Search results for: RGB models
5909 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 4825908 Early Age Behavior of Wind Turbine Gravity Foundations
Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet
Abstract:
The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines
Procedia PDF Downloads 1755907 Simplified Analysis on Steel Frame Infill with FRP Composite Panel
Authors: HyunSu Seo, HoYoung Son, Sungjin Kim, WooYoung Jung
Abstract:
In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we re investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system.Keywords: numerical analysis, FEM, infill, GFRP, damping
Procedia PDF Downloads 4245906 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: audit, machine learning, assessment, metrics
Procedia PDF Downloads 2715905 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum
Procedia PDF Downloads 3425904 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.Keywords: design of experiments, regression analysis, SI engine, statistical modeling
Procedia PDF Downloads 1865903 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming
Procedia PDF Downloads 4395902 Sea Surface Temperature and Climatic Variables as Drivers of North Pacific Albacore Tuna Thunnus Alalunga Time Series
Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto, Swastika Roshni, Paras Nath, Alok Kalla
Abstract:
Albacore tuna (Thunnus alalunga) is one of the commercially important species of tuna in the North Pacific region. Despite the long history of albacore fisheries in the Pacific, its ecological characteristics are not sufficiently understood. The effects of changing climate on numerous commercially and ecologically important fish species including albacore tuna have been documented over the past decades. The objective of this study was to explore and elucidate the relationship of environmental variables with the stock parameters of albacore tuna. The relationship of the North Pacific albacore tuna recruitment (R), spawning stock biomass (SSB) and recruits per spawning biomass (RPS) from 1970 to 2012 with the environmental factors of sea surface temperature (SST), Pacific decadal oscillation (PDO), El Niño southern oscillation (ENSO) and Pacific warm pool index (PWI) was construed. SST and PDO were used as independent variables with SSB to construct stock reproduction models for R and RPS as they showed most significant relationship with the dependent variables. ENSO and PWI were excluded due to collinearity effects with SST and PDO. Model selections were based on R2 values, Akaike Information Criterion (AIC) and significant parameter estimates at p<0.05. Models with single independent variables of SST, PDO, ENSO and PWI were also constructed to illuminate their individual effect on albacore R and RPS. From the results it can be said that SST and PDO resulted in the most significant models for reproducing North Pacific albacore tuna R and RPS time series. SST has the highest impact on albacore R and RPS when comparing models with single environmental variables. It is important for fishery managers and decision makers to incorporate the findings into their albacore tuna management plans for the North Pacific Oceanic region.Keywords: Albacore tuna, El Niño southern oscillation, Pacific decadal oscillation, sea surface temperature
Procedia PDF Downloads 2315901 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1275900 Model for Assessment of Quality Airport Services
Authors: Cristina da Silva Torres, José Luis Duarte Ribeiro, Maria Auxiliadora Cannarozzo Tinoco
Abstract:
As a result of the rapid growth of the Brazilian Air Transport, many airports are at the limit of their capacities and have a reduction in the quality of services provided. Thus, there is a need of models for assessing the quality of airport services. Because of this, the main objective of this work is to propose a model for the evaluation of quality attributes in airport services. To this end, we used the method composed by literature review and interview. Structured a working method composed by 5 steps, which resulted in a model to evaluate the quality of airport services, consisting of 8 dimensions and 45 attributes. Was used as base for model definition the process mapping of boarding and landing processes of passengers and luggage. As a contribution of this work is the integration of management process with structuring models to assess the quality of services in airport environments.Keywords: quality airport services, model for identification of attributes quality, air transport, passenger
Procedia PDF Downloads 5355899 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment
Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha
Abstract:
When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.Keywords: contract risk assessment, NLP, transfer learning, question answering
Procedia PDF Downloads 1295898 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm
Procedia PDF Downloads 1455897 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach
Authors: Godwin Chigozie Okpara
Abstract:
