Search results for: feature selection feature subset selection feature extraction/transformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7129

Search results for: feature selection feature subset selection feature extraction/transformation

6289 Deasphalting of Crude Oil by Extraction Method

Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov

Abstract:

The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.

Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy

Procedia PDF Downloads 242
6288 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 191
6287 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 313
6286 Multiple-Lump-Type Solutions of the 2D Toda Equation

Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique

Abstract:

In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.

Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution

Procedia PDF Downloads 222
6285 A Review on Design and Analysis of Structure Against Blast Forces

Authors: Akshay Satishrao Kawtikwar

Abstract:

The effect of blast masses on structures is an essential aspect that need to be considered. This type of assault could be very horrifying, who where we take it into consideration in the course of the design system. While designing a building, now not only the wind and seismic masses however also the consequences of the blast have to be take into consideration. Blast load is the burden implemented to a structure form a blast wave that comes straight away after an explosion. A blast in or close to a constructing can reason catastrophic harm to the interior and exterior of the building, inner structural framework, wall collapsing, and so on. The most important feature of blast resistant construction is the ability to absorb blast energy without causing catastrophic failure of the structure as a whole. Construction materials in blastprotective structures must have ductility as well as strength.

Keywords: blast resistant design, blast load, explosion, ETABS

Procedia PDF Downloads 104
6284 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector

Procedia PDF Downloads 352
6283 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 141
6282 Satisfaction Level of Teachers on the Human Resource Management Practices

Authors: Mark Anthony A. Catiil

Abstract:

Teachers are the principal actors in the delivery of quality education to the learners. Unfortunately, as time goes by, some of them got low motivation at work. Absenteeism, tardiness, under time, and non-compliance to school policies are some of the end results. There is, therefore, a need to review the different human resource management practices of the school that contribute to teachers’ work satisfaction and motivation. Hence, this study determined the level of satisfaction of teachers on the human resource management practices of Gingoog City Comprehensive National High School. This mixed-methodology research was focused on the 45 teachers chosen using a stratified random sampling technique. Reliability-tested questionnaires, interviews, and focus group discussions were used to gather the data. Results revealed that the majority of the respondents are female, Teacher I, with MA units and have served for 11-20 years. Likewise, among the human resource management practices of the school, the respondents rated the lowest satisfaction on recruitment and selection (mean=2.15; n=45). This could mean that most of the recruitment and selection practices of the school are not well communicated, disseminated, and implemented. On the other hand, retirement practices of the school were rated with the highest satisfaction among the respondents (mean=2.73; n=45). This could mean that most of the retirement practices of the school are communicated, disseminated, implemented, and functional. It was recommended that the existing human resource management practices on recruitment and selection be reviewed to find out its deficiencies and possible improvement. Moreover, future researchers may also conduct a study between private and public schools in Gingoog City on the same topic for comparison.

Keywords: education, human resource management practices, satisfaction, teachers

Procedia PDF Downloads 130
6281 A Goal-Oriented Approach for Supporting Input/Output Factor Determination in the Regulation of Brazilian Electricity Transmission

Authors: Bruno de Almeida Vilela, Heinz Ahn, Ana Lúcia Miranda Lopes, Marcelo Azevedo Costa

Abstract:

Benchmarking public utilities such as transmission system operators (TSOs) is one of the main strategies employed by regulators in order to fix monopolistic companies’ revenues. Since 2007 the Brazilian regulator has been utilizing Data Envelopment Analysis (DEA) to benchmark TSOs. Despite the application of DEA to improve the transmission sector’s efficiency, some problems can be pointed out, such as the high price of electricity in Brazil; the limitation of the benchmarking only to operational expenses (OPEX); the absence of variables that represent the outcomes of the transmission service; and the presence of extremely low and high efficiencies. As an alternative to the current concept of benchmarking the Brazilian regulator uses, we propose a goal-oriented approach. Our proposal supports input/output selection by taking traditional organizational goals and measures as a basis for the selection of factors for benchmarking purposes. As the main advantage, it resolves the classical DEA problems of input/output selection, undesirable and dual-role factors. We also provide a demonstration of our goal-oriented concept regarding service quality. As a result, most TSOs’ efficiencies in Brazil might improve when considering quality as important in their efficiency estimation.

