Search results for: WEKA data mining tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28604

Search results for: WEKA data mining tool

27764 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel

Authors: Richard E. Miller

Abstract:

12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.

Keywords: dissimilar materials, friction stir, welding, materials science

Procedia PDF Downloads 269
27763 Sustainability Rating System for Infrastructure Projects in UAE

Authors: Amrutha Venugopal, Rabee Rustum

Abstract:

In spite of huge investments and the vital role infrastructure plays in the economy of UAE, the country has not yet developed an assessment scheme to measure the sustainability of infrastructure projects/development. The aim of this study was to develop a sustainability rating system for infrastructure projects in UAE using weighted indicator scoring. The identification of the list of 66 indicators was done by content analysis. The sources of content analysis were from government guidelines, research literature and sustainability rating system for infrastructure projects namely BCA Greenmark for Infrastructure (Singapore), ISCA (Australia) and Envision (USA). These indicators were shortlisted based on their relevance in the UAE. A mixture of qualitative and quantitative research methods is utilized to find the weightage to be applied to the indicators and to find suggestive measures to improve infrastructure sustainability in this region. Interviews and surveys were conducted with a good mix of experts from the industry. The data collected from the interviews were collated to provide suggestive measures for improving infrastructure sustainability. The collected survey data were analyzed using statistical analysis techniques to find the indicator weighing. The indicators were shortlisted by 75% to minimize the effort and investment into the process. The weighing of the deleted indicators was distributed among the critical clusters identified by Pareto analysis. Finally a simple Microsoft Excel tool was developed as the rating tool by using the calculated weighing for the indicators.

Keywords: infrastructure, rating system, suggestive measures, sustainability, UAE

Procedia PDF Downloads 305
27762 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 325
27761 Spectral Coherence Analysis between Grinding Interaction Forces and the Relative Motion of the Workpiece and the Cutting Tool

Authors: Abdulhamit Donder, Erhan Ilhan Konukseven

Abstract:

Grinding operation is performed in order to obtain desired surfaces precisely in machining process. The needed relative motion between the cutting tool and the workpiece is generally created either by the movement of the cutting tool or by the movement of the workpiece or by the movement of both of them as in our case. For all these cases, the coherence level between the movements and the interaction forces is a key influential parameter for efficient grinding. Therefore, in this work, spectral coherence analysis has been performed to investigate the coherence level between grinding interaction forces and the movement of the workpiece on our robotic-grinding experimental setup in METU Mechatronics Laboratory.

Keywords: coherence analysis, correlation, FFT, grinding, hanning window, machining, Piezo actuator, reverse arrangements test, spectral analysis

Procedia PDF Downloads 405
27760 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 218
27759 PRISM: An Analytical Tool for Forest Plan Development

Authors: Dung Nguyen, Yu Wei, Eric Henderson

Abstract:

Analytical tools have been used for decades to assist in the development of forest plans. In 2016, a new decision support system, PRISM, was jointly developed by United States Forest Service (USFS) Northern Region and Colorado State University to support the forest planning process. Prism has a friendly user interface with functionality for database management, model development, data visualization, and sensitivity analysis. The software is tailored for USFS planning, but it is flexible enough to support planning efforts by other forestland owners and managers. Here, the core capability of PRISM and its applications in developing plans for several United States national forests are presented. The strengths of PRISM are also discussed to show its potential of being a preferable tool for managers and experts in the domain of forest management and planning.

Keywords: decision support, forest management, forest plan, graphical user interface, software

Procedia PDF Downloads 111
27758 Improvement in Tool Life Through Optimizing Cutting Parameters Using Cryogenic Media in Machining of Aerospace Alloy Steel

Authors: Waseem Tahir, Syed Hussain Imran Jaffery, Mohammad Azam

Abstract:

In this research work, liquid nitrogen gas (LN2) is used as a cryogenic media to optimize the cutting parameters for evaluation of tool flank wear width of Tungsten Carbide Insert (CNMG 120404-WF 4215) while turning a high strength alloy steel. Robust design concept of Taguchi L9 (34) method is applied to determine the optimum conditions. The analysis is revealed that cryogenic impact is more significant in reduction of the tool flank wear. However, High Speed Machining is shown most significant as compare to cooling media on work piece surface roughness.