This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models
Procedia PDF Downloads 4435896 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power
Procedia PDF Downloads 3755895 Geostatistical Models to Correct Salinity of Soils from Landsat Satellite Sensor: Application to the Oran Region, Algeria
Authors: Dehni Abdellatif, Lounis Mourad
Abstract:
The new approach of applied spatial geostatistics in materials sciences, agriculture accuracy, agricultural statistics, permitted an apprehension of managing and monitoring the water and groundwater qualities in a relationship with salt-affected soil. The anterior experiences concerning data acquisition, spatial-preparation studies on optical and multispectral data has facilitated the integration of correction models of electrical conductivity related with soils temperature (horizons of soils). For tomography apprehension, this physical parameter has been extracted from calibration of the thermal band (LANDSAT ETM+6) with a radiometric correction. Our study area is Oran region (Northern West of Algeria). Different spectral indices are determined such as salinity and sodicity index, the Combined Spectral Reflectance Index (CSRI), Normalized Difference Vegetation Index (NDVI), emissivity, Albedo, and Sodium Adsorption Ratio (SAR). The approach of geostatistical modeling of electrical conductivity (salinity), appears to be a useful decision support system for estimating corrected electrical resistivity related to the temperature of surface soils, according to the conversion models by substitution, the reference temperature at 25°C (where hydrochemical data are collected with this constraint). The Brightness temperatures extracted from satellite reflectance (LANDSAT ETM+) are used in consistency models to estimate electrical resistivity. The confusions that arise from the effects of salt stress and water stress removed followed by seasonal application of the geostatistical analysis in Geographic Information System (GIS) techniques investigation and monitoring the variation of the electrical conductivity in the alluvial aquifer of Es-Sénia for the salt-affected soil.Keywords: geostatistical modelling, landsat, brightness temperature, conductivity
Procedia PDF Downloads 4415894 '3D City Model' through Quantum Geographic Information System: A Case Study of Gujarat International Finance Tec-City, Gujarat, India
Authors: Rahul Jain, Pradhir Parmar, Dhruvesh Patel
Abstract:
Planning and drawing are the important aspects of civil engineering. For testing theories about spatial location and interaction between land uses and related activities the computer based solution of urban models are used. The planner’s primary interest is in creation of 3D models of building and to obtain the terrain surface so that he can do urban morphological mappings, virtual reality, disaster management, fly through generation, visualization etc. 3D city models have a variety of applications in urban studies. Gujarat International Finance Tec-City (GIFT) is an ongoing construction site between Ahmedabad and Gandhinagar, Gujarat, India. It will be built on 3590000 m2 having a geographical coordinates of North Latitude 23°9’5’’N to 23°10’55’’ and East Longitude 72°42’2’’E to 72°42’16’’E. Therefore to develop 3D city models of GIFT city, the base map of the city is collected from GIFT office. Differential Geographical Positioning System (DGPS) is used to collect the Ground Control Points (GCP) from the field. The GCP points are used for the registration of base map in QGIS. The registered map is projected in WGS 84/UTM zone 43N grid and digitized with the help of various shapefile tools in QGIS. The approximate height of the buildings that are going to build is collected from the GIFT office and placed on the attribute table of each layer created using shapefile tools. The Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global (30 m X 30 m) grid data is used to generate the terrain of GIFT city. The Google Satellite Map is used to place on the background to get the exact location of the GIFT city. Various plugins and tools in QGIS are used to convert the raster layer of the base map of GIFT city into 3D model. The fly through tool is used for capturing and viewing the entire area in 3D of the city. This paper discusses all techniques and their usefulness in 3D city model creation from the GCP, base map, SRTM and QGIS.Keywords: 3D model, DGPS, GIFT City, QGIS, SRTM
Procedia PDF Downloads 2475893 Enhancing Technical Trading Strategy on the Bitcoin Market using News Headlines and Language Models
Authors: Mohammad Hosein Panahi, Naser Yazdani
Abstract:
we present a technical trading strategy that leverages the FinBERT language model and financial news analysis with a focus on news related to a subset of Nasdaq 100 stocks. Our approach surpasses the baseline Range Break-out strategy in the Bitcoin market, yielding a remarkable 24.8% increase in the win ratio for all Friday trades and an impressive 48.9% surge in short trades specifically on Fridays. Moreover, we conduct rigorous hypothesis testing to establish the statistical significance of these improvements. Our findings underscore considerable potential of our NLP-driven approach in enhancing trading strategies and achieving greater profitability within financial markets.Keywords: quantitative finance, technical analysis, bitcoin market, NLP, language models, FinBERT, technical trading