Keywords: decision making, goal-oriented benchmarking, input/output factor determination, TSO regulation

Procedia PDF Downloads 197
6280 Microscopic Simulation of Toll Plaza Safety and Operations

Authors: Bekir O. Bartin, Kaan Ozbay, Sandeep Mudigonda, Hong Yang

Abstract:

The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.

Keywords: microscopic simulation, toll plaza, surrogate safety, application programming interface

Procedia PDF Downloads 183
6279 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: classifier ensemble, breast cancer survivability, data mining, SEER

Procedia PDF Downloads 329
6278 Numerical Model Validation Using Durbin Method

Authors: H. Al-Hajeri

Abstract:

The computation of the effectiveness of turbulence enhancement surface features, such as ribs as means of promoting mixing and hence heat transfer, has attracted the continued attention of the engineering community. In this study, the simulation of a three-dimensional cooling passage is carried out employing a number of turbulence models including Durbin model. The cooling passage consists of a square section duct whose upper and lower surfaces feature staggered cuboid ribs. The main objective of this paper is to provide comparisons of the performance of the v2-f model against other established turbulence models as implemented in the commercial CFD code Ansys Fluent. The present study demonstrates that the v2-f model can successfully capture the isothermal air flow phenomena in flow over obstacles.

Keywords: CFD, cooling passage, Durbin model, turbulence model

Procedia PDF Downloads 503
6277 The Impact of Australia's Skilled Migrant Selection System: A Case Study of Japanese Skilled Migrants and Their Families

Authors: Iori Hamada

Abstract:

Australia's skilled migrant selection system is constantly changing its target skills and criteria according to the labour market demands. The government's intention to employ this highly selective market-driven selection system is to better target the skills needed in the economy, enable skilled migrants to be employed in industries that have the highest need, and consequently boost the economy and population. However, migration scholars have called this intention into question, arguing that the system is not making the best use of skilled migrants. This paper investigates the impact of recent reforms in Australian skilled migration system on skilled migrants' employment and related life conditions. Drawing on semi-structured qualitative interviews with Japanese skilled migrants in Australia, it argues that Australia’s skilled migrant selection system guarantees neither skilled migrants' employment nor successful transfer of their skills to the labour market. The findings show that Japanese skilled migrants are often unemployed or under-employed, although they intend to achieve upward occupational mobility. The interview data also reveal that male unemployment or under-employment status prompts some Japanese men to leave Australia and find a job that better matches their skills and qualifications in a new destination. Further, it finds that Japanese male skilled migrants who experience downward occupational mobility tend to continue to take a primary breadwinner role, which affects the distribution of paid and unpaid work within their families. There is a growing body of research investigating skilled migrants’ downward career mobility. However, little has been written on skilled Japanese migrants. Further, the work-family intersection is a 'hot public policy topic' in Australia and elsewhere. Yet, the existing studies focus almost exclusively on non-migrant families. This calls attention to the urgency of assessing the work-family lives of skilled migrants. This study fills these gaps, presenting additional insight into Japanese skilled migrants’ work and family in and beyond Australia.

Keywords: Australia, employment, family, Japanese skilled migrants

Procedia PDF Downloads 116
6276 Evaluation and Selection of Contractors in Construction Projects with a View Supply Chain Management and Utilization of Promthee

Authors: Sara Najiazarpour, Mahsa Najiazarpour

Abstract:

There are many problems in contracting projects and their performance. At each project stage and due to different reasons, these problems affect cost, time and overall project quality. Hence, in order to increase the efficiency and performance in all levels of the chain and with supply chain management approach, there will be a coordination from the beginning of a project (contractor selection) to the end of project (handover of project). Contractor selection is the foremost part of construction projects which in this multi-criteria decision-making, the best contractor is determined by expert judgment, different variables and their priorities. In this paper for selecting the best contractor, numerous criteria were collected by asking from adept experts and then among them, 16 criteria with highest frequency were considered for questionnaire. This questionnaire was distributed between experts. Cronbach's alpha coefficient was obtained as 72%. Then based on Borda's function 12 important criteria was selected which was categorized in four main criteria and related sub-criteria as follow: Environmental factors and physical equipment: procurement and materials (supplier), company's machines, contractor’s proposed cost estimate - financial capacity: bank turnover and company's assets, the income of tax declaration in last year, Ability to compensate for losses or delays - past performance- records and technical expertise: experts and key personnel, the past technical backgrounds and experiences, employer satisfaction of previous contracts, the number of similar projects was done - standards: rank and field of expertise which company is qualified for and its validity, availability and number of permitted projects done. Then with PROMTHEE method, the criteria were normalized and monitored, finally the best alternative was selected. In this research, qualitative criteria of each company is became a quantitative criteria. Finally, information of some companies was evaluated and the best contractor was selected based on all criteria and their priorities.

Keywords: contractor evaluation and selection, project development, supply chain management, PROMTHEE method

Procedia PDF Downloads 73
6275 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 123
6274 An Echo of Eco: Investigating the Effectiveness of Eco-Friendly Advertising Media of Fashion Brand Communication

Authors: Vaishali Joshi

Abstract:

In the past, companies and buyers operated as if there was infinite availability of natural resources for usage, which has resulted in the loss of our globe's natural ecosystem. People's consciousness of ecological concerns had increased, which showed the way for the evolution of the green revolution with the objective of discontinuing the use of products that are harmful to the ecosystem of the earth. This green revolution has made the consumers head toward those companies which are providing eco-friendly products s/service s through less eco-harmful ways. Studies show that companies started gaining a reputation in the market through their eco-friendly activities in their business. Hence companies should be alert to understand the consumer's environmentally friendly consumption behavior to survive and be in the game of the competition. Green marketing efforts guarantee beneficial exchanges without harmful consequences for current and /or upcoming generations. This hits the green policies of those companies which are claiming environmental concern. This means that these companies not only focus on the impact of their production and products on the ecosystem but also on every small activity in their value chain. One of the most ignored parts of the value chain is the medium through which the marketing of products/services is done. These companies should also take into account to what degree their selection of advertising media affects the ecosystem of the earth. In this study, a hypothetical fashion apparel brand known as "Dolphin" will be studied. In particular, the following objectives are framed: i) to study the brand attitude of the given fashion brand due to its selection of eco-friendly advertising medium ii) to study the advertisement attitude of the given fashion brand due to its selection of eco-friendly advertising medium and iii) to study the purchase intention of the given fashion brand due to its selection of eco-friendly advertising medium. An online experiment will be conducted. Respondents between the ages of 20-and 64 years will be selected randomly from the online consumer panel database. The findings of this study will have a great impact on the companies that are claiming environmental concerns by understanding how the advertising media is affecting the company’s brand image in the long run.

Keywords: eco-friendly advertising media, fashion, attitude, purchase intention

Procedia PDF Downloads 100
6273 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand

Authors: Waraporn Wimuktalop

Abstract:

This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.

Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding

Procedia PDF Downloads 236
6272 Aspects of the Detail Design of an Automated Biomethane Test

Authors: Ilias Katsanis, Paraskevas Papanikos, Nikolas Zacharopoulos, Vassilis C. Moulianitis, Evgenios Scourboutis, Diamantis T. Panagiotarakos

Abstract:

This paper presents aspects of the detailed design of an automated biomethane potential measurement system using CAD techniques. First, the design specifications grouped in eight sets that are used to design the design alternatives are briefly presented. Then, the major components of the final concept, as well as the design of the test, are presented. The material selection process is made using ANSYS EduPack database software. The mechanical behavior of one component developed in Creo v.5 is evaluated using finite element analysis. Finally, aspects of software development that integrate the BMP test is finally presented. This paper shows the advantages of CAD techniques in product design applied in the design of a mechatronic product.

