Search results for: Single Throw Mechanical Equipment (STME)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9449

Search results for: Single Throw Mechanical Equipment (STME)

869 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 66
868 Exploration of the Psychological Aspect of Empowerment of Marginalized Women Working in the Unorganized Sector

Authors: Sharmistha Chanda, Anindita Choudhuri

Abstract:

This exploratory study highlights the psychological aspects of women's empowerment to find the importance of the psychological dimension of empowerment, such as; meaning, competence, self-determination, impact, and assumption, especially in the weaker marginalized section of women. A large proportion of rural, suburban, and urban poor survive by working in unorganized sectors of metropolitan cities. Relative Poverty and lack of employment in rural areas and small towns drive many people to the metropolitan city for work and livelihood. Women working in that field remain unrecognized as people of low socio-economic status. They are usually willing to do domestic work as daily wage workers, single wage earners, street vendors, family businesses like agricultural activities, domestic workers, and self-employed. Usually, these women accept such jobs because they do not have such an opportunity as they lack the basic level of education that is required for better-paid jobs. The unorganized sector, on the other hand, has no such clear-cut employer-employee relationships and lacks most forms of social protection. Having no fixed employer, these workers are casual, contractual, migrant, home-based, own-account workers who attempt to earn a living from whatever meager assets and skills they possess. Women have become more empowered both financially and individually through small-scale business ownership or entrepreneurship development and in household-based work. In-depth interviews have been done with 10 participants in order to understand their living styles, habits, self-identity, and empowerment in their society in order to evaluate the key challenges that they may face following by qualitative research approach. Transcription has been done from the collected data. The three-layer coding technique guides the data analysis process, encompassing – open coding, axial coding, and selective coding. Women’s Entrepreneurship is one of the foremost concerns as the Government, and non-government institutions are readily serving this domain with the primary objectives of promoting self-employment opportunities in general and empowering women in specific. Thus, despite hardship and unrecognition unorganized sector provides a huge array of opportunities for rural and sub-urban poor to earn. Also, the upper section of society tends to depend on this working force. This study gave an idea about the well-being, and meaning in life, life satisfaction on the basis of their lived experience.

Keywords: marginalized women, psychological empowerment, relative poverty, unorganized sector

Procedia PDF Downloads 61
867 Calling the Shots: How Others’ Mistakes May Influence Vaccine Take-up

Authors: Elizabeth Perry, Jylana Sheats

Abstract:

Scholars posit that there is an overlap between the fields of Behavioral Economics (BE) and Behavior Science (BSci)—and that consideration of concepts from both may facilitate a greater understanding of health decision-making processes. For example, the ‘intention-action gap’ is one BE concept to explain sup-optimal decision-making. It is described as having knowledge that does not translate into behavior. Complementary best BSci practices may provide insights into behavioral determinants and relevant behavior change techniques (BCT). Within the context of BSci, this exploratory study aimed to apply a BE concept with demonstrated effectiveness in financial decision-making to a health behavior: influenza (flu) vaccine uptake. Adults aged >18 years were recruited on Amazon’s Mechanical Turk, a digital labor market where anonymous users perform simple tasks at low cost. Eligible participants were randomized into 2 groups, reviewed a scenario, and then completed a survey on the likelihood of receiving a flu shot. The ‘usual care’ group’s scenario included standard CDC guidance that supported the behavior. The ‘intervention’ group’s scenario included messaging about people who did not receive the flu shot. The framing was such that participants could learn from others’ (strangers) mistakes and the subsequent health consequences: ‘Last year, other people who didn’t get the vaccine were about twice as likely to get the flu, and a number of them were hospitalized or even died. Don’t risk it.’ Descriptive statistics and chi-square analyses were performed on the sample. There were 648 participants (usual care, n=326; int., n=322). Among racial/ethnic minorities (n=169; 57% aged < 40), the intervention group was 22% more likely to report that they were ‘extremely’ or ‘moderately’ likely to get the flu vaccine (p = 0.11). While not statistically significant, findings suggest that framing messages from the perspective of learning from the mistakes of unknown others coupled with the BCT ‘knowledge about the health consequences’ may help influence flu vaccine uptake among the study population. With the widely documented disparities in vaccine uptake, exploration of the complementary application of these concepts and strategies may be critical.

Keywords: public health, decision-making, vaccination, behavioral science

Procedia PDF Downloads 40
866 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation

Authors: Zeynep Yazicioglu

Abstract:

Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.

Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project

Procedia PDF Downloads 101
865 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System

Authors: Nicholas Pearce, Eun-jin Kim

Abstract:

Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.

