Search results for: fatigue constraint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1023

Search results for: fatigue constraint

183 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 331
182 Reconciling the Fatigue of Space Property Rights

Authors: King Kumire

Abstract:

The Outer Space Treaty and the Moon Treaty have been the backbone of space law. However, scientists, engineers, and policymakers have been silent about how human settlement on celestial bodies would change the legal dimensions of space law. Indeed, these legal space regimes should have a prescription on how galactic courts should deal with the aspect of space property ownership. On this planet earth, one can vindicate his own assets. In extraterrestrial environments, this is not the case because space law is fatigued by terrestrial body sovereignty, which must be upheld. However, the recent commercialization of microgravity environments requires property ownership laws to be enacted. Space activities have mutated to the extent that it is almost possible to build communities in space. The discussions on the moon village concept will be mentioned as well to give clarity on the subject to the audience. It should be stated that launchers can now explore the cosmos with space tourists. The world is also busy doing feasibility studies on how to implement space mining projects. These activities indisputably show that the research is important because it will not only expose how the cosmic world is constrained by existing legal frameworks, but it will provide a remedy for how the inevitable dilemma of property rights can be resolved through the formulation of multilateral and all-inclusive policies. The discussion will model various aspects of terrestrial property rights and the associated remedies against what can be applicable and customized for use in extraterrestrial environments. Transfer of ownership in space is also another area of interest as the researcher shall try to distinguish between envisaged personal and real rights in the new frontier vis-a-vis mainland transfer transactions. The writer imagines the extent to which the concepts of servitudes, accession, prescription and commixes, and other property templates can act as a starting point when cosmic probers move forward with the revision of orbital law. The article seeks to reconcile these ownership constraints by working towards the development of a living space common law which is elastic and embroidered by sustainable recommendations. A balance between transplanting terrestrial laws to the galactic arena and the need to enact new ones which will complement the existing space treaties will be meticulously pivoted.

Keywords: rights, commercialisation, ownership, sovereignty

Procedia PDF Downloads 92
181 You Only Get One Brain: An Exploratory Retrospective Study On Life After Adolescent TBI

Authors: Mulligan T., Barker-Collo S., Gobson K., Jones K.

Abstract:

There is a relatively scarce body of literature regarding adolescent experiences of traumatic brain injury (TBI). This qualitative study explored how sustaining a TBI at this unique stage of development might impact a young person as they navigate the challenges of adolescence and transition to adulthood, and what might support recovery. Thirteen young adults who sustained a mild-moderate TBI as an adolescent (aged 13 – 17 years), approximately 7.7 years (range = 6.7 – 8.0 years) prior, participated in the research. Semi-structured individual interviews were conducted to explore participants’ experiences surrounding and following their TBIs. Thematic analysis of interview data produced five key categories of findings: (1) Following their TBIs, many participants experienced problems with cognitive (e.g., forgetfulness, concentration difficulties), physical (e.g., migraines, fatigue) and emotional (e.g., depression, anxiety) functioning, which were often endured into adulthood. (2) TBI-related problems often adversely affected important areas of life for the participant, including school, work and friendships. (3) Changes following TBI commonly impacted identity formation. (4) Recovery processes evolved over time as the participants coped initially by just ‘getting on with it’, before learning to accept new limitations and, ultimately, growing from their TBI experiences. (5) While the presence of friends and family assisted recovery, struggles were often exacerbated by a lack of emotional support from others, in addition to the absence of any assistance or information-provision from professionals regarding what to expect following TBI. The findings suggest that even mild TBI sustained during adolescence can have consequences for an individual’s functioning, engagement in life and identity development, whilst also giving rise to post-traumatic growth. Recovery following adolescent TBI might be maximised by facilitating greater understanding of the injury and acknowledging its impacts on important areas of life, as well as the provision of emotional support and facilitating self-reflection and meaning-making.

Keywords: adolescent, brain Injury, qualitative, post-traumatic growth

Procedia PDF Downloads 29
180 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 22
179 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 278
178 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones

Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu

Abstract:

In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.

Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV

Procedia PDF Downloads 139
177 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability

Procedia PDF Downloads 227
176 Psychological Well-Being and Perception of Disease Severity in People with Multiple Sclerosis, Who Underwent a Program of Self-Regulation to Promote Physical Activity

Authors: Luísa Pedro, José Pais-Ribeiro, João Páscoa Pinheiro

Abstract:

Multiple Sclerosis (MS) is a chronic disease of the central nervous system that affects more often young adults in the prime of his career and personal development, with no cure and unknown causes. The most common signs and symptoms are fatigue, muscle weakness, changes in sensation, ataxia, changes in balance, gait difficulties, memory difficulties, cognitive impairment and difficulties in problem solving. MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in MS patients. MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in MS patients. After this, a set of exercises was implemented to be used in daily life activities, according to studies developed with MS patients. We asked the subjects the question “Please classify the severity of your disease?” and used the domain of psychological well-being, the Mental Health Inventory (MHI-38) at the beginning (time A) and end (time B) of the program of self-regulation. We used the Statistical Package for the Social Sciences (SPSS) version 20. A non-parametric statistical hypothesis test (Wilcoxon test) was used for the variable analysis. The intervention followed the recommendations of the Helsinki Declaration. The age range of the subjects was between 20 and 58 years with a mean age of 44 years. 58.3 % were women, 37.5 % were currently married, 67% were retired and the mean level of education was 12.5 years. In the correlation between the severity of the disease perception and psychological well before the self-regulation program, an obtained result (r = 0.26, p <0.05), then the self-regulation program, was (r = 0.37, p <0.01), from a low to moderate correlation. We conclude that the program of self-regulation for physical activity in patients with MS can improve the relationship between the perception of disease severity and psychological well-being.

Keywords: psychological well-being, multiple sclerosis, self-regulation, physical activity

Procedia PDF Downloads 463
175 Enhancing Residential Architecture through Generative Design: Balancing Aesthetics, Legal Constraints, and Environmental Considerations

Authors: Milena Nanova, Radul Shishkov, Damyan Damov, Martin Georgiev

Abstract:

This research paper presents an in-depth exploration of the use of generative design in urban residential architecture, with a dual focus on aligning aesthetic values with legal and environmental constraints. The study aims to demonstrate how generative design methodologies can innovate residential building designs that are not only legally compliant and environmentally conscious but also aesthetically compelling. At the core of our research is a specially developed generative design framework tailored for urban residential settings. This framework employs computational algorithms to produce diverse design solutions, meticulously balancing aesthetic appeal with practical considerations. By integrating site-specific features, urban legal restrictions, and environmental factors, our approach generates designs that resonate with the unique character of urban landscapes while adhering to regulatory frameworks. The paper places emphasis on algorithmic implementation of the logical constraint and intricacies in residential architecture by exploring the potential of generative design to create visually engaging and contextually harmonious structures. This exploration also contains an analysis of how these designs align with legal building parameters, showcasing the potential for creative solutions within the confines of urban building regulations. Concurrently, our methodology integrates functional, economic, and environmental factors. We investigate how generative design can be utilized to optimize buildings' performance, considering them, aiming to achieve a symbiotic relationship between the built environment and its natural surroundings. Through a blend of theoretical research and practical case studies, this research highlights the multifaceted capabilities of generative design and demonstrates practical applications of our framework. Our findings illustrate the rich possibilities that arise from an algorithmic design approach in the context of a vibrant urban landscape. This study contributes an alternative perspective to residential architecture, suggesting that the future of urban development lies in embracing the complex interplay between computational design innovation, regulatory adherence, and environmental responsibility.

Keywords: generative design, computational design, parametric design, algorithmic modeling

Procedia PDF Downloads 27
174 Simulation Based Analysis of Gear Dynamic Behavior in Presence of Multiple Cracks

Authors: Ahmed Saeed, Sadok Sassi, Mohammad Roshun

Abstract:

Gears are important components with a vital role in many rotating machines. One of the common gear failure causes is tooth fatigue crack; however, its early detection is still a challenging task. The objective of this study is to develop a numerical model that simulates the effect of teeth cracks on the resulting gears vibrations and permits consequently to perform an early fault detection. In contrast to other published papers, this work incorporates the possibility of multiple simultaneous cracks with different depths. As cracks alter significantly the stiffness of the tooth, finite element software is used to determine the stiffness variation with respect to the angular position, for different combinations of crack orientation and depth. A simplified six degrees of freedom nonlinear lumped parameter model of a one-stage spur gear system is proposed to study the vibration with and without cracks. The model developed for calculating the stiffness with the crack permitted to update the physical parameters of the second-degree-of-freedom equations of motions describing the vibration of the gearbox. The vibration simulation results of the gearbox were by obtained using Simulink/Matlab. The effect of one crack with different levels was studied thoroughly. The change in the mesh stiffness and the vibration response were found to be consistent with previously published works. In addition, various statistical time domain parameters were considered. They showed different degrees of sensitivity toward the crack depth. Multiple cracks were also introduced at different locations and the vibration response along with the statistical parameters were obtained again for a general case of degradation (increase in crack depth, crack number and crack locations). It was found that although some parameters increase in value as the deterioration level increases, they show almost no change or even decrease when the number of cracks increases. Therefore, the use of any statistical parameters could be misleading if not considered in an appropriate way.