Keywords: automated biomethane test, detail mechatronics design, materials selection, mechanical analysis

Procedia PDF Downloads 89
6271 Integrating GIS and Analytical Hierarchy Process-Multicriteria Decision Analysis for Identification of Suitable Areas for Artificial Recharge with Reclaimed Water

Authors: Mahmoudi Marwa, Bahim Nadhem, Aydi Abdelwaheb, Issaoui Wissal, S. Najet

Abstract:

This work represents a coupling between the geographic information system (GIS) and the multicriteria analysis aiming at the selection of an artificial recharge site by the treated wastewater for the Ariana governorate. On regional characteristics, bibliography and available data on artificial recharge, 13 constraints and 5 factors were hierarchically structured for the adequacy of an artificial recharge. The factors are subdivided into two main groups: environmental factors and economic factors. The adopted methodology allows a preliminary assessment of a recharge site, the weighted linear combination (WLC) and the analytical hierarchy process (AHP) in a GIS. The standardization of the criteria is carried out by the application of the different membership functions. The form and control points of the latter are defined by the consultation of the experts. The weighting of the selected criteria is allocated according to relative importance using the AHP methodology. The weighted linear combination (WLC) integrates the different criteria and factors to delineate the most suitable areas for artificial recharge site selection by treated wastewater. The results of this study showed three potential candidate sites that appear when environmental factors are more important than economic factors. These sites are ranked in descending order using the ELECTRE III method. Nevertheless, decision making for the selection of an artificial recharge site will depend on the decision makers in force.

Keywords: artificial recharge site, treated wastewater, analytical hierarchy process, ELECTRE III

Procedia PDF Downloads 167
6270 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 355
6269 Inequalities in Higher Education and Students’ Perceptions of Factors Influencing Academic Performance

Authors: Violetta Parutis

Abstract:

This qualitative study aims to answer the following research questions: i) What are the factors that students perceive as relevant to a) promoting and b) preventing good grades? ii) How does socio-economic status (SES) feature in those beliefs? We conducted in-depth interviews with 19 first- and second-year undergraduates of varying SES at a research-intensive university in the UK. The interviews yielded eight factors that students perceived as promoting and six perceived as preventing good grades. The findings suggested one significant difference between the beliefs of low and high SES students in that low SES students perceive themselves to be at a greater disadvantage to their peers while high SES students do not have such beliefs. This could have knock-on effects on their performance.

Keywords: social class, education, academic performance, students’ beliefs

Procedia PDF Downloads 179
6268 A Drawing Software for Designers: AutoCAD

Authors: Mayar Almasri, Rosa Helmi, Rayana Enany

Abstract:

This report describes the features of AutoCAD software released by Adobe. It explains how the program makes it easier for engineers and designers and reduces their time and effort spent using AutoCAD. Moreover, it highlights how AutoCAD works, how some of the commands used in it, such as Shortcut, make it easy to use, and features that make it accurate in measurements. The results of the report show that most users of this program are designers and engineers, but few people know about it and find it easy to use. They prefer to use it because it is easy to use, and the shortcut commands shorten a lot of time for them. The feature got a high rate and some suggestions for improving AutoCAD in Aperture, but it was a small percentage, and the highest percentage was that they didn't need to improve the program, and it was good.

Keywords: artificial intelligence, design, planning, commands, autodesk, dimensions

Procedia PDF Downloads 132
6267 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 136
6266 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.

Keywords: affine transformation, discrete wavelet transform, radix sort, SATS

Procedia PDF Downloads 230
6265 Tower Crane Selection and Positioning on Construction Sites

Authors: Dirk Briskorn, Michael Dienstknecht

Abstract:

Cranes are a key element in construction projects as they are the primary lifting equipment and among the most expensive construction equipment. Thus, selecting cranes and locating them on-site is an important factor for a project's profitability. We focus on a site with supply and demand areas that have to be connected by tower cranes. There are several types of tower cranes differing in certain specifications such as costs or operating radius. The objective is to select cranes and determine their locations such that each demand area is connected to its supply area at minimum cost. We detail the problem setting and show how to obtain a discrete set of candidate locations for each crane type without losing optimality. This discretization allows us to reduce our problem to the classic set cover problem. Despite its NP-hardness, we achieve good results employing a standard solver and a greedy heuristic, respectively.

