Search results for: adaptive plasticity
416 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 228415 Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil
Authors: Ritu Chaturvedi, Manoj Paul
Abstract:
A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil.Keywords: heavy metal, mycorrhiza, pea, phyroremediation
Procedia PDF Downloads 234414 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System
Authors: Sara Khamseh, Elahe Sharifi
Abstract:
321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate
Procedia PDF Downloads 89413 The Influence of Salt Body of J. Ech Cheid on the Maturity History of the Cenomanian: Turonian Source Rock
Authors: Mohamed Malek Khenissi, Mohamed Montassar Ben Slama, Anis Belhaj Mohamed, Moncef Saidi
Abstract:
Northern Tunisia is well known by its different and complex structural and geological zones that have been the result of a geodynamic history that extends from the early Mesozoic era to the actual period. One of these zones is the salt province, where the Halokinesis process is manifested by a number of NE/SW salt structures such as Jebel Ech-Cheid which represents masses of materials characterized by a high plasticity and low density. The salt masses extrusions that have been developed due to an extension that started from the late Triassic to late Cretaceous. The evolution of salt bodies within sedimentary basins have not only contributed to modify the architecture of the basin, but it also has certain geochemical effects which touch mainly source rocks that surround it. It has been demonstrated that the presence of salt structures within sedimentary basins can influence its temperature distribution and thermal history. Moreover, it has been creating heat flux anomalies that may affect the maturity of organic matter and the timing of hydrocarbon generation. Field samples of the Bahloul source rock (Cenomanan-Tunonian) were collected from different sights from all around Ech Cheid salt structure and evaluated using Rock-eval pyrolysis and GC/MS techniques in order to assess the degree of maturity evolution and the heat flux anomalies in the different zones analyze. The Total organic Carbon (TOC) values range between 1 to 9% and the (Tmax) ranges between 424 and 445°C, also the distribution of the source rock biomarkers both saturated and aromatic changes in a regular fashions with increasing maturity and this are shown in the chromatography results such as Ts/(Ts+Tm) ratios, 22S/(22S+22R) values for C31 homohopanes, ββ/(ββ+αα)20R and 20S/(20S+20R) ratios for C29 steranes which gives a consistent maturity indications and assessment of the field samples. These analyses are carried to interpret the maturity evolution and the heat flux around Ech Cheid salt structure through the geological history. These analyses also aim to demonstrate that the salt structure can have a direct effect on the geothermal gradient of the basin and on the maturity of the Bahloul Formation source rock. The organic matter has reached different stages of thermal maturity, but delineate a general increasing maturity trend. Our study confirms that the J. Ech Cheid salt body have on the first hand: a huge influence on the local distribution of anoxic depocentre at least within Cenomanian-Turonian time. In the second hand, the thermal anomaly near the salt mass has affected the maturity of Bahloul Formation.Keywords: Bahloul formation, depocentre, GC/MS, rock-eval
Procedia PDF Downloads 239412 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 142411 The Effectiveness of Exercise Therapy on Decreasing Pain in Women with Temporomandibular Disorders and How Their Brains Respond: A Pilot Randomized Controlled Trial
Authors: Zenah Gheblawi, Susan Armijo-Olivo, Elisa B. Pelai, Vaishali Sharma, Musa Tashfeen, Angela Fung, Francisca Claveria
Abstract:
Due to physiological differences between men and women, pain is experienced differently between the two sexes. Chronic pain disorders, notably temporomandibular disorders (TMDs), disproportionately affect women in diagnosis, and pain severity in opposition of their male counterparts. TMDs are a type of musculoskeletal disorder that target the masticatory muscles, temporalis muscle, and temporomandibular joints, causing considerable orofacial pain which can usually be referred to the neck and back. Therapeutic methods are scarce, and are not TMD-centered, with the latest research suggesting that subjects with chronic musculoskeletal pain disorders have abnormal alterations in the grey matter of their brains which can be remedied with exercise, and thus, decreasing the pain experienced. The aim