Keywords: Spur gear, cracked tooth, numerical simulation, time-domain parameters

Procedia PDF Downloads 248
173 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context

Authors: Mohamed Redha Menani

Abstract:

The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.

Keywords: transboundary water resources, SASS, governance, climatic changes

Procedia PDF Downloads 61
172 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust

Authors: Sardar Khana, Zar Ali Khana

Abstract:

Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.

Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake

Procedia PDF Downloads 102
171 Control of Indoor Carbon through Soft Approaches in Himachal Pradesh, India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

The mountainous regions are very crucial for a country because of their importance for weather, water supply, forests, and various other socio-economic benefits. But the increasing population and its demand for energy and infrastructure have contributed very high loadings of air pollution. Various activities such as cooking, heating, manufacturing, transport, etc. contribute various particulate and gaseous pollutants in the atmosphere. This study was focused upon indoor air pollution and was carried out in four rural households of the Baggi village located in the Hamirpur District of the Himachal Pradesh state. The residents of Baggi village use biomass as fuel for cooking on traditional stove (Chullah). The biomass types include wood (mainly Beul, Grewia Optiva), crop residue and dung cakes. This study aimed to determine the organic carbon (OC), elemental carbon (EC), major cations and anions in the indoor air of each household. During non-cooking hours, it was found that the indoor air contained OC and EC as low as 21µg/m³ and 17µg/m³ respectively. But during cooking hours (with biomass burning), the levels of OC and EC were raised significantly by 91.2% and 85.4% respectively. Then the residents were advised to switch over as per our soft approach options. In the first approach change, they were asked to prepare the meal partially on Chullah using biomass and partially with liquefied petroleum gas (LPG). By doing this change, a considerable reduction in OC (53.1%) and in EC (41.8%) was noticed. The second change of approach included the cooking of entire meal by using LPG. This resulted in the reduction of OC (84.1%) and EC (73.3%) as compared to the values obtained during cooking entirely with biomass. The carbonaceous aerosol levels were higher in the morning hours than in the evening hours because of more biomass burning activity in the morning. According to a general survey done with the residents, the study provided them an awareness about the air pollution and the harmful effects of biomass burning. Some of them correlated their ailments like weakened eyesight, fatigue and respiratory problems with indoor air pollution. This study demonstrated that by replacing biomass with clean fuel such as LPG, the indoor concentrations of EC and OC can be reduced substantially.

Keywords: biomass burning, carbonaceous aerosol, elemental carbon, organic carbon, LPG

Procedia PDF Downloads 99
170 A Comparative Study of Specific Assessment Criteria Related to Commercial Vehicle Drivers

Authors: Nur Syahidatul Idany Abdul Ghani, Rahizar Ramli, Jamilah Mohamad, Ahmad Saifizul, Mohamed Rehan Karim

Abstract:

Increasing fatalities in road accidents in Malaysia over the last 10 years are quite alarming. Based on Malaysian Institute of Road Safety Research (Miros) latest research ‘Predicting Malaysian Road Fatalities for year 2020; it is predicted that road fatalities in Malaysia for 2015 is 8,780 and 10,716 for the year 2020 which 30 percent of fatalities were caused by accidents involving commercial vehicles. Government, related agencies and NGOs have continuously and persistently work to reduce the statistics through enforcement, educating the public, training to drivers, road safety campaigns, advertisements etc. However, the trend of casualties does not show encouraging pattern but instead, steadily growing. Thus, this comparative study reviews the literature pertaining on method of measurement used to evaluate commercial drivers competency. In several studies driving competency has been assessed with different assessment based on the license procedures and requirements according to the country regulation. The assessment criteria that has been establish for commercial drivers generally focus on driving tasks and assessment e.g. theory test, medical test and road assessment rather than driving competency test or physical test. Realizing the importance of specific assessment test for drivers competency this comparative study reviews the most discussed literature related to competency assessment method to identify competency of the drivers include (1. judgement and reaction, 2. skill of drivers, 3. experiences and fatigue). The concluding analysis of this paper is a comparative table for assessment methodology to access driver’s competency. A comparative study is a further discussion reviewing past literature to provide an overview on existing assessment test and potential subject matters that can be identified for further studies to increase awareness of the drivers, passengers as well as the authorities about the importance of competent drivers in order to improve safety in commercial vehicles.

