Search results for: deep convolutional features
4910 Slurry Erosion Behaviour of Cryotreated SS316L Impeller Steel Used for Irrigation Pumps
Authors: Jagtar Singh, Kulwinder Singh
Abstract:
Slurry erosion is a type of erosion wherein material is removed from the target surface due to impingement of solid particles entrained in liquid medium. Slurry erosion performance of deep cryogenic treatment on impeller steel SS 316 L has been investigated. Slurry collected from an actual irrigation pump used as the abrasive media in an erosion test rig. An attempt has been made to study the effect of velocity of fluid and impingement angle by constant concentration (ppm) on the slurry erosion behavior of these cryotreated steels under different experimental conditions. The slurry erosion wear analysis of cryotreated and untreated steels was done. The slurry erosion performance of cryotreated SS 316L impeller steel has been found to superior to that of untreated steel. Metallurgical investigation, hardness as well as %age of carbide in both types of steel was also investigated.Keywords: deep cryogenic treatment, impeller, Irrigation pumps SS316L, slurry erosion
Procedia PDF Downloads 3924909 Structure of Consciousness According to Deep Systemic Constellations
Authors: Dmitry Ustinov, Olga Lobareva
Abstract:
The method of Deep Systemic Constellations is based on a phenomenological approach. Using the phenomenon of substitutive perception it was established that the human consciousness has a hierarchical structure, where deeper levels govern more superficial ones (reactive level, energy or ancestral level, spiritual level, magical level, and deeper levels of consciousness). Every human possesses a depth of consciousness to the spiritual level, however deeper levels of consciousness are not found for every person. It was found that the spiritual level of consciousness is not homogeneous and has its own internal hierarchy of sublevels (the level of formation of spiritual values, the level of the 'inner observer', the level of the 'path', the level of 'God', etc.). The depth of the spiritual level of a person defines the paradigm of all his internal processes and the main motives of the movement through life. At any level of consciousness disturbances can occur. Disturbances at a deeper level cause disturbances at more superficial levels and are manifested in the daily life of a person in feelings, behavioral patterns, psychosomatics, etc. Without removing the deepest source of a disturbance it is impossible to completely correct its manifestation in the actual moment. Thus a destructive pattern of feeling and behavior in the actual moment can exist because of a disturbance, for example, at the spiritual level of a person (although in most cases the source is at the energy level). Psychological work with superficial levels without removing a source of disturbance cannot fully solve the problem. The method of Deep Systemic Constellations allows one to work effectively with the source of the problem located at any depth. The methodology has confirmed its effectiveness in working with more than a thousand people.Keywords: constellations, spiritual psychology, structure of consciousness, transpersonal psychology
Procedia PDF Downloads 2494908 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 964907 Image Captioning with Vision-Language Models
Authors: Promise Ekpo Osaine, Daniel Melesse
Abstract:
Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score
Procedia PDF Downloads 774906 Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents
Authors: Fatemeh Saadat Ghareh Bagh, Srimanta Ray, Jerald Lalman
Abstract:
Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively.Keywords: black liquor, deep eutectic solvents, kinetics, lignin
Procedia PDF Downloads 1474905 Patients' Quality of Life and Caregivers' Burden of Parkinson's Disease
Authors: Kingston Rajiah, Mari Kannan Maharajan, Si Jen Yeen, Sara Lew
Abstract:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder with evolving layers of complexity. Both motor and non-motor symptoms of PD may affect patients’ quality of life (QoL). Life expectancy for an individual with Parkinson’s disease depends on the level of care the individual has access to, can have a direct impact on length of life. Therefore, improvement of the QoL is a significant part of therapeutic plans. Patients with PD, especially those who are in advanced stages, are in great need of assistance, mostly from their family members or caregivers in terms of medical, emotional, and social support. The role of a caregiver becomes increasingly important with the progression of PD, the severity of motor impairment and increasing age of the patient. The nature and symptoms associated with PD can place significant stresses on the caregivers’ burden. As the prevalence of PD is estimated to more than double by 2030, it is important to recognize and alleviate the burden experienced by caregivers. This study focused on the impact of the clinical features on the QoL of PD patients, and of their caregivers. This study included PD patients along with their caregivers and was undertaken at the Malaysian Parkinson's Disease Association from June 2016 to November 2016. Clinical features of PD patients were assessed using the Movement Disorder Society revised Unified Parkinson Disease Rating Scale (MDS-UPDRS); the Hoehn and Yahr Staging of Parkinson's Disease were used to assess the severity and Parkinson's disease activities of daily living scale were used to assess the disability of Parkinson’s disease patients. QoL of PD patients was measured using the Parkinson's Disease Questionnaire-39 (PDQ-39). The revised version of the Zarit Burden Interview assessed caregiver burden. At least one of the clinical features affected PD patients’ QoL, and at least one of the QoL domains affected the caregivers’ burden. Clinical features ‘Saliva and Drooling’, and ‘Dyskinesia’ explained 29% of variance in QoL of PD patients. The QoL domains ‘stigma’, along with ‘emotional wellbeing’ explained 48.6% of variance in caregivers’ burden. Clinical features such as saliva, drooling and dyskinesia affected the QoL of PD patients. The PD patients’ QoL domains such as ‘stigma’ and ‘emotional well-being’ influenced their caregivers’ burden.Keywords: carers, quality of life, clinical features, Malaysia