of the study is to investigate the effects of exercise therapy in TMD female patients experiencing chronic jaw pain and to assess the consequential effects on brain activity. In a randomized controlled trial, the effectiveness of an exercise program to improve brain alterations and clinical outcomes in women with TMD pain will be tested. Women with chronic TMD pain will be randomized to either an intervention arm or a placebo control group. Women in the intervention arm will receive 8 weeks of progressive exercise of motor control training using visual feedback (MCTF) of the cervical muscles, twice per week. Women in the placebo arm will receive innocuous transcutaneous electrical nerve stimulation during 8 weeks as well. The primary outcomes will be changes in 1) pain, measured with the Visual Analogue Scale, 2) brain structure and networks, measured by fractional anisotropy (brain structure) and the blood-oxygen level dependent signal (brain networks). Outcomes will be measured at baseline, after 8 weeks of treatment, and 4 months after treatment ends and will determine effectiveness of MCTF in managing TMD, through improved clinical outcomes. Results will directly inform and guide clinicians in prescribing more effective interventions for women with TMD. This study is underway, and no results are available at this point. The results of this study will have substantial implications on the advancement in understanding the scope of plasticity the brain has in regards with pain, and how it can be used to improve the treatment and pain of women with TMD, and more generally, other musculoskeletal disorders.Keywords: exercise therapy, musculoskeletal disorders, physical therapy, rehabilitation, tempomandibular disorders
Procedia PDF Downloads 292410 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 68409 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs
Authors: M. De Filippo, J. S. Kuang
Abstract:
In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line
Procedia PDF Downloads 178408 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study
Procedia PDF Downloads 347407 Fuzzy Neuro Approach for Integrated Water Management System
Authors: Stuti Modi, Aditi Kambli
Abstract:
This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution
Procedia PDF Downloads 186406 The Trajectory of the Ball in Football Game
Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar
Abstract:
Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter
Procedia PDF Downloads 459405 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 126404 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 36403 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order
Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao
Abstract:
In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution
Procedia PDF Downloads 145402 A Comparative Study between FEM and Meshless Methods
Authors: Jay N. Vyas, Sachin Daxini
Abstract:
Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods
Procedia PDF Downloads 389401 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes
Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal
Abstract:
Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle
Procedia PDF Downloads 51400 Gymnastics Under Special Surveillance. The Impact of Western Sanctions on Russian Sport
Authors: Aleksandra Majewska
Abstract:
The article analyses the impact of Western sanctions on Russian rhythmic gymnastics since the outbreak of war in Ukraine. The chronological presentation of events shows how international political tensions and economic sanctions have affected the organisation of competitions, training and the careers of athletes. The article outlines the key moments and decisions that have changed the landscape of Russian sport, including the decision to change the citizenship made by some gymnasts in order to continue competing in international competitions. Russia strongly opposes participation in competitions without its flag and anthem while maintaining the view that Russian gymnasts are crucial to the prestige of rhythmic gymnastics in the world. In response to the sanctions, Russia created its own rules for rhythmic gymnastics, according to which they now compete domestically. Furthermore, this sport in Russia is strongly linked to politics, which further emphasises its importance in the national and international context. The information collected derives from numerous interviews with Russian athletes, coaches and other people, which are available only in the Russian language. The findings highlight the significant difficulties Russian athletes have faced due to their isolation in the international arena and the adaptive strategies adopted by Russia in the face of these challenges. The article makes an important contribution to understanding the consequences of global politics on the world of sport and the fate of individual athletes.Keywords: sport, gymnastics, war in Ukraine, sanctions