Keywords: commercial vehicles, driver’s competency, specific assessment

Procedia PDF Downloads 415
169 Implementing Simulation-Based Education as a Transformative Learning Strategy in Nursing and Midwifery Curricula in Resource-Constrained Countries: The Case of Malawi

Authors: Patrick Mapulanga, Chisomo Petros Ganya

Abstract:

Purpose: This study aimed to investigate the integration of Simulation-Based Education (SBE) into nursing and midwifery curricula in resource-constrained countries using Malawi as a case study. The purpose of this study is to assess the extent to which SBE is mentioned in curricula and explore the associated content, assessment criteria, and guidelines. Methodology: The research methodology involved a desk study of nursing and midwifery curricula in Malawi. A comprehensive review was conducted to identify references to SBE by examining documents such as official curriculum guides, syllabi, and educational policies. The focus is on understanding the prevalence of SBE without delving into the specific content or assessment details. Findings: The findings revealed that SBE is indeed mentioned in the nursing and midwifery curricula in Malawi; however, there is a notable absence of detailed content and assessment criteria. While acknowledgement of SBE is a positive step, the lack of specific guidelines poses a challenge to its effective implementation and assessment within the educational framework. Conclusion: The study concludes that although the recognition of SBE in Malawian nursing and midwifery curricula signifies a potential openness to innovative learning strategies, the absence of detailed content and assessment criteria raises concerns about the practical application of SBE. Addressing this gap is crucial for harnessing the full transformative potential of SBE in resource-constrained environments. Areas for Further Research: Future research endeavours should focus on a more in-depth exploration of the content and assessment criteria related to SBE in nursing and midwifery curricula. Investigating faculty perspectives and students’ experiences with SBE could provide valuable insights into the challenges and opportunities associated with its implementation. Study Limitations and Implications: The study's limitations include reliance on desk-based analysis, which limits the depth of understanding regarding SBE implementation. Despite this constraint, the implications of the findings underscore the need for curriculum developers, educators, and policymakers to collaboratively address the gaps in SBE integration and ensure a comprehensive and effective learning experience for nursing and midwifery students in resource-constrained countries.

Keywords: simulation based education, transformative learning, nursing and midwifery, curricula, Malawi

Procedia PDF Downloads 34
168 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.

Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes

Procedia PDF Downloads 154
167 The Relationship between Functional Movement Screening Test and Prevalence of Musculoskeletal Disorders in Emergency Nurse and Emergency Medical Services Staff Shiraz, Iran, 2017

Authors: Akram Sadat Jafari Roodbandi, Alireza Choobineh, Nazanin Hosseini, Vafa Feyzi

Abstract:

Introduction: Physical fitness and optimum functional movement are essential for efficiently performing job tasks without fatigue and injury. Functional Movement Screening (FMS) tests are used in screening of athletes and military forces. Nurses and emergency medical staff are obliged to perform many physical activities such as transporting patients, CPR operations, etc. due to the nature of their jobs. This study aimed to assess relationship between FMS test score and the prevalence of musculoskeletal disorders (MSDs) in emergency nurses and emergency medical services (EMS) staff. Methods: 134 male and female emergency nurses and EMS technicians participated in this cross-sectional, descriptive-analytical study. After video tutorial and practical training of how to do FMS test, the participants carried out the test while they were wearing comfortable clothes. The final score of the FMS test ranges from 0 to 21. The score of 14 is considered weak in the functional movement base on FMS test protocol. In addition to the demographic data questionnaire, the Nordic musculoskeletal questionnaire was also completed for each participant. SPSS software was used for statistical analysis with a significance level of 0.05. Results: Totally, 49.3% (n=66) of the subjects were female. The mean age and work experience of the subjects were 35.3 ± 8.7 and 11.4 ± 7.7, respectively. The highest prevalence of MSDs was observed at the knee and lower back with 32.8% (n=44) and 23.1% (n=31), respectively. 26 (19.4%) health worker had FMS test score of 14 and less. The results of the Spearman correlation test showed that the FMS test score was significantly associated with MSDs (r=-0.419, p < 0.0001). It meant that MSDs increased with the decrease of the FMS test score. Age, sex, and MSDs were the remaining significant factors in linear regression logistic model with dependent variable of FMS test score. Conclusion: FMS test seems to be a usable screening tool in pre-employment and periodic medical tests for occupations that require physical fitness and optimum functional movements.