Procedia PDF Downloads 755892 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 2005891 Phase Behavior Modelling of Libyan Near-Critical Gas-Condensate Field
Authors: M. Khazam, M. Altawil, A. Eljabri
Abstract:
Fluid properties in states near a vapor-liquid critical region are the most difficult to measure and to predict with EoS models. The principal model difficulty is that near-critical property variations do not follow the same mathematics as at conditions far away from the critical region. Libyan NC98 field in Sirte basin is a typical example of near critical fluid characterized by high initial condensate gas ratio (CGR) greater than 160 bbl/MMscf and maximum liquid drop-out of 25%. The objective of this paper is to model NC98 phase behavior with the proper selection of EoS parameters and also to model reservoir depletion versus gas cycling option using measured PVT data and EoS Models. The outcomes of our study revealed that, for accurate gas and condensate recovery forecast during depletion, the most important PVT data to match are the gas phase Z-factor and C7+ fraction as functions of pressure. Reasonable match, within -3% error, was achieved for ultimate condensate recovery at abandonment pressure of 1500 psia. The smooth transition from gas-condensate to volatile oil was fairly simulated by the tuned PR-EoS. The predicted GOC was approximately at 14,380 ftss. The optimum gas cycling scheme, in order to maximize condensate recovery, should not be performed at pressures less than 5700 psia. The contribution of condensate vaporization for such field is marginal, within 8% to 14%, compared to gas-gas miscible displacement. Therefore, it is always recommended, if gas recycle scheme to be considered for this field, to start it at the early stage of field development.Keywords: EoS models, gas-condensate, gas cycling, near critical fluid
Procedia PDF Downloads 3185890 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks
Authors: Muneeb Ullah, Daishihan, Xiadong Young
Abstract:
Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.Keywords: classification, deep learning, medical images, CXR, GAN.
Procedia PDF Downloads 965889 Comparing Stability Index MAPping (SINMAP) Landslide Susceptibility Models in the Río La Carbonera, Southeast Flank of Pico de Orizaba Volcano, Mexico
Authors: Gabriel Legorreta Paulin, Marcus I. Bursik, Lilia Arana Salinas, Fernando Aceves Quesada
Abstract:
In volcanic environments, landslides and debris flows occur continually along stream systems of large stratovolcanoes. This is the case on Pico de Orizaba volcano, the highest mountain in Mexico. The volcano has a great potential to impact and damage human settlements and economic activities by landslides. People living along the lower valleys of Pico de Orizaba volcano are in continuous hazard by the coalescence of upstream landslide sediments that increased the destructive power of debris flows. These debris flows not only produce floods, but also cause the loss of lives and property. Although the importance of assessing such process, there is few landslide inventory maps and landslide susceptibility assessment. As a result in México, no landslide susceptibility models assessment has been conducted to evaluate advantage and disadvantage of models. In this study, a comprehensive study of landslide susceptibility models assessment using GIS technology is carried out on the SE flank of Pico de Orizaba volcano. A detailed multi-temporal landslide inventory map in the watershed is used as framework for the quantitative comparison of two landslide susceptibility maps. The maps are created based on 1) the Stability Index MAPping (SINMAP) model by using default geotechnical parameters and 2) by using findings of volcanic soils geotechnical proprieties obtained in the field. SINMAP combines the factor of safety derived from the infinite slope stability model with the theory of a hydrologic model to produce the susceptibility map. It has been claimed that SINMAP analysis is reasonably successful in defining areas that intuitively appear to be susceptible to landsliding in regions with sparse information. The validations of the resulting susceptibility maps are performed by comparing them with the inventory map under LOGISNET system which provides tools to compare by using a histogram and a contingency table. Results of the experiment allow for establishing how the individual models predict the landslide location, advantages, and limitations. The results also show that although the model tends to improve with the use of calibrated field data, the landslide susceptibility map does not perfectly represent existing landslides.Keywords: GIS, landslide, modeling, LOGISNET, SINMAP
Procedia PDF Downloads 3135888 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.