Procedia PDF Downloads 39399 Conceptualising an Open Living Museum beyond Musealization in the Context of a Historic City: Study of Bhaktapur World Heritage Site, Nepal
Authors: Shyam Sunder Kawan
Abstract:
Museums are enclosed buildings encompassing and displaying creative artworks, artefacts, and discoveries for people’s knowledge and observation. In the context of Nepal, museums and exhibition areas are either adaptive to small gallery spaces in residences or ‘neo-classical palatial complexes’ that evolved during the 19th century. This study accepts the sparse occurrence of a diverse range of artworks and expressions in the country's complex cultural manifestations within vivid ethnic groups. This study explores the immense potential of one such prevalence beyond the delimitation of physical boundaries. Taking Bhaktapur World Heritage Site as a case, the study perpetuates its investigation into real-time life activities that this city and its cultural landscapes ensemble. Seeking the ‘musealization’ as an urban process to induce museums into the city precinct, this study anticipates art space into urban spaces to offer a limitless experience for this contemporary world. Unveiling art as an experiential component, this study aims to conceptualize a living heritage as an infinite resource for museum interpretation beyond just educational institute purposes.Keywords: living museum, site museum, museulization, contemporary arts, cultural heritage, historic cities
Procedia PDF Downloads 103398 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation
Procedia PDF Downloads 354397 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
WiMAX is a high speed broadband wireless access technology that adopted OFDM/OFDMA techniques to supply higher data rates with high spectral efficiency. However, OFDM suffers in view of high Peak to Average Power Ratio (PAPR) and high affect to synchronization errors. In this paper, the high PAPR problem is solved by using phase modulation to get Constant Envelop Orthogonal Frequency Division Multiplexing (CE-OFDM). The synchronization failures are brought down by employing a frequency lock loop, Poly phase clock synchronizer, Costas loop and blind equalizers such as Constant Modulus Algorithm (CMA) equalizer and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA) equalizers. The WiMAX physical layer is executed on Software Defined Radio (SDR) prototype by utilizing USRP N210 as hardware and GNU Radio as software plat-forms. A SNR estimation is performed on the signal received through USRP N210. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.Keywords: BER, CMA equalizer, Kurtosis equalizer, GNU Radio, OFDM/OFDMA, USRP N210
Procedia PDF Downloads 349396 Comparative Analysis of Photosynthetic and Antioxidative Responses of Two Species of Anabaena under Ni and As(III) Stress
Authors: Shivam Yadav, Neelam Atri
Abstract:
Cyanobacteria, the photosynthetic prokaryotes are indispensable components of paddy soil contribute substantially to the nitrogen economy however often appended with metal load. They are well known to play crucial roles in maintenance of soil fertility and rice productivity. Nickel is one such metal that plays a vital role in the cellular physiology, however at higher concentrations it exerts adverse effects. Arsenic is another toxic metalloid that negatively affects the cyanobacterial proliferation. However species-specific comparative responses under As and Ni is largely unknown. The present study focuses on the comparative effects of nickel (Ni2+) and arsenite (As(III)) on two diazotrophic cyanobacterial species (Anabaena doliolum and Anabaena sp. PCC7120) in terms of antioxidative aspects. Oxidative damage measured in terms of lipid peroxidation and peroxide content was significantly higher after As(III) than Ni treatment as compared to control. Similarly, all the studied enzymatic and non-enzymatic parameters of antioxidative defense system except glutathione reductase (GR) showed greater induction against As(III) than Ni. Moreover, integrating comparative analysis of all studied parameters also demonstrated interspecies variation in terms of stress adaptive strategies reflected through higher sensitivity of Anabaena doliolum over Anabaena PCC7120.Keywords: antioxidative system, arsenic, cyanobacteria, nickel