Keywords: functional movement, musculoskeletal disorders, health care worker, screening test

Procedia PDF Downloads 109
166 Experiences and Challenges of Menstruation Among Rural Schoolgirls in Ghana: A Case of Nadowli-Kaleo District in the Upper West Region of Ghana

Authors: Rosemond Mbii

Abstract:

Menstruation is a critical topic. However normal menstruation is, it has become a determinant in the education of young women today. The research focuses on Breaking the silence and accessing menstrual hygiene management's challenges and experiences among rural schoolgirls in Ghana. The study's goal was to examine the menstrual hygiene practices of female students. Participants described their menstrual hygiene practices, their problems, and how they coped with their menstrual symptoms. The research used a qualitative technique through group interviews, personal interviews, and open-ended questionnaires since it is easier to understand a phenomenon from the subject's viewpoint. Sen's capacities approach and Feminist Political Ecology (FPE) were used to analyze the data. Menstruation was known to girls even before their menarche. A mother or grandmother, friends, and teachers were the primary sources of menstrual knowledge. The study also found that most girls use sanitary products made of fabrics, pads, and cotton during menstruation. Among the difficulties the girls faced, the study found were emotional upset, physical discomfort (cramps in the stomach, fatigue), embarrassment, and inadequate sanitation hygiene facilities. The girls wore many garments to avoid leaks; checked their skirts continuously, went to the bathroom with their friends to act as spics while they changed; sat differently on the chairs, and took medicine to reduce period discomfort. Introduction of a health care teacher who supplies sanitary products and medications to girls during school time. Euphemisms as a form of communication amongst girls were all coping mechanisms girls and the school developed. Another finding was that some girls continued to go to school even while having their periods, while others did not. Discomfort and menstruation cramps hampered class participation. In addition, the study revealed insufficient sanitation and hygiene for females to change sanitary products in private and manage menstrual hygiene comfortably.

Keywords: MHM (menstrual hygiene management), rural area, sanitation, menstruation, water, schoolgirl, rural area, sanitation, menstruation, water

Procedia PDF Downloads 86
165 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 177
164 Estimating the Ladder Angle and the Camera Position From a 2D Photograph Based on Applications of Projective Geometry and Matrix Analysis

Authors: Inigo Beckett

Abstract:

In forensic investigations, it is often the case that the most potentially useful recorded evidence derives from coincidental imagery, recorded immediately before or during an incident, and that during the incident (e.g. a ‘failure’ or fire event), the evidence is changed or destroyed. To an image analysis expert involved in photogrammetric analysis for Civil or Criminal Proceedings, traditional computer vision methods involving calibrated cameras is often not appropriate because image metadata cannot be relied upon. This paper presents an approach for resolving this problem, considering in particular and by way of a case study, the angle of a simple ladder shown in a photograph. The UK Health and Safety Executive (HSE) guidance document published in 2014 (INDG455) advises that a leaning ladder should be erected at 75 degrees to the horizontal axis. Personal injury cases can arise in the construction industry because a ladder is too steep or too shallow. Ad-hoc photographs of such ladders in their incident position provide a basis for analysis of their angle. This paper presents a direct approach for ascertaining the position of the camera and the angle of the ladder simultaneously from the photograph(s) by way of a workflow that encompasses a novel application of projective geometry and matrix analysis. Mathematical analysis shows that for a given pixel ratio of directly measured collinear points (i.e. features that lie on the same line segment) from the 2D digital photograph with respect to a given viewing point, we can constrain the 3D camera position to a surface of a sphere in the scene. Depending on what we know about the ladder, we can enforce another independent constraint on the possible camera positions which enables us to constrain the possible positions even further. Experiments were conducted using synthetic and real-world data. The synthetic data modeled a vertical plane with a ladder on a horizontally flat plane resting against a vertical wall. The real-world data was captured using an Apple iPhone 13 Pro and 3D laser scan survey data whereby a ladder was placed in a known location and angle to the vertical axis. For each case, we calculated camera positions and the ladder angles using this method and cross-compared them against their respective ‘true’ values.