Keywords: cardiovascular system, left atrium, numerical model, MEF

Procedia PDF Downloads 113
864 Numerical Analysis and Parametric Study of Granular Anchor Pile on Expansive Soil Using Finite Element Method: Case of Addis Ababa, Bole Sub-City

Authors: Abdurahman Anwar Shfa

Abstract:

Addis Ababa is among the fastest-growing urban areas in the country. There are many new constructions of public and private condominiums and large new low rising residential buildings for residents. But the wide range of heaving problems of expansive soil in the city become a major difficulty for the construction sector, especially in low rising buildings, by causing different problems such as distortion and cracking of floor slabs, cracks in grade beams, and walls, jammed or misaligned Doors and Windows; failure of blocks supporting grade beams. Hence an attractive and economical design solution may be required for such type of problem. Therefore, this research works to publicize a recent innovation called the Granular Anchor Pile system for the reduction of the heave effect of expansive soil. This research is written for the objective of numerical investigation of the behavior of Granular Anchor Pile under the heave using Finite element analysis PLAXIS 3D program by means of studying the effect of different parameters like length of the pile, diameter of pile, and pile group by applying prescribed displacement of 10% of pile diameter at the center of granular pile anchor. An additional objective is examining the suitability of Granular Anchor Pile as an alternative solution for heave problems in expansive soils mostly for low rising buildings found in Addis Ababa City, especially in Bole Sub-City, by considering different factors such as the local availability of construction materials, economy for the construction, installation process condition, environmental benefit, time consumption and performance of the pile. Accordingly, the performance of the pile improves when the length of the pile increases. This is due to an increase in the self-weight of the pile and friction mobilized between the pile and soil interface. Additionally, the uplift capacity of the pile decreases when increasing the pile diameter and spacing between the piles in the group due to a reduction in the number of piles in the group. But, few cases show that the uplift capacity of the pile increases with increasing the pile diameter for a constant number of piles in the group and increasing the spacing between the pile and in the case of single pile capacity. This is due to the increment of piles' self-weight and surface area of the pile group and also the decrement of stress overlap in the soil caused by piles respectively. According to the suitability analysis, it is observed that Granular Anchor Pile is sensible or practical to apply for the actual problem of Expansive soil in a low rising building constructed in the country because of its convenience for all considerations.

Keywords: expansive soil, granular anchor pile, PLAXIS, suitability analysis

Procedia PDF Downloads 31
863 Flexible Programmable Circuit Board Electromagnetic 1-D Scanning Micro-Mirror Laser Rangefinder by Active Triangulation

Authors: Vixen Joshua Tan, Siyuan He

Abstract:

Scanners have been implemented within single point laser rangefinders, to determine the ranges within an environment by sweeping the laser spot across the surface of interest. The research motivation is to exploit a smaller and cheaper alternative scanning component for the emitting portion within current designs of laser rangefinders. This research implements an FPCB (Flexible Programmable Circuit Board) Electromagnetic 1-Dimensional scanning micro-mirror as a scanning component for laser rangefinding by means of triangulation. The prototype uses a laser module, micro-mirror, and receiver. The laser module is infrared (850 nm) with a power output of 4.5 mW. The receiver consists of a 50 mm convex lens and a 45mm 1-dimensional PSD (Position Sensitive Detector) placed at the focal length of the lens at 50 mm. The scanning component is an elliptical Micro-Mirror attached onto an FPCB Structure. The FPCB structure has two miniature magnets placed symmetrically underneath it on either side, which are then electromagnetically actuated by small solenoids, causing the FPCB to mechanically rotate about its torsion beams. The laser module projects a laser spot onto the micro-mirror surface, hence producing a scanning motion of the laser spot during the rotational actuation of the FPCB. The receiver is placed at a fixed distance from the micro-mirror scanner and is oriented to capture the scanning motion of the laser spot during operation. The elliptical aperture dimensions of the micro-mirror are 8mm by 5.5 mm. The micro-mirror is supported by an FPCB with two torsion beams with dimensions of 4mm by 0.5mm. The overall length of the FPCB is 23 mm. The voltage supplied to the solenoids is sinusoidal with an amplitude of 3.5 volts and 4.5 volts to achieve optical scanning angles of +/- 10 and +/- 17 degrees respectively. The operating scanning frequency during experiments was 5 Hz. For an optical angle of +/- 10 degrees, the prototype is capable of detecting objects within the ranges from 0.3-1.2 meters with an error of less than 15%. As for an optical angle of +/- 17 degrees the measuring range was from 0.3-0.7 meters with an error of 16% or less. Discrepancy between the experimental and actual data is possibly caused by misalignment of the components during experiments. Furthermore, the power of the laser spot collected by the receiver gradually decreased as the object was placed further from the sensor. A higher powered laser will be tested to potentially measure further distances more accurately. Moreover, a wide-angled lens will be used in future experiments when higher scanning angles are used. Modulation within the current and future higher powered lasers will be implemented to enable the operation of the laser rangefinder prototype without the use of safety goggles.