Keywords: turning, cryogenic cooling, liquid nitrogen, flank wear, surface finish

Procedia PDF Downloads 512
27757 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 77
27756 Tourism Satellite Account: Approach and Information System Development

Authors: Pappas Theodoros, Mihail Diakomihalis

Abstract:

Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors and which should be observed and measured to reveal, thus, the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article introduces a system of TSA information that encompasses all the works of the TSA, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer insights into the development and implementation of TSA.

Keywords: tourism satellite account, information system, data-based tourist account, relation database

Procedia PDF Downloads 84
27755 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 70
27754 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 287
27753 Automatic Tofu Stick Cutter to Increase the Production Capacity of Small and Medium Enterprises

Authors: Chaca Nugraha Zaid, Hikmat Ronaldo, Emerald Falah Brayoga, Azizah Eddy Setiawati, Soviandini Dwiki Kartika Putri, Novita Wijayanti

Abstract:

In the tofu stick production, the manual cutting process takes a half of working day or 4 hours for 21 kg of tofu. This issue has hampered the small and medium enterprises (SMEs) to increase the capacity of production to fulfill the market demand. In order to address the issue, the cutting process should be automized to create fast, efficient, and effective tools. This innovation to tackle this problem is an automatic cutter tool that is able to move continuously to cut the tofu into stick size. The tool uses the 78,5-watt electric motor and automatic sensors to drive the cutting tool automatically, resulting faster process time with more uniform size compared to the manual cutter. The component of this tool, i.e., cutting knife and the driver, electric motor, limit switch sensors, riley, Arduino nano, and power supply. The cutting speed cutting speed of this tool is 101,25 mm/s producing 64 tofu sticks. Benefits that can be obtained from the use of automatic tofu stick cutter, i.e. (1) Faster process (2) More uniform cutting result; (3) The quality of the tofu stick is maintained due to minimal contact with humans so that contamination can be suppressed; (4) The cutting knife can be modified to the desired size of the owner.

Keywords: automatic, cutter, small and medium enterprise, tofu stick

Procedia PDF Downloads 166
27752 Redesigning Malaysia Batik Sarong by Applying Quality Function Deployment

Authors: M. Kamal, Y. Wang, R. Kennon

Abstract:

Quality Function Deployment is a useful tool in product development with the application of voice of customer. In this paper, it aims to be applied as a product development tool in redesigning fashion and textile product. The purpose of these studies is to apply the effective use of Voice of Customer in redesigning cultural fashion product. The data collection from Voice of Customer or consumers’ feedback might help the producer to improve the quality of merchandise ahead. Voice of Customer could give a specific detailing for quality which needs to be redesigned according to customers’ requirements. Meanwhile, the next objective is to differentiate design specifications and characteristics using House of Quality. In product designing phase, it is very important to distinguish each specification and characteristic which translated from Voice of Customer to House of Quality matrix. This matrix would help designers to development according to qualities that customer wants for the better and successful product in the market. It is hope this research would indicate the customers’ requirements and production team idea might be measured and translated to a systematic data. The specific technical data could be planned ahead with specific design details as well. This could be a sustainable approach for a traditional product which could control the material that they use and sustain the quality as the past production. As a conclusion, this study would benefit the Small Medium Enterprises design team or the designers to style an item from customers view with organised projection of the product. The finding also could assist designers or batik producers’ to recognise specific details Batik sarong from consumers as well as in in advertising and marketing strategy plan.

Keywords: house of quality, Malaysia batik sarong, quality function deployment, voice of customer

Procedia PDF Downloads 592
27751 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 94
27750 Human Health Risk Assessment of Mercury-Contaminated Soils in Alebediah Mining Community, Sudan

Authors: Ahmed Elwaleed, Huiho Jeong, Ali H. Abdelbagi, Nguyen Thi Quynh, Koji Arizono, Yasuhiro Ishibashi

Abstract:

Artisanal and small-scale gold mining (ASGM) poses substantial risks to both human health and the environment, particularly through contamination of soil, water, and air. Prolonged exposure to ASGM-contaminated soils can lead to acute or chronic mercury toxicity. This study assesses the human health risks associated with mercury-contaminated soils and tailings in the Alebediah mining community in Sudan. Soil samples were collected from various locations within Alebediah, including ASGM areas, farmlands, and residential areas, along with tailings samples commonly found within ASGM sites. The evaluation of potential health risks to humans included the computation of the estimated daily intake (AvDI), the hazard quotient (HQ), and the hazard index (HI) for both adults and children. The primary exposure route identified as potentially posing a significant health risk was the volatilization of mercury from tailings samples, where mercury concentrations reached up to 25.5 mg/kg. In contrast, other samples within the ASGM area showed elevated mercury levels but did not present significant health risks, with HI values below 1. However, all areas indicated HI values above 1 for the remaining exposure routes. The study observed a decrease in mercury concentration with increasing distance from the ASGM community. Additionally, soil samples revealed elevated mercury levels exceeding background values, prompting an assessment of contamination levels using the enrichment factor (EF). The findings indicated that farmlands and residential areas exhibited depleted EF, while areas surrounding the ASGM community showed none to moderate pollution. In contrast, ASGM areas exhibited significant to extreme pollution. A GIS map was generated to visually depict the extent of mercury pollution, facilitating communication with stakeholders and decision-makers.

Keywords: mercury pollution, artisanal and small-scale gold mining, health risk assessment, hazard index, soil and tailings, enrichment factor

Procedia PDF Downloads 83
27749 Biosorption of Nickel by Penicillium simplicissimum SAU203 Isolated from Indian Metalliferous Mining Overburden

Authors: Suchhanda Ghosh, A. K. Paul

Abstract:

Nickel, an industrially important metal is not mined in India, due to the lack of its primary mining resources. But, the chromite deposits occurring in the Sukinda and Baula-Nuasahi region of Odhisa, India, is reported to contain around 0.99% of nickel entrapped in the goethite matrix of the lateritic iron rich ore. Weathering of the dumped chromite mining overburden often leads to the contamination of the ground as well as the surface water with toxic nickel. Microbes inherent to this metal contaminated environment are reported to be capable of removal as well as detoxification of various metals including nickel. Nickel resistant fungal isolates obtained in pure form from the metal rich overburden were evaluated for their potential to biosorb nickel by using their dried biomass. Penicillium simplicissimum SAU203 was the best nickel biosorbant among the 20 fungi tested and was capable to sorbing 16.85 mg Ni/g biomass from a solution containing 50 mg/l of Ni. The identity of the isolate was confirmed using 18S rRNA gene analysis. The sorption capacity of the isolate was further standardized following Langmuir and Freundlich adsorption isotherm models and the results reflected energy efficient sorption. Fourier-transform infrared spectroscopy studies of the nickel loaded and control biomass in a comparative basis revealed the involvement of hydroxyl, amine and carboxylic groups in Ni binding. The sorption process was also optimized for several standard parameters like initial metal ion concentration, initial sorbet concentration, incubation temperature and pH, presence of additional cations and pre-treatment of the biomass by different chemicals. Optimisation leads to significant improvements in the process of nickel biosorption on to the fungal biomass. P. simplicissimum SAU203 could sorb 54.73 mg Ni/g biomass with an initial Ni concentration of 200 mg/l in solution and 21.8 mg Ni/g biomass with an initial biomass concentration of 1g/l solution. Optimum temperature and pH for biosorption was recorded to be 30°C and pH 6.5 respectively. Presence of Zn and Fe ions improved the sorption of Ni(II), whereas, cobalt had a negative impact. Pre-treatment of biomass with various chemical and physical agents has affected the proficiency of Ni sorption by P. simplicissimum SAU203 biomass, autoclaving as well as treatment of biomass with 0.5 M sulfuric acid and acetic acid reduced the sorption as compared to the untreated biomass, whereas, NaOH and Na₂CO₃ and Twin 80 (0.5 M) treated biomass resulted in augmented metal sorption. Hence, on the basis of the present study, it can be concluded that P. simplicissimum SAU203 has the potential for the removal as well as detoxification of nickel from contaminated environments in general and particularly from the chromite mining areas of Odhisa, India.

Keywords: nickel, fungal biosorption, Penicillium simplicissimum SAU203, Indian chromite mines, mining overburden

Procedia PDF Downloads 191
27748 Domain Adaptive Dense Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, contrastive learning, unsupervised training

Procedia PDF Downloads 104
27747 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition

Authors: Damous Mohamed, Zeroudi Nasredine

Abstract:

High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.

Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams

Procedia PDF Downloads 26
27746 Coarse Grid Computational Fluid Dynamics Fire Simulations

Authors: Wolfram Jahn, Jose Manuel Munita

Abstract:

While computational fluid dynamics (CFD) simulations of fire scenarios are commonly used in the design of buildings, less attention has been given to the use of CFD simulations as an operational tool for the fire services. The reason of this lack of attention lies mainly in the fact that CFD simulations typically take large periods of time to complete, and their results would thus not be available in time to be of use during an emergency. Firefighters often face uncertain conditions when entering a building to attack a fire. They would greatly benefit from a technology based on predictive fire simulations, able to assist their decision-making process. The principal constraint to faster CFD simulations is the fine grid necessary to solve accurately the physical processes that govern a fire. This paper explores the possibility of overcoming this constraint and using coarse grid CFD simulations for fire scenarios, and proposes a methodology to use the simulation results in a meaningful way that can be used by the fire fighters during an emergency. Data from real scale compartment fire tests were used to compare CFD fire models with different grid arrangements, and empirical correlations were obtained to interpolate data points into the grids. The results show that the strongly predominant effect of the heat release rate of the fire on the fluid dynamics allows for the use of coarse grids with relatively low overall impact of simulation results. Simulations with an acceptable level of accuracy could be run in real time, thus making them useful as a forecasting tool for emergency response purposes.

Keywords: CFD, fire simulations, emergency response, forecast

Procedia PDF Downloads 318
27745 Value Analysis of Islamic Banking and Conventional Banking to Measure Value Co-Creation

Authors: Amna Javed, Hisashi Masuda, Youji Kohda

Abstract:

This study examines the value analysis in Islamic and conventional banking services in Pakistan. Many scholars have focused on co-creation of values in services but mainly economic values not non-economic. As Islamic banking is based on Islamic principles that are more concerned with non-economic values (well-being, partnership, fairness, trust worthy, and justice) than economic values as money in terms of interest. This study is important to know the providers point of view about the co-created values, because, it may be more sustainable and appropriate for today’s unpredictable socioeconomic environment. Data were collected from 4 banks (2 Islamic and 2 conventional banks). Text mining technique is applied for data analysis, and values with 100% occurrences in Islamic banking are chosen. The results reflect that Islamic banking is more centric towards non-economic values than economic values and it promotes team work and partnership concept by applying Islamic spirit and trust worthiness concept.

Keywords: economic values, Islamic banking, non-economic values, value system

Procedia PDF Downloads 463
27744 HelpMeBreathe: A Web-Based System for Asthma Management

Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer

Abstract:

We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.

Keywords: asthma, environmental triggers, map interface, web-based systems

Procedia PDF Downloads 294
27743 Mixture statistical modeling for predecting mortality human immunodeficiency virus (HIV) and tuberculosis(TB) infection patients

Authors: Mohd Asrul Affendi Bi Abdullah, Nyi Nyi Naing

Abstract:

The purpose of this study was to identify comparable manner between negative binomial death rate (NBDR) and zero inflated negative binomial death rate (ZINBDR) with died patients with (HIV + T B+) and (HIV + T B−). HIV and TB is a serious world wide problem in the developing country. Data were analyzed with applying NBDR and ZINBDR to make comparison which a favorable model is better to used. The ZINBDR model is able to account for the disproportionately large number of zero within the data and is shown to be a consistently better fit than the NBDR model. Hence, as a results ZINBDR model is a superior fit to the data than the NBDR model and provides additional information regarding the died mechanisms HIV+TB. The ZINBDR model is shown to be a use tool for analysis death rate according age categorical.

Keywords: zero inflated negative binomial death rate, HIV and TB, AIC and BIC, death rate

Procedia PDF Downloads 432
27742 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia PDF Downloads 382
27741 A Microsurgery-Specific End-Effector Equipped with a Bipolar Surgical Tool and Haptic Feedback

Authors: Hamidreza Hoshyarmanesh, Sanju Lama, Garnette R. Sutherland

Abstract:

In tele-operative robotic surgery, an ideal haptic device should be equipped with an intuitive and smooth end-effector to cover the surgeon’s hand/wrist degrees of freedom (DOF) and translate the hand joint motions to the end-effector of the remote manipulator with low effort and high level of comfort. This research introduces the design and development of a microsurgery-specific end-effector, a gimbal mechanism possessing 4 passive and 1 active DOFs, equipped with a bipolar forceps and haptic feedback. The robust gimbal structure is comprised of three light-weight links/joint, pitch, yaw, and roll, each consisting of low-friction support and a 2-channel accurate optical position sensor. The third link, which provides the tool roll, was specifically designed to grip the tool prongs and accommodate a low mass geared actuator together with a miniaturized capstan-rope mechanism. The actuator is able to generate delicate torques, using a threaded cylindrical capstan, to emulate the sense of pinch/coagulation during conventional microsurgery. While the tool left prong is fixed to the rolling link, the right prong bears a miniaturized drum sector with a large diameter to expand the force scale and resolution. The drum transmits the actuator output torque to the right prong and generates haptic force feedback at the tool level. The tool is also equipped with a hall-effect sensor and magnet bar installed vis-à-vis on the inner side of the two prongs to measure the tooltip distance and provide an analogue signal to the control system. We believe that such a haptic end-effector could significantly increase the accuracy of telerobotic surgery and help avoid high forces that are known to cause bleeding/injury.

Keywords: end-effector, force generation, haptic interface, robotic surgery, surgical tool, tele-operation

Procedia PDF Downloads 118
27740 Event Extraction, Analysis, and Event Linking

Authors: Anam Alam, Rahim Jamaluddin Kanji

Abstract:

With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.

Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation

Procedia PDF Downloads 596
27739 A Comparative Study between Different Techniques of Off-Page and On-Page Search Engine Optimization

Authors: Ahmed Ishtiaq, Maeeda Khalid, Umair Sajjad

Abstract:

In the fast-moving world, information is the key to success. If information is easily available, then it makes work easy. The Internet is the biggest collection and source of information nowadays, and with every single day, the data on internet increases, and it becomes difficult to find required data. Everyone wants to make his/her website at the top of search results. This can be possible when you have applied some techniques of SEO inside your application or outside your application, which are two types of SEO, onsite and offsite SEO. SEO is an abbreviation of Search Engine Optimization, and it is a set of techniques, methods to increase users of a website on World Wide Web or to rank up your website in search engine indexing. In this paper, we have compared different techniques of Onpage and Offpage SEO, and we have suggested many things that should be changed inside webpage, outside web page and mentioned some most powerful and search engine considerable elements and techniques in both types of SEO in order to gain high ranking on Search Engine.

Keywords: auto-suggestion, search engine optimization, SEO, query, web mining, web crawler

Procedia PDF Downloads 150
27738 Analytical Study: An M-Learning App Reflecting the Factors Affecting Student’s Adoption of M-Learning

Authors: Ahmad Khachan, Ahmet Ozmen

Abstract:

This study aims to introduce a mobile bite-sized learning concept, a mobile application with social networks motivation factors that will encourage students to practice critical thinking, improve analytical skills and learn knowledge sharing. We do not aim to propose another e-learning or distance learning based tool like Moodle and Edmodo; instead, we introduce a mobile learning tool called Interactive M-learning Application. The tool reconstructs and strengthens the bonds between educators and learners and provides a foundation for integrating mobile devices in education. The application allows learners to stay connected all the time, share ideas, ask questions and learn from each other. It is built on Android since the Android has the largest platform share in the world and is dominating the market with 74.45% share in 2018. We have chosen Google-Firebase server for hosting because of flexibility, ease of hosting and real time update capabilities. The proposed m-learning tool was offered to four groups of university students in different majors. An improvement in the relation between the students, the teachers and the academic institution was obvious. Student’s performance got much better added to better analytical and critical skills advancement and moreover a willingness to adopt mobile learning in class. We have also compared our app with another tool in the same class for clarity and reliability of the results. The student’s mobile devices were used in this experimental study for diversity of devices and platform versions.

Keywords: education, engineering, interactive software, undergraduate education

Procedia PDF Downloads 155
27737 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs

Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello

Abstract:

MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.

Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction

Procedia PDF Downloads 451
27736 Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine

Authors: B. Keawaram, P. Dumrongchai

Abstract:

The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m2, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station.

Keywords: mine, survey, terrestrial laser scanner, total station

Procedia PDF Downloads 385
27735 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 446