Procedia PDF Downloads 154395 The Influence of Positive and Negative Affect on Perception and Judgement
Authors: Annamarija Paula
Abstract:
Modern psychology is divided into three distinct domains: cognition, affect, and conation. Historically, psychology devalued the importance of studying the effect in order to explain human behavior as it supposedly lacked both rational thought and a scientific foundation. As a result, affect remained the least studied domain for years to come. However, the last 30 years have marked a significant change in perspective, claiming that not only is affect highly adaptive, but it also plays a crucial role in cognitive processes. Affective states have a crucial impact on human behavior, which led to fundamental advances in the study of affective states on perception and judgment. Positive affect and negative affect are distinct entities and have different effects on social information processing. In addition, emotions of the same valence are manifested in distinct and unique physiological reactions indicating that not all forms of positive or negative affect are the same or serve the same purpose. The effect plays a vital role in perception and judgments, which impacts the validity and reliability of memory retrieval. The research paper analyzes key findings from the past three decades of observational and empirical research on affective states and cognition. The paper also addresses the limitations connected to the findings and proposes suggestions for possible future research.Keywords: memory, affect, perception, judgement, mood congruency effect
Procedia PDF Downloads 130394 Mineralogical Study of the Triassic Clay of Maaziz and the Miocene Marl of Akrach in Morocco: Analysis and Evaluating of the Two Geomaterials for the Construction of Ceramic Bricks
Authors: Sahar El Kasmi, Ayoub Aziz, Saadia Lharti, Mohammed El Janati, Boubker Boukili, Nacer El Motawakil, Mayom Chol Luka Awan
Abstract:
Two types of geomaterials (Red Triassic clay from the Maaziz region and Yellow Pliocene clay from the Akrach region) were used to create different mixtures for the fabrication of ceramic bricks. This study investigated the influence of the Pliocene clay on the overall composition and mechanical properties of the Triassic clay. The red Triassic clay, sourced from Maaziz, underwent various mechanical processes and treatments to facilitate its transformation into ceramic bricks for construction. The triassic clay was subjected to a drying chamber and a heating chamber at 100°C to remove moisture. Subsequently, the dried clay samples were processed using a Planetary Babs ll Mill to reduce particle size and improve homogeneity. The resulting clay material was sieved, and the fine particles below 100 mm were collected for further analysis. In parallel, the Miocene marl obtained from the Akrach region was fragmented into finer particles and subjected to similar drying, grinding, and sieving procedures as the triassic clay. The two clay samples are then amalgamated and homogenized in different proportions. Precise measurements were taken using a weighing balance, and mixtures of 90%, 80%, and 70% Triassic clay with 10%, 20%, and 30% yellow clay were prepared, respectively. To evaluate the impact of Pliocene marl on the composition, the prepared clay mixtures were spread evenly and treated with a water modifier to enhance plasticity. The clay was then molded using a brick-making machine, and the initial manipulation process was observed. Additional batches were prepared with incremental amounts of Pliocene marl to further investigate its effect on the fracture behavior of the clay, specifically their resistance. The molded clay bricks were subjected to compression tests to measure their strength and resistance to deformation. Additional tests, such as water absorption tests, were also conducted to assess the overall performance of the ceramic bricks fabricated from the different clay mixtures. The results were analyzed to determine the influence of the Pliocene marl on the strength and durability of the Triassic clay bricks. The results indicated that the incorporation of Pliocene clay reduced the fracture of the triassic clay, with a noticeable reduction observed at 10% addition. No fractures were observed when 20% and 30% of yellow clay are added. These findings suggested that yellow clay can enhance the mechanical properties and structural integrity of red clay-based products.Keywords: triassic clay, pliocene clay, mineralogical composition, geo-materials, ceramics, akach region, maaziz region, morocco.