Procedia PDF Downloads 2444904 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 1364903 Two Quasiparticle Rotor Model for Deformed Nuclei
Authors: Alpana Goel, Kawalpreet Kalra
Abstract:
The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.Keywords: deformed nuclei, signature effects, signature inversion, signature reversal
Procedia PDF Downloads 1584902 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 2014901 Investigating the Correlation Between Customer Satisfaction Components and Reaching Competitive Advantage, Using SEM Approach
Authors: Samaneh Pouyanfar, Michael Oliff
Abstract:
Nowadays, customer satisfaction and discovering the superior services, are counted as vital issues in most manufacturing and services companies. In these terms, gaining the competitive advantage by a business depends on products and services which are able to cause the customer satisfaction. Given the importance of this subject, this paper tries to investigate the correlation between components of customer satisfaction and gaining the competitive advantage by the business. For this purpose, after reviewing the research literature and doing deep interviews with authors and active people in the industry, based on the variables affecting the customer satisfaction and determinant components of business competitive advantage, research questionnaire was prepared. In sum, 96 executives of PARS-KHAZAR Company were asked in a survey. The results of P.L.S. Test for the research structure analysis showed that the measuring tools in terms of technical features, like convergent and divergent validity and compound reliability were very appropriate. Moreover the results showed that, the structure of products and factors related to foundation, has affected the competitive advantage performance positively and significantly; but the influence of structure of services and business environment on competitive advantage was not confirmed.Keywords: customer satisfaction, competitive advantage, products, foundation, home appliances
Procedia PDF Downloads 2734900 A Survey of Response Generation of Dialogue Systems
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.Keywords: deep learning, generative, knowledge, response generation, retrieval
Procedia PDF Downloads 1344899 Deep Well-Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification
Authors: Mohamed Ahmed Khalil
Abstract:
The number of deep well anode ground beds (GBs) have been retrieved due to unoperated anode chains. New identical magnetite anode chains (MAC) have been installed at Raslanuf complex impressed current Cathodic protection (ICCP) system, distributed at different plants (Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB-associated severely corroded wellhead casings were well maintained and/or replaced by new fabricated and modified ones. The main cause of the wellhead casing's severe internal corrosion was discussed and the conducted remedy action to overcome future corrosion problems is presented. All GB-connected anode junction boxes (AJBs) and shunts were closely inspected, maintained and necessary replacement and/or modifications were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB-associated Transformer-Rectifiers Units (TRU) were subjected to thorough inspection and necessary maintenance was performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated, alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded and all obtained test results are presented. DC current outputs have been adjusted and DC current outputs of each MAC have been recorded for each GB AJB.Keywords: magnetite anodes, deep well, ground beds, cathodic protection, transformer rectifier, impressed current, junction boxes
Procedia PDF Downloads 1194898 Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process
Authors: Mehmet Halkaci, Ekrem Öztürk, Mevlüt Türköz, H. Selçuk Halkacı
Abstract:
Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much.Keywords: Finite Element Analysis (FEA), fuzzy control, hydromechanical deep drawing, optimal loading profiles, punch diameter
Procedia PDF Downloads 4314897 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1254896 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 1594895 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 264894 Discovering the Real Psyche of Human Beings
Authors: Sheetla Prasad
Abstract:
The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.Keywords: face architecture, psyche, potential, face functional ratio, external rings
Procedia PDF Downloads 5054893 Factors Affecting Weld Line Movement in Tailor Welded Blank
Authors: Sanjay Patil, Shakil A. Kagzi, Harit K. Raval
Abstract:
Tailor Welded Blanks (TWB) are utilized in automotive industries widely because of their advantage of weight and cost reduction and maintaining required strength and structural integrity. TWB consist of two or more sheet having dissimilar or similar material and thickness; welded together to form a single sheet before forming it to desired shape. Forming of the tailor welded blank is affected by ratio of thickness of blanks, ratio of their strength, etc. mainly due to in-homogeneity of material. In the present work the relative effect of these parameters on weld line movement is studied during deep drawing of TWB using FE simulation using HYPERWORKS. The simulation is validated with results from the literature. Simulations were than performed based on Taguchi orthogonal array followed by the ANOVA analysis to determine the significance of these parameters on forming of TWB.Keywords: ANOVA, deep drawing, Tailor Welded Blank (TWB), weld line movement
Procedia PDF Downloads 3124892 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds
Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar
Abstract:
The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction
Procedia PDF Downloads 5934891 Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher.Keywords: deep foundations, slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), non-cohesive soil
Procedia PDF Downloads 2994890 A Nonlinear Feature Selection Method for Hyperspectral Image Classification
Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo
Abstract:
For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine
Procedia PDF Downloads 2654889 Lexical Features and Motivations of Product Reviews on Selected Philippine Online Shops
Authors: Jimmylen Tonio, Ali Anudin, Rochelle Irene G. Lucas
Abstract:
Alongside the progress of electronic-business websites, consumers have become more comfortable with online shopping. It has become customary for consumers that prior to purchasing a product or availing services, they consult online reviews info as bases in evaluating and deciding whether or not they should push thru with their procurement of the product or service. Subsequently, after purchasing, consumers tend to post their own comments of the product in the same e-business websites. Because of this, product reviews (PRS) have become an indispensable feature in online businesses equally beneficial for both business owners and consumers. This study explored the linguistic features and motivations of online product reviews on selected Philippine online shops, LAZADA and SHOPEE. Specifically, it looked into the lexical features of the PRs, the factors that motivated consumers to write the product reviews, and the difference of lexical preferences between male and female when they write the reviews. The findings revealed the following: 1. Formality of words in online product reviews primarily involves non-standard spelling, followed by abbreviated word forms, colloquial contractions and use of coined/novel words; 2. Paralinguistic features in online product reviews are dominated by the use of emoticons, capital letters and punctuations followed by the use of pictures/photos and lastly, by paralinguistic expressions; 3. The factors that motivate consumers to write product reviews varied. Online product reviewers are predominantly driven by venting negative feelings motivation, followed by helping the company, helping other consumers, positive self-enhancement, advice seeking and lastly, by social benefits; and 4. Gender affects the word frequencies of product online reviews, while negation words, personal pronouns, the formality of words, and paralinguistic features utilized by both male and female online product reviewers are not different.Keywords: lexical choices, motivation, online shop, product reviews
Procedia PDF Downloads 1514888 Modern Machine Learning Conniptions for Automatic Speech Recognition
Authors: S. Jagadeesh Kumar
Abstract:
This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning
Procedia PDF Downloads 4474887 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 684886 Graphical User Interface Testing by Using Deep Learning
Authors: Akshat Mathur, Sunil Kumar Khatri
Abstract:
This paper presents brief about how the use of Artificial intelligence in respect to GUI testing can reduce workload by using DL-fueled method. This paper also discusses about how graphical user interface and event driven software testing can derive benefits from the use of AI techniques. The use of AI techniques not only reduces the task and work load but also helps in getting better output than manual testing. Although results are same, but the use of Artifical intelligence techniques for GUI testing has proven to provide ideal results. DL-fueled framework helped us to find imperfections of the entire webpage and provides test failure result in a score format between 0 and 1which signifies that are test meets it quality criteria or not. This paper proposes DL-fueled method which helps us to find the genuine GUI bugs and defects and also helped us to scale the existing labour-intensive and skill-intensive methodologies.Keywords: graphical user interface, GUI, artificial intelligence, deep learning, ML technology
Procedia PDF Downloads 1774885 Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers' Insight
Authors: Tuti Haryati Jasimin, Hishamuddin Mohd Ali
Abstract:
Malaysia’s green building development is gaining momentum and green buildings have become a key focus area especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players’ views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to ensure the green buildings continue to increase in the market. This paper analyses the valuers’ current perception on the valuation practices with regard to the green issues in Malaysia. The study was based on a survey of registered real estate valuers and the experts whose work related to valuation in the Klang Valley area to rate their view regarding the perception on valuation of green building. The findings present evidence that even though Malaysian valuers have limited knowledge of green buildings, they recognize the importance of incorporating the green features in the valuation process. The inclusion of incorporating the green features in valuations in practice was hindered by the inadequacy of sufficient transactional data in the market. Furthermore, valuers experienced difficulty in identifying what are the various input parameters of green building and how to adjust it in order to reflect the benefit of sustainability features correctly in the valuation process. This paper focuses on the present challenges confronted by Malaysian valuers with regards to incorporating the green features in their valuation.Keywords: green commercial office building, Malaysia, valuers’ perception, valuation, commercial sector
Procedia PDF Downloads 3234884 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence
Authors: Carolina Zambrana, Grover Zurita
Abstract:
The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence
Procedia PDF Downloads 794883 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization
Procedia PDF Downloads 2514882 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews
Authors: Vishnu Goyal, Basant Agarwal
Abstract:
Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.Keywords: feature selection, sentiment analysis, hybrid feature selection
Procedia PDF Downloads 3384881 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System
Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi
Abstract:
Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process
Procedia PDF Downloads 142