Keywords: FPCB electromagnetic 1-D scanning micro-mirror, laser rangefinder, position sensitive detector, PSD, triangulation

Procedia PDF Downloads 134
862 Prediction of Pile-Raft Responses Induced by Adjacent Braced Excavation in Layered Soil

Authors: Linlong Mu, Maosong Huang

Abstract:

Considering excavations in urban areas, the soil deformation induced by the excavations usually causes damage to the surrounding structures. Displacement control becomes a critical indicator of foundation design in order to protect the surrounding structures. Evaluation, the damage potential of the surrounding structures induced by the excavations, usually depends on the finite element method (FEM) because of the complexity of the excavation and the variety of the surrounding structures. Besides, evaluation the influence of the excavation on surrounding structures is a three-dimensional problem. And it is now well recognized that small strain behaviour of the soil influences the responses of the excavation significantly. Three-dimensional FEM considering small strain behaviour of the soil is a very complex method, which is hard for engineers to use. Thus, it is important to obtain a simplified method for engineers to predict the influence of the excavations on the surrounding structures. Based on large-scale finite element calculation with small-strain based soil model coupling with inverse analysis, an empirical method is proposed to calculate the three-dimensional soil movement induced by braced excavation. The empirical method is able to capture the small-strain behaviour of the soil. And it is suitable to be used in layered soil. Then the free-field soil movement is applied to the pile to calculate the responses of the pile in both vertical and horizontal directions. The asymmetric solutions for problems in layered elastic half-space are employed to solve the interactions between soil points. Both vertical and horizontal pile responses are solved through finite difference method based on elastic theory. Interactions among the nodes along a single pile, pile-pile interactions, pile-soil-pile interaction action and soil-soil interactions are counted to improve the calculation accuracy of the method. For passive piles, the shadow effects are also calculated in the method. Finally, the restrictions of the raft on the piles and the soils are summarized as: (1) the summations of the internal forces between the elements of the raft and the elements of the foundation, including piles and soil surface elements, is equal to 0; (2) the deformations of pile heads or of the soil surface elements are the same as the deformations of the corresponding elements of the raft. Validations are carried out by comparing the results from the proposed method with the results from the model tests, FEM and other existing literatures. From the comparisons, it can be seen that the results from the proposed method fit with the results from other methods very well. The method proposed herein is suitable to predict the responses of the pile-raft foundation induced by braced excavation in layered soil in both vertical and horizontal directions when the deformation is small. However, more data is needed to verify the method before it can be used in practice.

Keywords: excavation, pile-raft foundation, passive piles, deformation control, soil movement

Procedia PDF Downloads 231
861 Diagnosis of Choledocholithiasis with Endosonography

Authors: A. Kachmazova, A. Shadiev, Y. Teterin, P. Yartcev

Abstract:

Introduction: Biliary calculi disease (LCS) still occupies the leading position among urgent diseases of the abdominal cavity, manifesting itself from asymptomatic course to life-threatening states. Nowadays arsenal of diagnostic methods for choledocholithiasis is quite wide: ultrasound, hepatobiliscintigraphy (HBSG), magnetic resonance imaging (MRI), endoscopic retrograde cholangiography (ERCP). Among them, transabdominal ultrasound (TA ultrasound) is the most accessible and routine diagnostic method. Nowadays ERCG is the "gold" standard in diagnosis and one-stage treatment of biliary tract obstruction. However, transpapillary techniques are accompanied by serious postoperative complications (postmanipulative pancreatitis (3-5%), endoscopic papillosphincterotomy bleeding (2%), cholangitis (1%)), the lethality being 0.4%. GBSG and MRI are also quite informative methods in the diagnosis of choledocholithiasis. Small size of concrements, their localization in intrapancreatic and retroduodenal part of common bile duct significantly reduces informativity of all diagnostic methods described above, that demands additional studying of this problem. Materials and Methods: 890 patients with the diagnosis of cholelithiasis (calculous cholecystitis) were admitted to the Sklifosovsky Scientific Research Institute of Hospital Medicine in the period from August, 2020 to June, 2021. Of them 115 people with mechanical jaundice caused by concrements in bile ducts. Results: Final EUS diagnosis was made in all patients (100,0%). In all patients in whom choledocholithiasis diagnosis was revealed or confirmed after EUS, ERCP was performed urgently (within two days from the moment of its detection) as the X-ray operation room was provided; it confirmed the presence of concrements. All stones were removed by lithoextraction using Dormia basket. The postoperative period in these patients had no complications. Conclusions: EUS is the most informative and safe diagnostic method, which allows to detect choledocholithiasis in patients with discrepancies between clinical-laboratory and instrumental methods of diagnosis in shortest time, that in its turn will help to decide promptly on the further tactics of patient treatment. We consider it reasonable to include EUS in the diagnostic algorithm for choledocholithiasis. Disclosure: Nothing to disclose.