Keywords: positioning, selection, standard solver, tower cranes

Procedia PDF Downloads 374
6264 Evaluation and Selection of Drilling Technologies: An Application of Portfolio Analysis Matrix in South Azadgan Oilfield

Authors: M. Maleki Sadabad, A. Pointing, N. Marashi

Abstract:

With respect to the role and increasing importance of technology for countries development, in recent decades technology development has paid attention in a systematic form. Nowadays the markets face with highly complicated and competitive conditions in foreign markets, therefore, evaluation and selection of technology effectiveness and also formulating technology strategy have changed into a vital subject for some organizations. The study introduces the standards of empowerment evaluation and technology attractiveness especially strategic technologies which explain the way of technology evaluation, selection and finally formulating suitable technology strategy in the field of drilling in South Azadegan oil field. The study firstly identifies the key challenges of oil fields in order to evaluate the technologies in field of drilling in South Azadegan oil field through an interview with the experts of industry and then they have been prioritised. In the following, the existing and new technologies were identified to solve the challenges of South Azadegan oil field. In order to explore the ability, availability, and attractiveness of every technology, a questionnaire based on Julie indices has been designed and distributed among the industry elites. After determining the score of ability, availability and attractiveness, every technology which has been obtained by the average of expert’s ideas, the technology package has been introduced by Morin’s model. The matrix includes four areas which will follow the especial strategy. Finally, by analysing the above matrix, the technology options have been suggested in order to select and invest.

Keywords: technology, technology identification, drilling technologies, technology capability

Procedia PDF Downloads 144
6263 Numerical Solution of Space Fractional Order Solute Transport System

Authors: Shubham Jaiswal

Abstract:

In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.

Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system

Procedia PDF Downloads 261
6262 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 389
6261 Phylogenetic Analysis Based On the Internal Transcribed Spacer-2 (ITS2) Sequences of Diadegma semiclausum (Hymenoptera: Ichneumonidae) Populations Reveals Significant Adaptive Evolution

Authors: Ebraheem Al-Jouri, Youssef Abu-Ahmad, Ramasamy Srinivasan

Abstract:

The parasitoid, Diadegma semiclausum (Hymenoptera: Ichneumonidae) is one of the most effective exotic parasitoids of diamondback moth (DBM), Plutella xylostella in the lowland areas of Homs, Syria. Molecular evolution studies are useful tools to shed light on the molecular bases of insect geographical spread and adaptation to new hosts and environment and for designing better control strategies. In this study, molecular evolution analysis was performed based on the 42 nuclear internal transcribed spacer-2 (ITS2) sequences representing the D. semiclausum and eight other Diadegma spp. from Syria and worldwide. Possible recombination events were identified by RDP4 program. Four potential recombinants of the American D. insulare and D. fenestrale (Jeju) were detected. After detecting and removing recombinant sequences, the ratio of non-synonymous (dN) to synonymous (dS) substitutions per site (dN/dS=ɷ) has been used to identify codon positions involved in adaptive processes. Bayesian techniques were applied to detect selective pressures at a codon level by using five different approaches including: fixed effects likelihood (FEL), internal fixed effects likelihood (IFEL), random effects method (REL), mixed effects model of evolution (MEME) and Program analysis of maximum liklehood (PAML). Among the 40 positively selected amino acids (aa) that differed significantly between clades of Diadegma species, three aa under positive selection were only identified in D. semiclausum. Additionally, all D. semiclausum branches tree were highly found under episodic diversifying selection (EDS) at p≤0.05. Our study provide evidence that both recombination and positive selection have contributed to the molecular diversity of Diadegma spp. and highlights the significant contribution of D. semiclausum in adaptive evolution and influence the fitness in the DBM parasitoid.

Keywords: diadegma sp, DBM, ITS2, phylogeny, recombination, dN/dS, evolution, positive selection

Procedia PDF Downloads 418
6260 The Impact of Artificial Intelligence on Digital Construction

Authors: Omil Nady Mahrous Maximous

Abstract:

The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.

Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 59