Keywords: image analysis, projective geometry, homography, photogrammetry, ladders, Forensics, Mathematical modeling, planar geometry, matrix analysis, collinear, cameras, photographs

Procedia PDF Downloads 20
163 Promoting Health and Academic Achievement: Mental Health Promoting Online Education

Authors: Natalie Frandsen

Abstract:

Pursuing post-secondary education is a milestone for many Canadian youths. This transition involves many changes and opportunities for growth. However, this may also be a period where challenges arise. Perhaps not surprisingly, mental health challenges for post-secondary students are common. This poses difficulties for students and instructors. Common mental-health-related symptoms (e.g., low motivation, fatigue, inability to concentrate) can affect academic performance, and instructors may need to provide accommodations for these students without the necessary expertise. ‘Distance education’ has been growing and gaining momentum in Canada for three decades. As a consequence of the COVID-19 pandemic, post-secondary institutions have been required to deliver courses using ‘remote’ methods (i.e., various online delivery modalities). The learning challenges and subsequent academic performance issues experienced by students with mental-health-related disabilities studying online are not well understood. However, we can postulate potential factors drawing from learning theories, the relationship between mental-health-related symptoms and academic performance, and learning design. Identifying barriers and opportunities to academic performance is an essential step in ensuring that students with mental-health-related disabilities are able to achieve their academic goals. Completing post-secondary education provides graduates with more employment opportunities. It is imperative that our post-secondary institutions take a holistic view of learning by providing learning and mental health support while reducing structural barriers. Health-promoting universities and colleges infuse health into their daily operations and academic mandates. Acknowledged in this Charter is the notion that all sectors must take an active role in favour of health, social justice, and equity for all. Drawing from mental health promotion and Universal Design for Learning (UDL) frameworks, relevant adult learning concepts, and critical digital pedagogy, considerations for mental-health-promoting, online learning community development will be summarized. The education sector has the opportunity to create and foster equitable and mental health-promoting learning environments. This is of particular importance during a global pandemic when the mental health of students is being disproportionately impacted.

Keywords: academic performance, community, mental health promotion, online learning

Procedia PDF Downloads 111
162 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells

Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel

Abstract:

Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.

Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.

Procedia PDF Downloads 110
161 Project-Based Learning Application: Applying Systems Thinking Concepts to Assure Continuous Improvement

Authors: Kimberley Kennedy

Abstract:

The major findings of this study discuss the importance of understanding and applying Systems thinking concepts to ensure an effective Project-Based Learning environment. A pilot project study of a major pedagogical change was conducted over a five year period with the goal to give students real world, hands-on learning experiences and the opportunity to apply what they had learned over the past two years of their business program. The first two weeks of the fifteen week semester utilized teaching methods of lectures, guest speakers and design thinking workshops to prepare students for the project work. For the remaining thirteen weeks of the semester, the students worked with actual business owners and clients on projects and challenges. The first three years of the five year study focused on student feedback to ensure a quality learning experience and continuous improvement process was developed. The final two years of the study, examined the conceptual understanding and perception of learning and teaching by faculty using Project-Based Learning pedagogy as compared to lectures and more traditional teaching methods was performed. Relevant literature was reviewed and data collected from program faculty participants who completed pre-and post-semester interviews and surveys over a two year period. Systems thinking concepts were applied to better understand the challenges for faculty using Project-Based Learning pedagogy as compared to more traditional teaching methods. Factors such as instructor and student fatigue, motivation, quality of work and enthusiasm were explored to better understand how to provide faculty with effective support and resources when using Project-Based Learning pedagogy as the main teaching method. This study provides value by presenting generalizable, foundational knowledge by offering suggestions for practical solutions to assure student and teacher engagement in Project-Based Learning courses.

