Search results for: gas hydrate experiments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3312

Search results for: gas hydrate experiments

2472 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 205
2471 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method

Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee

Abstract:

This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.

Keywords: PMSM, optimal design, rotor design, voltage-inductance map

Procedia PDF Downloads 673
2470 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.

Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis

Procedia PDF Downloads 386
2469 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position

Procedia PDF Downloads 359
2468 Application of Fourier Series Based Learning Control on Mechatronic Systems

Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt

Abstract:

A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.

Keywords: climbing stairs, FSBLC, ILC, service robot

Procedia PDF Downloads 313
2467 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant

Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante

Abstract:

The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.

Keywords: AOPs, decontamination, estrogens, radicals, wastewater

Procedia PDF Downloads 191
2466 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.

Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction

Procedia PDF Downloads 513
2465 Effect of Particle Size on Alkali-Activation of Slag

Authors: E. Petrakis, V. Karmali, K. Komnitsas

Abstract:

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Keywords: alkali activation, compressive strength, grinding time, particle size distribution, slag, structural integrity

Procedia PDF Downloads 137
2464 Facial Recognition on the Basis of Facial Fragments

Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza

Abstract:

There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.

Keywords: face recognition, labeled faces in the wild (LFW) database, random local descriptor (RLD), random features

Procedia PDF Downloads 360
2463 Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods

Authors: Ramandeep Behl, S. S. Motsa

Abstract:

The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.

Keywords: basins of attraction, nonlinear equations, simple roots, super-Halley

Procedia PDF Downloads 518
2462 Enhanced Weighted Centroid Localization Algorithm for Indoor Environments

Authors: I. Nižetić Kosović, T. Jagušt

Abstract:

Lately, with the increasing number of location-based applications, demand for highly accurate and reliable indoor localization became urgent. This is a challenging problem, due to the measurement variance which is the consequence of various factors like obstacles, equipment properties and environmental changes in complex nature of indoor environments. In this paper we propose low-cost custom-setup infrastructure solution and localization algorithm based on the Weighted Centroid Localization (WCL) method. Localization accuracy is increased by several enhancements: calibration of RSSI values gained from wireless nodes, repetitive measurements of RSSI to exclude deviating values from the position estimation, and by considering orientation of the device according to the wireless nodes. We conducted several experiments to evaluate the proposed algorithm. High accuracy of ~1m was achieved.

Keywords: indoor environment, received signal strength indicator, weighted centroid localization, wireless localization

Procedia PDF Downloads 232
2461 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 242
2460 Singularization: A Technique for Protecting Neural Networks

Authors: Robert Poenaru, Mihail Pleşa

Abstract:

In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.

Keywords: machine learning, ANE, CNN, security

Procedia PDF Downloads 14
2459 Geochemical Modeling of Mineralogical Changes in Rock and Concrete in Interaction with Groundwater

Authors: Barbora Svechova, Monika Licbinska

Abstract:

Geochemical modeling of mineralogical changes of various materials in contact with an aqueous solution is an important tool for predicting the processes and development of given materials at the site. The modeling focused on the mutual interaction of groundwater at the contact with the rock mass and its subsequent influence on concrete structures. The studied locality is located in Slovakia in the area of the Liptov Basin, which is a significant inter-mountain lowland, which is bordered on the north and south by the core mountains belt of the Tatras, where in the center the crystalline rises to the surface accompanied by Mesozoic cover. Groundwater in the area is bound to structures with complicated geological structures. From the hydrogeological point of view, it is an environment with a crack-fracture character. The area is characterized by a shallow surface circulation of groundwater without a significant collector structure, and from a chemical point of view, groundwater in the area has been classified as calcium bicarbonate with a high content of CO2 and SO4 ions. According to the European standard EN 206-1, these are waters with medium aggression towards the concrete. Three rock samples were taken from the area. Based on petrographic and mineralogical research, they were evaluated as calcareous shale, micritic limestone and crystalline shale. These three rock samples were placed in demineralized water for one month and the change in the chemical composition of the water was monitored. During the solution-rock interaction there was an increase in the concentrations of all major ions, except nitrates. There was an increase in concentration after a week, but at the end of the experiment, the concentration was lower than the initial value. Another experiment was the interaction of groundwater from the studied locality with a concrete structure. The concrete sample was also left in the water for 1 month. The results of the experiment confirmed the assumption of a reduction in the concentrations of calcium and bicarbonate ions in water due to the precipitation of amorphous forms of CaCO3 on the surface of the sample.Vice versa, it was surprising to increase the concentration of sulphates, sodium, iron and aluminum due to the leaching of concrete. Chemical analyzes from these experiments were performed in the PHREEQc program, which calculated the probability of the formation of amorphous forms of minerals. From the results of chemical analyses and hydrochemical modeling of water collected in situ and water from experiments, it was found: groundwater at the site is unsaturated and shows moderate aggression towards reinforced concrete structures according to EN 206-1a, which will affect the homogeneity and integrity of concrete structures; from the rocks in the given area, Ca, Na, Fe, HCO3 and SO4. Unsaturated waters will dissolve everything as soon as they come into contact with the solid matrix. The speed of this process then depends on the physicochemical parameters of the environment (T, ORP, p, n, water retention time in the environment, etc.).

Keywords: geochemical modeling, concrete , dissolution , PHREEQc

Procedia PDF Downloads 197
2458 The Gasification of Fructose in Supercritical Water

Authors: Shyh-Ming Chern, H. Y. Cheng

Abstract:

Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.

Keywords: biomass, fructose, gasification, supercritical water

Procedia PDF Downloads 353
2457 Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions

Authors: Abdullah Khan, Per Redelius, Nicole Kringos

Abstract:

The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation.

Keywords: bitumen emulsions, breaking and coalescence, cold mix asphalt, emulsifiers, relaxation, salts

Procedia PDF Downloads 338
2456 Localization of Mobile Robots with Omnidirectional Cameras

Authors: Tatsuya Kato, Masanobu Nagata, Hidetoshi Nakashima, Kazunori Matsuo

Abstract:

Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using an omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.

Keywords: mobile robots, localization, omnidirectional camera, estimating positions

Procedia PDF Downloads 442
2455 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media

Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas

Abstract:

A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.

Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties

Procedia PDF Downloads 503
2454 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers

Authors: Mohammad Hassan Ziraksaz

Abstract:

Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.

Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer

Procedia PDF Downloads 161
2453 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip

Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri

Abstract:

We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.

Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP

Procedia PDF Downloads 134
2452 Quantum Mechanics as A Limiting Case of Relativistic Mechanics

Authors: Ahmad Almajid

Abstract:

The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.

Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics

Procedia PDF Downloads 77
2451 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification

Authors: Malgorzata Schwab, Ashis Kumer Biswas

Abstract:

In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.

Keywords: trusted, neural, invertible, API

Procedia PDF Downloads 146
2450 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: nanoparticles, thermite reaction, combustion wave, numerical modeling

Procedia PDF Downloads 380
2449 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 217
2448 Formulation of Corrector Methods from 3-Step Hybid Adams Type Methods for the Solution of First Order Ordinary Differential Equation

Authors: Y. A. Yahaya, Ahmad Tijjani Asabe

Abstract:

This paper focuses on the formulation of 3-step hybrid Adams type method for the solution of first order differential equation (ODE). The methods which was derived on both grid and off grid points using multistep collocation schemes and also evaluated at some points to produced Block Adams type method and Adams moulton method respectively. The method with the highest order was selected to serve as the corrector. The convergence was valid and efficient. The numerical experiments were carried out and reveal that hybrid Adams type methods performed better than the conventional Adams moulton method.