Procedia PDF Downloads 87393 English Title Adaptive Comparison of Outdoor and Indoor Social Security in Damaged Area and New Residential Complex with Two-Way Anova Case Study: Qasr-Al-Dasht and Moalem District in Shiraz
Authors: Homa Parmoon, Narges Hamzeh
Abstract:
Since today's urban spaces are disposed towards behavioral disorders and lack of security, both qualitative and quantitative aspects of security especially social and physical security are considered as basic necessities in urban planning. This research focused on the variable of place of living, examined social security in the old and new textures, and investigated the amount of residents’ social security in Shiraz including safety, financial, emotional and moral security. To this end, two neighborhoods in region 1 of Shiraz- Qasr-Al-Dasht (old texture) and Moalem (new texture)- were examined through a comparative study of 60 samples lived in two neighborhoods. Data were gathered through two-way ANOVA between the variables of residential context and internal and external security. This analysis represents the significance or insignificance of the model as well as the individual effects of each independent variable on the dependent variable. It was tested by ANCOVA and F-test. Research findings indicated place of living has a significant effect on families’ social security. The safety, financial, emotional, and moral security also represented a great impact on social security. As a result, it can be concluded that social security changes with the changing in place of living.Keywords: social security, damaged area, two-way ANOVA, Shiraz
Procedia PDF Downloads 139392 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 110391 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN
Procedia PDF Downloads 280390 The Determinant Factors of Technology Adoption for Improving Firm’s Performance; Toward a Conceptual Model
Authors: Zainal Arifin, Avanti Fontana
Abstract:
Considering that TOE framework is the most useful instrument for studying technology adoption in firm context, this paper will analyze the influence of technological, organizational and environmental (TOE) factors to the Dynamic capabilities (DCs) associated with technology adoption strategy for improving the firm’s performance. Focusing on the determinant factors of technology adoption at the firm level, the study will contribute to the broader study of resource base view (RBV) and dynamic capability (DC). There is no study connecting directly the TOE factors to the DCs, this paper proposes technology adoption as a functional competence/capability which mediates a relationship between technology adoptions with firm’s performance. The study wants to show a conceptual model of the indirect effects of DCs at the firm level, which can be key predictors of firm performance in dynamic business environment. The results of this research is mostly relevant to top corporate executives (BOD) or top management team (TMT) who seek to provide some supporting ‘hardware’ content and condition such as technological factors, organizational factors, environmental factors, and to improve firm's ‘software ‘ ability such as adaptive capability, absorptive capability and innovative capability, in order to achieve a successful technology adoption in organization. There are also mediating factors which are elaborated at this paper; timing and external network. A further research for showing its empirical results is highly recommended.Keywords: technology adoption, TOE framework, dynamic capability, resources based view
Procedia PDF Downloads 332389 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation
Authors: Joseph C. Chen, Venkata Mohan Kudapa
Abstract:
Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations
Procedia PDF Downloads 145388 Innovative Entrepreneurship in Tourism Business: An International Comparative Study of Key Drivers
Authors: Mohammed Gamil Montasser, Angelo Battaglia
Abstract:
Entrepreneurship is mostly related to the beginning of organization. In growing business organizations, entrepreneurship expands its conceptualization. It reveals itself through new business creation in the active organization, through renewal, change, innovation, creation and development of current organization, through breaking and changing of established rules inside or outside the organization and becomes more flexible, adaptive and competitive, also improving effectiveness of organization activity. Therefore, the topic of entrepreneurship, relates the creation of firms to personal / individual characteristics of the entrepreneurs and their social context. This paper is an empirical study, which aims to address these two gaps in the literature. For this endeavor, we use the latest available data from the Global Entrepreneurship Monitor (GEM) project. This data set is widely regarded as a unique source of information about entrepreneurial activity, as well as the aspirations and attitudes of individuals across a wide number of countries and territories worldwide. This paper tries to contribute to fill this gap, by exploring the key drivers of innovative entrepreneurship in the tourism sector. Our findings are consistent with the existing literature in terms of the individual characteristics of entrepreneurs, but quite surprisingly we find an inverted U-shape relation between human development and innovative entrepreneurship in tourism sector. It has been revealed that tourism entrepreneurs are less likely to have innovative products, compared with entrepreneurs in medium developed countries.Keywords: GEM, human development, innovative entrepreneurship, occupational choice, tourism
Procedia PDF Downloads 258387 Analysis of Hard Turning Process of AISI D3-Thermal Aspects
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of hard turning by using commercial software DEFORM 3D has been compared to experimental results of stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.Keywords: hard turning, computer aided engineering, computational machining, finite element method
Procedia PDF Downloads 454