Keywords: continuous improvement, project-based learning, systems thinking, teacher engagement

Procedia PDF Downloads 101
160 Quality of Life in People with Hearing Loss: A Study of Patients Referred to an Audiological Service

Authors: Peder O. Laugen Heggdal, Oyvind Nordvik, Jonas Brannstrom, Flemming Vassbotn, Anne Kari Aarstad, Hans Jorgen Aarstad

Abstract:

Background: Hearing loss (HL) affect people of all ages and stages in life. To author's best knowledge, if patients with an HL have reduced Generic Quality of life (QoL), has yet not been answered. Aim: The aim of the present study was to investigate the relationship between HL and generic and disease-specific Health Related Quality of Life (HRQoL) in adult patients (aged 18–78 years) with an HL, seeking Hearing Aid (HA). Material and Methods: 158 adult (aged 18-78 years) patients with HL, referred for HA fitting at Haukeland University Hospital in western Norway, participated in the study. Both first-time users, as well as patients referred for HA renewals, were included. First-time users had been pre-examined by an Ear Nose and Throat specialist. The questionnaires were answered before the actual HA fitting procedure. The pure-tone average (PTA; frequencies 0.5, 1, 2 and 4 kHz) was determined for each ear. The generic European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire general part and a shortened version of the Abbreviated Profile of Hearing Aid Benefit (APHAB) were answered. In addition, EORTC HRQoL answers from a general population and patients with former head and neck cancer served as comparison. Results: In general, no lowered HRQoL scores were determined among HL patients compared to the general population. Patients with unilateral HL to some extent showed lower HRQoL than those with bilateral HL (social function and fatigue). The APHAB scores correlated significantly with the EORTC HRQoL scores. By stepwise linear regression analysis, the APHAB scores were scored secondary to PTA (best ear), cognitive and physical function. Conclusion: HRQoL scores in HL patients, in general, seems to be at the population level, but the unilateral HL patients scored to some extent lower than the bilateral HI patients. APHAB and generic QoL scores levels are associated. Both HRQoL and APHAB scores are generated more complexly than anticipated.

Keywords: quality of life, hearing loss, hearing impairment, distress, depression, anxiety, hearing aid

Procedia PDF Downloads 276
159 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 232
158 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 97
157 The Co-Existence of Multidominance and Movement in the Syntax of Chinese Bi-Comparatives

Authors: Yaqing Hu

Abstract:

This paper puts forward a syntactic analysis involving multidominance and rightward movement in Chinese bi-comparatives, as in 'Yuehan bi Mali gao (John is taller than Mary).' It is argued here that the predicate of comparison is a shared constituent in two small clauses, namely one for the target and one for the standard; and then it moves rightward to form a degree phrase with the comparative morpheme. This proposal comes from four aspects. First, the example above can also be expressed in this way, 'A: Yuehan he Mali, shui gao? (John and Mary, who is taller?) B: Yuehan gao./Yuehan geng gao. (John is taller).' This shows that the gradable adjective is predicated of the target. In addition, according to a constraint on Chinese bi-comparatives, namely the target and the standard must be arguments of the predicate simultaneously, it is not unreasonable to assume that the gradable adjective may also be predicated of the standard. Second, subcomparatives are totally disallowed in Chinese, as in '*zhe-zhang zhuozi bi zhe-zhang yizi kuan chang. (This table is longer than this chair is wide.)' In order to save it from ungrammaticality, the target and the standard should be compared along the same dimension denoted by the gradable adjective. It may follow that in Chinese comparatives, having equal roles in the same eventuality, the target and the standard bear the same thematic relationship with the predicate of comparison. Third, verb-copy can appear in Chinese bi-comparatives, as in 'Yuehan qi ma bi Mali qi ma qi de kuai. (John rides horses faster than Mary does.)' The predicate qi seems to form a small clause with both the target and the standard. This might be supporting evidence that both the target and the standard share the predicate of comparison. Fourth, Chinese comparatives do have comparative morphemes, as in 'Yuehan bi Mali geng gao. (John is taller than Mary)', which is semantically equivalent to the first example above. Thus, it follows that one feature of Chinese comparative morphemes is that they can remain overt or covert in the syntax, which will not affect semantics. This further shows that comparative morphemes in bi-comparatives may not be able to saturate the degree argument denoted by the predicate of comparison due to its optionality in the structure. These four aspects present a challenge to the Direct Analysis used in Chinese comparatives since this approach would presume that the target and the standard somehow show independency with the predicate in the syntax. Meanwhile, this study also rejects the previous analysis of multidomiance in bi-comparatives in which the degree phrase comprised of the comparative morpheme and the gradable adjective may be shared by the standard when the comparative morpheme is covert. This syntactic analysis proposed in this study will therefore offer a different perspective of how to treat degree phrase in Chinese comparatives and may offer evidence to argue whether there is degree phrase movement in bi-comparatives as in its English counterparts.