Keywords: adam-moulton type (amt), corrector method, off-grid, block method, convergence analysis

Procedia PDF Downloads 626
2447 Analysis of Interparticle interactions in High Waxy-Heavy Clay Fine Sands for Sand Control Optimization

Authors: Gerald Gwamba

Abstract:

Formation and oil well sand production is one of the greatest and oldest concerns for the Oil and gas industry. The production of sand particles may vary from very small and limited amounts to far elevated levels which has the potential to block or plug the pore spaces near the perforated points to blocking production from surface facilities. Therefore, the timely and reliable investigation of conditions leading to the onset or quantifying sanding while producing is imperative. The challenges of sand production are even more elevated while producing in Waxy and Heavy wells with Clay Fine sands (WHFC). Existing research argues that both waxy and heavy hydrocarbons exhibit far differing characteristics with waxy more paraffinic while heavy crude oils exhibit more asphaltenic properties. Moreover, the combined effect of WHFC conditions presents more complexity in production as opposed to individual effects that could be attributed to a consolidation of a surmountable opposing force. However, research on a combined high WHFC system could depict a better representation of the surmountable effect which in essence is more comparable to field conditions where a one-sided view of either individual effects on sanding has been argued to some extent misrepresentative of actual field conditions since all factors act surmountably. In recognition of the limited customized research on sand production studies with the combined effect of WHFC however, our research seeks to apply the Design of Experiments (DOE) methodology based on latest literature to analyze the relationship between various interparticle factors in relation to selected sand control methods. Our research aims to unearth a better understanding of how the combined effect of interparticle factors including: strength, cementation, particle size and production rate among others could better assist in the design of an optimal sand control system for the WHFC well conditions. In this regard, we seek to answer the following research question: How does the combined effect of interparticle factors affect the optimization of sand control systems for WHFC wells? Results from experimental data collection will inform a better justification for a sand control design for WHFC. In doing so, we hope to contribute to earlier contrasts arguing that sand production could potentially enable well self-permeability enhancement caused by the establishment of new flow channels created by loosening and detachment of sand grains. We hope that our research will contribute to future sand control designs capable of adapting to flexible production adjustments in controlled sand management. This paper presents results which are part of an ongoing research towards the authors' PhD project in the optimization of sand control systems for WHFC wells.

Keywords: waxy-heavy oils, clay-fine sands, sand control optimization, interparticle factors, design of experiments

Procedia PDF Downloads 131
2446 Words Spotting in the Images Handwritten Historical Documents

Authors: Issam Ben Jami

Abstract:

Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.

Keywords: feature matching, historical documents, pattern recognition, word spotting

Procedia PDF Downloads 274
2445 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles

Authors: A. Pourahmad, Sh. Gharipour

Abstract:

The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.

Keywords: core-shell, nanostructure, semiconductor, optical property, XRD

Procedia PDF Downloads 299
2444 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel

Authors: Richard E. Miller

Abstract:

12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.

Keywords: dissimilar materials, friction stir, welding, materials science

Procedia PDF Downloads 269
2443 Functionalized PU Foam for Water Filtration

Authors: Nidal H. Abu-Zahra, Subhashini Gunashekar

Abstract:

Polyurethane foam is functionalized with Sulfonic acid groups to remove lead ions (Pb2+) from drinking water through a action exchange process. The synthesis is based on addition polymerization of the -NCO groups of an isocyanine with the –OH groups of a polio to form the urethane. Toluene-diisocyanateis reacted with Polypropylene glycol to form a linear pre-polymer, which is further polymerized using a chain extender, N, N-bis(2-hydorxyethyl)-2-aminoethane-sulfonic acid (BES). BES acts as a functional group site to exchange Pb2+ ions. A set of experiments was designed to study the effect of various processing parameters on the performance of the synthesized foam. The maximum Pb2+ ion exchange capacity of the foam was found to be 47ppb/g from a 100ppb Pb2+ solution over a period of 60 minutes. A multistage batch filtration process increased the lead removal to 50-54ppb/3g of foam over a period of 90 minutes.

Keywords: adsorption, functionalized, ion exchange, polyurethane, sulfonic

Procedia PDF Downloads 244