bad, 9 (56.25%) fair, 1 (6.25%) good, and 1 (6.25%) excellent responses (P=0.58). Internal symptom provocation tactics had a significantly stronger impact on inducing obsessional stress and led to better OCD status (non-significant). This could be attributed to the fact that answering questions may prompt patients to reflect more on their lived experiences and struggles with OCD. In the future, clinical trials with larger sample sizes are warranted to validate this finding. Results support the increased integration of internal methods into structured provocation protocols, potentially reducing the time required for provocation and achieving greater treatment response to TMS.Keywords: obsessive-compulsive disorder, transcranial magnetic stimulation, mental health, symptom provocation
Procedia PDF Downloads 5828151 Iron-Metal-Organic Frameworks: Potential Application as Theranostics for Inhalable Therapy of Tuberculosis
Authors: Gabriela Wyszogrodzka, Przemyslaw Dorozynski, Barbara Gil, Maciej Strzempek, Bartosz Marszalek, Piotr Kulinowski, Wladyslaw Piotr Weglarz, Elzbieta Menaszek
Abstract:
MOFs (Metal-Organic Frameworks) belong to a new group of porous materials with a hybrid organic-inorganic construction. Their structure is a network consisting of metal cations or clusters (acting as metallic centers, nodes) and the organic linkers between nodes. The interest in MOFs is primarily associated with the use of their well-developed surface and large porous. Possibility to build MOFs of biocompatible components let to use them as potential drug carriers. Furthermore, forming MOFs structure from cations possessing paramagnetic properties (e.g. iron cations) allows to use them as MRI (Magnetic Resonance Imaging) contrast agents. The concept of formation of particles that combine the ability to transfer active substance with imaging properties has been called theranostic (from words combination therapy and diagnostics). By building MOF structure from iron cations it is possible to use them as theranostic agents and monitoring the distribution of the active substance after administration in real time. In the study iron-MOF: Fe-MIL-101-NH2 was chosen, consisting of iron cluster in nodes of the structure and amino-terephthalic acid as a linker. The aim of the study was to investigate the possibility of applying Fe-MIL-101-NH2 as inhalable theranostic particulate system for the first-line anti-tuberculosis antibiotic – isoniazid. The drug content incorporated into Fe-MIL-101-NH2 was evaluated by dissolution study using spectrophotometric method. Results showed isoniazid encapsulation efficiency – ca. 12.5% wt. Possibility of Fe-MIL-101-NH2 application as the MRI contrast agent was demonstrated by magnetic resonance tomography. FeMIL-101-NH2 effectively shortening T1 and T2 relaxation times (increasing R1 and R2 relaxation rates) linearly with the concentrations of suspended material. Images obtained using multi-echo magnetic resonance imaging sequence revealed possibility to use FeMIL-101-NH2 as positive and negative contrasts depending on applied repetition time. MOFs micronization via ultrasound was evaluated by XRD, nitrogen adsorption, FTIR, SEM imaging and did not influence their crystal shape and size. Ultrasonication let to break the aggregates and achieve very homogeneously looking SEM images. MOFs cytotoxicity was evaluated in in vitro test with a highly sensitive resazurin based reagent PrestoBlue™ on L929 fibroblast cell line. After 24h no inhibition of cell proliferation was observed. All results proved potential possibility of application of ironMOFs as an isoniazid carrier and as MRI contrast agent in inhalatory treatment of tuberculosis. Acknowledgments: Authors gratefully acknowledge the National Science Center Poland for providing financial support, grant no 2014/15/B/ST5/04498.Keywords: imaging agents, metal-organic frameworks, theranostics, tuberculosis
Procedia PDF Downloads 25228150 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path
Authors: Farzaneh Ziaee, Mohammad Ziaee
Abstract:
N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization
Procedia PDF Downloads 19528149 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis
Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo
Abstract:
Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine
Procedia PDF Downloads 17528148 Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies
Authors: Dhivya Arumugam, Kaliyappan Thananjeyan
Abstract:
The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed.Keywords: acyclic compartmental ligands, binucleating ligand, 3-formylsalicylic acid, free radical polymerization, polluting ions, polychelate