Authors: Georgia Pozoukidou
Abstract:
TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations
Procedia PDF Downloads 2925887 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives
Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović
Abstract:
In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).Keywords: benzimidazoles, QSAR, ADME, in silico
Procedia PDF Downloads 3755886 Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer
Authors: Yufen Qin
Abstract:
Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory.Keywords: language model, natural language processing, prompt, text sentiment transfer
Procedia PDF Downloads 815885 Understanding the Nature of Student Conceptions of Mathematics: A Study of Mathematics Students in Higher Education
Authors: Priscilla Eng Lian Murphy
Abstract:
This study examines the nature of student conceptions of mathematics in higher education using quantitative research methods. This study validates the Short Form of Conception of Mathematics survey as well as reveals the epistemological nature of student conceptions of mathematics. Using a random sample of mathematics students in Australia and New Zealand (N=274), this paper highlighted three key findings, of relevance to lecturers in higher education. Firstly, descriptive data shows that mathematics students in Australia and New Zealand reported that mathematics is about numbers and components, models and life. Secondly, models conceptions of mathematics predicted strong examination performances using regression analyses; and thirdly, there is a positive correlation between high mathematics examination scores and cohesive conceptions of mathematics.Keywords: higher education, learning mathematics, mathematics performances, student conceptions of mathematics
Procedia PDF Downloads 2645884 Finite Element Modelling of a 3D Woven Composite for Automotive Applications
Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno
Abstract:
A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.Keywords: 3D woven composite (3DWC), meso-scale finite element model, homogenisation of elastic material properties, Abaqus Python scripting
Procedia PDF Downloads 1455883 Using Infrared Thermography, Photogrammetry and a Remotely Piloted Aircraft System to Create 3D Thermal Models
Authors: C. C. Kruger, P. Van Tonder
Abstract:
Concrete deteriorates over time and the deterioration can be escalated due to multiple factors. When deteriorations are beneath the concrete’s surface, they could be unknown, even more so when they are located at high elevations. Establishing the severity of such defects could prove difficult and therefore the need to find efficient, safe and economical methods to find these defects becomes ever more important. Current methods using thermography to find defects require equipment such as scaffolding to reach these higher elevations. This could become time- consuming and costly. The risks involved with personnel scaffold or abseil to such heights are high. Accordingly, by combining the technologies of a thermal camera and a Remotely Piloted Aerial System it could be used to find better diagnostic methods. The data could then be constructed into a 3D thermal model to easy representation of the resultsKeywords: concrete, infrared thermography, 3D thermal models, diagnostic
Procedia PDF Downloads 1735882 Practice, Observation, and Gender Effects on Students’ Entrepreneurial Skills Development When Teaching through Entrepreneurship Is Adopted: Case of University of Tunis El Manar
Authors: Hajer Chaker Ben Hadj Kacem, Thouraya Slama, Néjiba El Yetim Zribi
Abstract:
This paper analyzes the effects of gender, affiliation, prior work experience, social work, and vicarious learning through family role models on entrepreneurial skills development by students when they have learned through the entrepreneurship method in Tunisia. Authors suggest that these variables enhance the development of students’ entrepreneurial skills when combined with teaching through entrepreneurship. The article assesses the impact of these combinations by comparing their effects on the development of thirteen students’ entrepreneurial competencies, namely entrepreneurial mindset, core self-evaluation, entrepreneurial attitude, entrepreneurial knowledge, creativity, financial literacy, managing ambiguity, marshaling of resources, planning, teaching methods, entrepreneurial teachers, innovative employee, and Entrepreneurial intention. Authors use a two-sample independent t-test to make the comparison, and the results indicate that, when combined with teaching through the entrepreneurship method, students with prior work experience developed better six entrepreneurial skills; students with social work developed better three entrepreneurial skills, men developed better four entrepreneurial skills than women. However, all students developed their entrepreneurial skills through this practical method regardless of their affiliation and their vicarious learning through family role models.Keywords: affiliation, entrepreneurial skills, gender, role models, social work, teaching through entrepreneurship, vicarious learning, work experience
Procedia PDF Downloads 1105881 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process
Authors: Mahesh K. Chudasama, Harit K. Raval
Abstract:
3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.Keywords: analytical modeling, cone frustum, dynamic bending, static bending
Procedia PDF Downloads 3075880 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 102