Keywords: Chinese comparatives, degree phrase, movement, multidominance, syntactic analysis

Procedia PDF Downloads 308
156 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 117
155 Structural Strength Evaluation and Wear Prediction of Double Helix Steel Wire Ropes for Heavy Machinery

Authors: Krunal Thakar

Abstract:

Wire ropes combine high tensile strength and flexibility as compared to other general steel products. They are used in various application areas such as cranes, mining, elevators, bridges, cable cars, etc. The earliest reported use of wire ropes was for mining hoist application in 1830s. Over the period, there have been substantial advancement in the design of wire ropes for various application areas. Under operational conditions, wire ropes are subjected to varying tensile loads and bending loads resulting in material wear and eventual structural failure due to fretting fatigue. The conventional inspection methods to determine wire failure is only limited to outer wires of rope. However, till date, there is no effective mathematical model to examine the inter wire contact forces and wear characteristics. The scope of this paper is to present a computational simulation technique to evaluate inter wire contact forces and wear, which are in many cases responsible for rope failure. Two different type of ropes, IWRC-6xFi(29) and U3xSeS(48) were taken for structural strength evaluation and wear prediction. Both ropes have a double helix twisted wire profile as per JIS standards and are mainly used in cranes. CAD models of both ropes were developed in general purpose design software using in house developed formulation to generate double helix profile. Numerical simulation was done under two different load cases (a) Axial Tension and (b) Bending over Sheave. Different parameters such as stresses, contact forces, wear depth, load-elongation, etc., were investigated and compared between both ropes. Numerical simulation method facilitates the detailed investigation of inter wire contact and wear characteristics. In addition, various selection parameters like sheave diameter, rope diameter, helix angle, swaging, maximum load carrying capacity, etc., can be quickly analyzed.

Keywords: steel wire ropes, numerical simulation, material wear, structural strength, axial tension, bending over sheave

Procedia PDF Downloads 131
154 Development of Beeswax-Discharge Writing Material for Visually Impaired Persons

Authors: K. Doi, T. Nishimura, H. Fujimoto, T. Tanaka

Abstract:

It has been known that visually impaired persons have some problems in getting visual information. Therefore, information accessibility for the visually impaired persons is very important in a current information society. Some application software with read-aloud function for using personal computer and smartphone are getting more and more popular among visually impaired persons in the world. On the other hand, it is also very important for being able to learn how to read and write characters such as Braille and Visual character. Braille typewriter has been widely used in learning Braille. And also raised-line drawing kits as writing material has been used for decades for especially acquired visually impaired persons. However, there are some drawbacks such as the drawn line cannot be erased. Moreover, visibility of drawing lines is not so good for visually impaired with low vision. We had significant number of requests for developing new writing material for especially acquired visually impaired persons instead of raised-line drawing kits. For conducting development research of novel writing material, we could receive a research grant from ministry of health, labor and welfare in Japanese government. In this research, we developed writing material typed pens and pencils with Beeswax-discharge instead of conventional raised-line drawing kits. This writing material was equipped with cartridge heater for melting beeswax and its heat controller. When this pen users held down the pen tip on the regular paper such as fine paper and so on, the melted beeswax could be discharged from pen tip with valve structure. The beeswax was discharged at 100 gf of holding down force based on results of our previous trial study. The shape of pen tip was semispherical for becoming low friction between pen tip and surface of paper. We conducted one basic experiment to evaluate influence of the curvature of pen tip on ease to write. Concretely, the conditions of curvature was 0.15, 0.35, 0.50, 1.00 mm. The following four interval scales were used as indexes of subjective assessment during writing such as feeling of smooth motion of pen, feeling of comfortable writing, sense of security and feeling of writing fatigue. Ten subjects were asked to participate in this experiment. The results reveal that subjects could draw easily when the radius of the pen tip was 1.00 mm, and lines drawn with beeswax-discharge writing material were easy to perceive.

Keywords: beeswax-discharge writing material, raised-line drawing kits, visually impaired persons, pen tip

Procedia PDF Downloads 284