Keywords: endoscopic ultrasonography, choledocholithiasis, common bile duct, concrement, ERCP

Procedia PDF Downloads 84
860 Climate Smart Agriculture: Nano Technology in Solar Drying

Authors: Figen Kadirgan, M. A. Neset Kadirgan, Gokcen A. Ciftcioglu

Abstract:

Addressing food security and climate change challenges have to be done in an integrated manner. To increase food production and to reduce emissions intensity, thus contributing to mitigate climate change, food systems have to be more efficient in the use of resources. To ensure food security and adapt to climate change they have to become more resilient. The changes required in agricultural and food systems will require the creation of supporting institutions and enterprises to provide services and inputs to smallholders, fishermen and pastoralists, and transform and commercialize their production more efficiently. Thus there is continously growing need to switch to green economy where simultaneously causes reduction in carbon emissions and pollution, enhances energy and resource-use efficiency; and prevents the loss of biodiversity and ecosystem services. Smart Agriculture takes into account the four dimensions of food security, availability, accessibility, utilization, and stability. It is well known that, the increase in world population will strengthen the population-food imbalance. The emphasis on reduction of food losses makes a point on production, on farmers, on increasing productivity and income ensuring food security. Where also small farmers enhance their income and stabilize their budget. The use of solar drying for agricultural, marine or meat products is very important for preservation. Traditional sun drying is a relatively slow process where poor food quality is seen due to an infestation of insects, enzymatic reactions, microorganism growth and micotoxin development. In contrast, solar drying has a sound solution to all these negative effects of natural drying and artificial mechanical drying. The technical directions in the development of solar drying systems for agricultural products are compact collector design with high efficiency and low cost. In this study, using solar selective surface produced in Selektif Teknoloji Co. Inc. Ltd., solar dryers with high efficiency will be developed and a feasibility study will be realized.

Keywords: energy, renewable energy, solar collector, solar drying

Procedia PDF Downloads 223
859 Analyzing the Use of Augmented and Virtual Reality to Teach Social Skills to Students with Autism

Authors: Maggie Mosher, Adam Carreon, Sean Smith

Abstract:

A systematic literature review was conducted to explore the evidence base on the use of augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR) to present social skill instruction to school-age students with autism spectrum disorder (ASD). Specifically, the systematic review focus was on a. the participants and intervention agents using AR, VR, MR, and XR for social skill acquisition b. the social skills taught through these mediums and c. the social validity measures (i.e., goals, procedures, and outcomes) reported in these studies. Forty-one articles met the inclusion criteria. Researchers in six studies taught social skills to students through AR, in 27 studies through non-immersive VR, and in 10 studies through immersive VR. No studies used MR or XR. The primary targeted social skills were relationship skills, emotion recognition, social awareness, cooperation, and executive functioning. An intervention to improve many social skills was implemented by 73% of researchers, 17% taught a single skill, and 10% did not clearly state the targeted skill. The intervention was considered effective in 26 of the 41 studies (63%), not effective in four studies (10%), and 11 studies (27%) reported mixed results. No researchers reported information for all 17 social validity indicators. The social validity indicators reported by researchers ranged from two to 14. Social validity measures on the feelings toward and use of the technology were provided in 22 studies (54%). Findings indicated both AR and VR are promising platforms for providing social skill instruction to students with ASD. Studies utilizing this technology show a number of social validity indicators. However, the limited information provided on the various interventions, participant characteristics, and validity measures, offers insufficient evidence of the impact of these technologies in teaching social skills to students with ASD. Future research should develop a protocol for training treatment agents to assess the role of different variables (i.e., whether agents are customizing content, monitoring student learning, using intervention specific vocabulary in their day to day instruction). Sustainability may be increased by providing training in the technology to both treatment agents and participants. Providing scripts of instruction occurring within the intervention would provide the needed information to determine the primary method of teaching within the intervention. These variables play a role in maintenance and generalization of the social skills. Understanding the type of feedback provided would help researchers determine if students were able to feel rewarded for progressing through the scenarios or if students require rewarding aspects within the intervention (i.e., badges, trophies). AR has the potential to generalize instruction and VR has the potential for providing a practice environment for performance deficits. Combining these two technologies into a mixed reality intervention may provide a more cohesive and effective intervention.

Keywords: autism, augmented reality, social and emotional learning, social skills, virtual reality

Procedia PDF Downloads 108
858 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 207
857 Genetic Variations of Two Casein Genes among Maghrabi Camels Reared in Egypt

Authors: Othman E. Othman, Amira M. Nowier, Medhat El-Denary

Abstract:

Camels play an important socio-economic role within the pastoral and agricultural system in the dry and semidry zones of Asia and Africa. Camels are economically important animals in Egypt where they are dual purpose animals (meat and milk). The analysis of chemical composition of camel milk showed that the total protein contents ranged from 2.4% to 5.3% and it is divided into casein and whey proteins. The casein fraction constitutes 52% to 89% of total camel milk protein and it divided into 4 fractions namely αs1, αs2, β and κ-caseins which are encoded by four tightly genes. In spite of the important role of casein genes and the effects of their genetic polymorphisms on quantitative traits and technological properties of milk, the studies for the detection of genetic polymorphism of camel milk genes are still limited. Due to this fact, this work focused - using PCR-RFP and sequencing analysis - on the identification of genetic polymorphisms and SNPs of two casein genes in Maghrabi camel breed which is a dual purpose camel breed in Egypt. The amplified fragments at 488-bp of the camel κ-CN gene were digested with AluI endonuclease. The results showed the appearance of three different genotypes in the tested animals; CC with three digested fragments at 203-, 127- and 120-bp, TT with three digested fragments at 203-, 158- and 127-bp and CT with four digested fragments at 203-, 158-, 127- and 120-bp. The frequencies of three detected genotypes were 11.0% for CC, 48.0% for TT and 41.0% for CT genotypes. The sequencing analysis of the two different alleles declared the presence of a single nucleotide polymorphism (C→T) at position 121 in the amplified fragments which is responsible for the destruction of a restriction site (AG/CT) in allele T and resulted in the presence of two different alleles C and T in tested animals. The nucleotide sequences of κ-CN alleles C and T were submitted to GenBank with the accession numbers; KU055605 and KU055606, respectively. The primers used in this study amplified 942-bp fragments spanning from exon 4 to exon 6 of camel αS1-Casein gene. The amplified fragments were digested with two different restriction enzymes; SmlI and AluI. The results of SmlI digestion did not show any restriction site whereas the digestion with AluI endonuclease revealed the presence of two restriction sites AG^CT at positions 68^69 and 631^632 yielding the presence of three digested fragments with sizes 68-, 563- and 293-bp.The nucleotide sequences of this fragment from camel αS1-Casein gene were submitted to GenBank with the accession number KU145820. In conclusion, the genetic characterization of quantitative traits genes which are associated with the production traits like milk yield and composition is considered an important step towards the genetic improvement of livestock species through the selection of superior animals depending on the favorable alleles and genotypes; marker assisted selection (MAS).

Keywords: genetic polymorphism, SNP polymorphism, Maghrabi camels, κ-Casein gene, αS1-Casein gene

Procedia PDF Downloads 610
856 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 383
855 Kawasaki Disease in a Two Months Kuwaiti Girl: A Case Report ‎and Literature Review.‎

Authors: Hanan Bin Nakhi, Asaad M. Albadrawi, Maged Al Shahat, ‎Entesar Mandani

Abstract:

Background:‎ Kawasaki disease (KD) is one of the most common vasculitis of childhood. ‎It is considered the leading cause of acquired heart disease in children. The ‎peak age of occurrence is 6 to 24 months, with 80% of affected children being ‎less than 5 years old. There are only a few reports of KD in infants younger ‎than 6 months. Infants had a higher incidence of atypical KD and of coronary ‎artery complications. This case report from Kuwait will reinforce considering ‎atypical KD in case of sepsis like condition with negative cultures and ‎unresponding to systemic antibiotics. Early diagnosis allows early treatment ‎with intravenous immune globulin (IVIG) and so decreases the incidence of ‎cardiac aneurysm.‎ Case Report:‎ A 2 month old female infant, product of full term normal delivery to ‎consanguineous parents, presented with fever and poor feeding. She was ‎admitted and treated as urinary tract infection as her urine routine revealed ‎pyurea. The baby continued to have persistent fever and hypoactivity inspite ‎of using intravenous antibiotics. Latter, she developed non purulent ‎conjunctivitis, skin mottling, oedema of the face / lower limb and was treated ‎in intensive care unit as a case of septic shock. In spite of her partial general ‎improvement, she continued to look unwell, hypoactive and had persistent ‎fever. Septic work up, metabolic, and immunologic screen were negative. KD ‎was suspected when the baby developed polymorphic erythematous rash and ‎noticed to have peeling of skin at perianal area and periangular area of the ‎fingers of the hand and feet. IVIG was given in dose of 2 gm/kg/day in single ‎dose and aspirin 100 mg/kg/day in four divided doses. The girl showed marked ‎clinical improvement. The fever subsided dramatically and the level acute ‎phase reactant markedly decreased but the platelets count increased to ‎‎1600000/mm3. Echo cardiography showed mild dilatation of mid right ‎coronary artery. Aspirin was continued in a dose of 5 mg/kg/d till repeating ‎cardiac echo. ‎Conclusion:‎ A high index of suspicion of KD must be maintained in young infants with ‎prolonged unexplained fever. Accepted criteria should be less restrictive to ‎allow early diagnosis of a typical KD in infants less than 6 months of age. ‎Timely appropriate treatment with IVIG is essential to avoid severe coronary ‎sequels.‎

Keywords: Kawasaki disease, atypical Kawasaki disease, infantile Kawasaki disease, hypo activity‎ ‎

Procedia PDF Downloads 317
854 Nanotechnology in Construction as a Building Security

Authors: Hanan Fayez Hussein

Abstract:

‘Due to increasing environmental challenges and security problems in the world such as global warming, storms, and terrorism’, humans have discovered new technologies and new materials in order to program daily life. As providing physical and psychological security is one of the primary functions of architecture, so in order to provide security, building must prevents unauthorized entry and harm to occupant and reduce the threat of attack by making building less attractive targets by new technologies such as; Nanotechnology, which has emerged as a major science and technology focus of the 21st century and will be the next industrial revolution. Nanotechnology is control of the properties of matter, and it deals with structures of the size 100 nanometers or smaller in at least one dimension and has wide application in various fields. The construction and architecture sectors were among the first to be identified as a promising application area for nanotechnology. The advantages of using nanomaterials in construction are enormous, and promises heighten building security by utilizing the strength of building materials to make our buildings more secure and get smart home. Access barriers such as wall and windows could incorporate stronger materials benefiting from nano-reinforcement utilizing nanotubes and nano composites to act as protective cover. Carbon nanotubes, as one of nanotechnology application, can be designed up to 250 times stronger than steel. Nano-enabled devices and materials offer both enhanced and, in some cases, completely new defence systems. In the addition, the small amount of carbon nanoparticles to the construction materials such as; cement, concrete, wood, glass, gypson, and steel can make these materials act as defence elements. This paper highlights the fact that nanotechnology can impact the future global security and how building’s envelop can act as a defensive cover for the building and can be resistance to any threats can attack it. Then focus on its effect on construction materials such as; Concrete can obtain by nanoadditives excellent mechanical, chemical, and physical properties with less material, which can acts as a precautionary shield to the building.

Keywords: nanomaterial, global warming, building security, smart homes

Procedia PDF Downloads 80
853 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State

Authors: Dong Zhao

Abstract:

Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂

Procedia PDF Downloads 55
852 Growth and Bone Health in Children following Liver Transplantation

Authors: Faris Alkhalil, Rana Bitar, Amer Azaz, Hisham Natour, Noora Almeraikhi, Mohamad Miqdady

Abstract:

Background: Children with liver transplantation are achieving very good survival and so there is now a need to concentrate on achieving good health in these patients and preventing disease. Immunosuppressive medications have side effects that need to be monitored and if possible avoided. Glucocorticoids and calcineurin inhibitors are detrimental to bone and mineral homeostasis in addition steroids can also affect linear growth. Steroid sparing regimes in renal transplant children has shown to improve children’s height. Aim: We aim to review the growth and bone health of children post liver transplant by measuring bone mineral density (BMD) using dual energy X-ray absorptiometry (DEXA) scan and assessing if there is a clear link between poor growth and impaired bone health and use of long term steroids. Subjects and Methods: This is a single centre retrospective Cohort study, we reviewed the medical notes of children (0-16 years) who underwent a liver transplantation between November 2000 to November 2016 and currently being followed at our centre. Results: 39 patients were identified (25 males and 14 females), the median transplant age was 2 years (range 9 months - 16 years), and the median follow up was 6 years. Four patients received a combined transplant, 2 kidney and liver transplant and 2 received a liver and small bowel transplant. The indications for transplant included, Biliary Atresia (31%), Acute Liver failure (18%), Progressive Familial Intrahepatic Cholestasis (15%), transplantable metabolic disease (10%), TPN related liver disease (8%), Primary Hyperoxaluria (5%), Hepatocellular carcinoma (3%) and other causes (10%). 36 patients (95%) were on a calcineurin inhibitor (34 patients were on Tacrolimus and 2 on Cyclosporin). The other three patients were on Sirolimus. Low dose long-term steroids was used in 21% of the patients. A considerable proportion of the patients had poor growth. 15% were below the 3rd centile for weight for age and 21% were below the 3rd centile for height for age. Most of our patients with poor growth were not on long term steroids. 49% of patients had a DEXA scan post transplantation. 21% of these children had low bone mineral density, one patient had met osteoporosis criteria with a vertebral fracture. Most of our patients with impaired bone health were not on long term steroids. 20% of the patients who did not undergo a DEXA scan developed long bone fractures and 50% of them were on long term steroid use which may suggest impaired bone health in these patients. Summary and Conclusion: The incidence of impaired bone health, although studied in limited number of patients; was high. Early recognition and treatment should be instituted to avoid fractures and improve bone health. Many of the patients were below the 3rd centile for weight and height however there was no clear relationship between steroid use and impaired bone health, reduced weight and reduced linear height.

Keywords: bone, growth, pediatric, liver, transplantation

Procedia PDF Downloads 278
851 Cupric Oxide Thin Films for Optoelectronic Application

Authors: Sanjay Kumar, Dinesh Pathak, Sudhir Saralch

Abstract:

Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented.

Keywords: absorber material, cupric oxide, dip coating, thin film

Procedia PDF Downloads 308
850 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects

Authors: Rafay Ahmed, Condon Lau

Abstract:

Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.

Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization

Procedia PDF Downloads 221
849 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 290
848 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing

Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel

Abstract:

There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.

Keywords: climate change, resilience, remote sensing, demographic and health surveys

Procedia PDF Downloads 164
847 Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating

Authors: S. K. Ghosh, C. Srivastava, P. K. Limaye, V. Kain

Abstract:

Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution.

Keywords: corrosion, electrodeposition, nanohardness, Ni-W-P alloy coating

Procedia PDF Downloads 347
846 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer

Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner

Abstract:

Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.

Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab

Procedia PDF Downloads 91
845 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System

Authors: Nishanthi N. S., Srikanth Vedantam

Abstract:

Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.

Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations

Procedia PDF Downloads 139
844 Comparison of Depth of Cure and Degree of Conversion between Opus Bulk Fill and X-Tra Fill Bulk Fill Composites

Authors: Yasaman Samani, Ali Golmohammadi

Abstract:

Introduction: The degree of conversion and depth of cure affects the clinical success of resin composite restorations directly. One of the main challenges in achieving a successful composite restoration is the achievement of sufficient depth of cure. The insufficient polymerization may lead to a decrease in the physical/mechanical and biological properties of resin composites and, as a result of that, unsuccessful composite restoration. Thus, because of the importance of studying and evaluating the depth of cure and degree of conversion in bulk-fill composites, we decided to evaluate and compare the degree of conversion and depth of cure in two bulk-fill composites; x-tra fill (Voco, Germany) and Opus Bulk fill APS (FGM, Brazil). Materials and Methods: Composite resin specimens (n=10) per group were prepared as cylinder blocks (4×8 mm) with bulk-fill composites, x-tra fil (Voco, Germany) designated as Group A, and Opus Bulk fill APS (FGM, Brazil) designated as Group B. Depth of cure was determined according to “ISO 4049; Depth of Cure” method, In which each specimen were cured (iLED, Woodpecker, China) 40 seconds and FTIR spectroscopy method was used to estimate the degree of conversion of both the bulk-fill composites. The degree of conversion of monomer to polymer was estimated individually in the coronal half (Group A1 and B1) and pulpal half (Group A2 and Group B2) by dividing each specimen into two halves. The data were analyzed using a Student’s t-test and one-way ANOVA at a 5% level of significance. Results: The mean depth of cure in x-tra fil (Voco, Germany) was 3.99 (±0.16), and for Opus Bulk fill, APS (FGM, Brazil) was 2.14 (±0.3). The degree of conversion percentage in Group A1 was 82.7 (±6.1), in group A2 was 73.4 (±5.2), in group B1 was 63.3 (±4.7) and in Group B2 was 56.5 (±7.7). Statistical analysis revealed a significant difference in the depth of cure between the two bulk-fill composites with x-tra fil (Voco, Germany) higher than Opus Bulk fill APS (FGM, Brazil) (P<0.001). The degree of conversion percentage also showed a significant difference, Group A1 being higher than A2 (P=0.0085), B1, and B2 (P<0.001). Group A2 was also higher than B1 (P=0.003) and B2 (P<0.001). There was no significant difference between B1 and B2 (P=0.072). Conclusion: The results indicate that x-tra fill has more depth of cure and a higher percentage of the degree of conversion than Opus Bulk fill APS. The coronal half of x-tra fil had the highest depth of cure percentage (82.66%), and the pulpal half of Opus Bulk fill APS had the lowest percentage (56.45%). Even though both bulk-fill composite materials had an acceptable degree of conversion (55% and higher), x-tra fill has shown better results.

Keywords: depth of cure, degree of conversion, bulk-fill composite, FTIR

Procedia PDF Downloads 99
843 Oligarchic Transitions within the Tunisian Autocratic Authoritarian System and the Struggle for Democratic Transformation: Before and beyond the 2010 Jasmine Revolution

Authors: M. Moncef Khaddar

Abstract:

This paper focuses mainly on a contextualized understanding of ‘autocratic authoritarianism’ in Tunisia without approaching its peculiarities in reference to the ideal type of capitalist-liberal democracy but rather analysing it as a Tunisian ‘civilian dictatorship’. This is reminiscent, to some extent, of the French ‘colonial authoritarianism’ in parallel with the legacy of the traditional formal monarchic absolutism. The Tunisian autocratic political system is here construed as a state manufactured nationalist-populist authoritarianism associated with a de facto presidential single party, two successive autocratic presidents and their subservient autocratic elites who ruled with an iron fist the de-colonialized ‘liberated nation’ that came to be subjected to a large scale oppression and domination under the new Tunisian Republic. The diachronic survey of Tunisia’s autocratic authoritarian system covers the early years of autocracy, under the first autocratic president Bourguiba, 1957-1987, as well as the different stages of its consolidation into a police-security state under the second autocratic president, Ben Ali, 1987-2011. Comparing the policies of authoritarian regimes, within what is identified synchronically as a bi-cephalous autocratic system, entails an in-depth study of the two autocrats, who ruled Tunisia for more than half a century, as modern adaptable autocrats. This is further supported by an exploration of the ruling authoritarian autocratic elites who played a decisive role in shaping the undemocratic state-society relations, under the 1st and 2nd President, and left an indelible mark, structurally and ideologically, on Tunisian polity. Emphasis is also put on the members of the governmental and state-party institutions and apparatuses that kept circulating and recycling from one authoritarian regime to another, and from the first ‘founding’ autocrat to his putschist successor who consolidated authoritarian stability, political continuity and autocratic governance. The reconfiguration of Tunisian political life, in the post-autocratic era, since 2011 will be analysed. This will be scrutinized, especially in light of the unexpected return of many high-profile figures and old guards of the autocratic authoritarian apparatchiks. How and why were, these public figures, from an autocratic era, able to return in a supposedly post-revolutionary moment? Finally, while some continue to celebrate the putative exceptional success of ‘democratic transition’ in Tunisia, within a context of ‘unfinished revolution’, others remain perplexed in the face of a creeping ‘oligarchic transition’ to a ‘hybrid regime’, characterized rather by elites’ reformist tradition than a bottom-up genuine democratic ‘change’. This latter is far from answering the 2010 ordinary people’s ‘uprisings’ and ‘aspirations, for ‘Dignity, Liberty and Social Justice’.