Procedia PDF Downloads 13128147 Evaluation of Traumatic Spine by Magnetic Resonance Imaging
Authors: Sarita Magu, Deepak Singh
Abstract:
Study Design: This prospective study was conducted at the department of Radio Diagnosis, at Pt B.D. Sharma PGIMS, Rohtak in 57 patients of spine injury on radiographs or radiographically normal patients with neurological deficits presenting within 72 hours of injury. Aims: Evaluation of the role of Magnetic Resonance Imaging (MRI) in Spinal Trauma Patients and to compare MRI findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patient and predict the outcome. Material and Methods: Neurological status of patients was assessed at the time of admission and discharge in all the patients and at long term interval of six months to one year in 27 patients as per American spine injury association classification (ASIA). On MRI cord injury was categorized into cord hemorrhage, cord contusion, cord edema only, and normal cord. Quantitative assessment of injury on MRI was done using mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length. Neurological status at admission and neurological recovery at discharge and long term follow up was compared with various qualitative cord findings and quantitative parameters on MRI. Results: Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion show lesser neurological recovery as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean MCC, MSCC, and lesion length values were higher in patients presenting with ASIA A grade injury and showed decreasing trends towards ASIA E grade injury. Patients showing neurological recovery over the period of hospital stay and long term follow up had lower mean MCC, MSCC, and lesion length as compared to patients showing no neurological recovery. The data was statistically significant with p value <.05. Conclusion: Cord hemorrhage and higher MCC, MSCC and lesion length has poor prognostic value in spine injury patients.Keywords: spine injury, cord hemorrhage, cord contusion, MCC, MSCC, lesion length, ASIA grading
Procedia PDF Downloads 35728146 In vitro Characterization of Mice Bone Microstructural Changes by Low-Field and High-Field Nuclear Magnetic Resonance
Authors: Q. Ni, J. A. Serna, D. Holland, X. Wang
Abstract:
The objective of this study is to develop Nuclear Magnetic Resonance (NMR) techniques to enhance bone related research applied on normal and disuse (Biglycan knockout) mice bone in vitro by using both low-field and high-field NMR simultaneously. It is known that the total amplitude of T₂ relaxation envelopes, measured by the Carr-Purcell-Meiboom-Gill NMR spin echo train (CPMG), is a representation of the liquid phase inside the pores. Therefore, the NMR CPMG magnetization amplitude can be transferred to the volume of water after calibration with the NMR signal amplitude of the known volume of the selected water. In this study, the distribution of mobile water, porosity that can be determined by using low-field (20 MHz) CPMG relaxation technique, and the pore size distributions can be determined by a computational inversion relaxation method. It is also known that the total proton intensity of magnetization from the NMR free induction decay (FID) signal is due to the water present inside the pores (mobile water), the water that has undergone hydration with the bone (bound water), and the protons in the collagen and mineral matter (solid-like protons). Therefore, the components of total mobile and bound water within bone that can be determined by low-field NMR free induction decay technique. Furthermore, the bound water in solid phase (mineral and organic constituents), especially, the dominated component of calcium hydroxyapatite (Ca₁₀(OH)₂(PO₄)₆) can be determined by using high-field (400 MHz) magic angle spinning (MAS) NMR. With MAS technique reducing NMR spectral linewidth inhomogeneous broadening and susceptibility broadening of liquid-solid mix, in particular, we can conduct further research into the ¹H and ³¹P elements and environments of bone materials to identify the locations of bound water such as OH- group within minerals and bone architecture. We hypothesize that with low-field and high-field magic angle spinning NMR can provide a more complete interpretation of water distribution, particularly, in bound water, and these data are important to access bone quality and predict the mechanical behavior of bone.Keywords: bone, mice bone, NMR, water in bone
Procedia PDF Downloads 17828145 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity
Procedia PDF Downloads 154