Keywords: authoritarianism, autocracy, democratization, democracy, populism, transition, Tunisia

Procedia PDF Downloads 146
842 Human Creativity through Dooyeweerd's Philosophy: The Case of Creative Diagramming

Authors: Kamaran Fathulla

Abstract:

Human creativity knows no bounds. More than a millennia ago humans have expressed their knowledge on cave walls and on clay artefacts. Using visuals such as diagrams and paintings have always provided us with a natural and intuitive medium for expressing such creativity. Making sense of human generated visualisation has been influenced by western scientific philosophies which are often reductionist in their nature. Theoretical frameworks such as those delivered by Peirce dominated our views of how to make sense of visualisation where a visual is seen as an emergent property of our thoughts. Others have reduced the richness of human-generated visuals to mere shapes drawn on a piece of paper or on a screen. This paper introduces an alternate framework where the centrality of human functioning is given explicit and richer consideration through the multi aspectual philosophical works of Herman Dooyeweerd. Dooyeweerd's framework of understanding reality was based on fifteen aspects of reality, each having a distinct core meaning. The totality of the aspects formed a ‘rainbow’ like spectrum of meaning. The thesis of this approach is that meaningful human functioning in most cases involves the diversity of all aspects working in synergy and harmony. Illustration of the foundations and applicability of this approach is underpinned in the case of humans use of diagramming for creative purposes, particularly within an educational context. Diagrams play an important role in education. Students and lecturers use diagrams as a powerful tool to aid their thinking. However, research into the role of diagrams used in education continues to reveal difficulties students encounter during both processes of interpretation and construction of diagrams. Their main problems shape up students difficulties with diagrams. The ever-increasing diversity of diagrams' types coupled with the fact that most real-world diagrams often contain a mix of these different types of diagrams such as boxes and lines, bar charts, surfaces, routes, shapes dotted around the drawing area, and so on with each type having its own distinct set of static and dynamic semantics. We argue that the persistence of these problems is grounded in our existing ways of understanding diagrams that are often reductionist in their underpinnings driven by a single perspective or formalism. In this paper, we demonstrate the limitations of these approaches in dealing with the three problems. Consequently, we propose, discuss, and demonstrate the potential of a nonreductionist framework for understanding diagrams based on Symbolic and Spatial Mappings (SySpM) underpinned by Dooyeweerd philosophy. The potential of the framework to account for the meaning of diagrams is demonstrated by applying it to a real-world case study physics diagram.

Keywords: SySpM, drawing style, mapping

Procedia PDF Downloads 236
841 Association between TNF-α and Its Receptor TNFRSF1B Polymorphism with Pulmonary Tuberculosis in Tomsk, Russia Federation

Authors: K. A. Gladkova, N. P. Babushkina, E. Y. Bragina

Abstract:

Purpose: Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the major public health problems worldwide. It is clear that the immune response to M. tuberculosis infection is a relationship between inflammatory and anti-inflammatory responses in which Tumour Necrosis Factor-α (TNF-α) plays key roles as a pro-inflammatory cytokine. TNF-α involved in various cell immune responses via binding to its two types of membrane-bound receptors, TNFRSF1A and TNFRSF1B. Importantly, some variants of the TNFRSF1B gene have been considered as possible markers of host susceptibility to TB. However, the possible impact of such TNF-α and its receptor genes polymorphism on TB cases in Tomsk is missing. Thus, the purpose of our study was to investigate polymorphism of TNF-α (rs1800629) and its receptor TNFRSF1B (rs652625 and rs525891) genes in population of Tomsk and to evaluate their possible association with the development of pulmonary TB. Materials and Methods: The population distribution features of genes polymorphisms were investigated and made case-control study based on group of people from Tomsk. Human blood was collected during routine patients examination at Tomsk Regional TB Dispensary. Altogether, 234 TB-positive patients (80 women, 154 men, average age is 28 years old) and 205 health-controls (153 women, 52 men, average age is 47 years old) were investigated. DNA was extracted from blood plasma by phenol-chloroform method. Genotyping was carried out by a single-nucleotide-specific real-time PCR assay. Results: First, interpopulational comparison was carried out between healthy individuals from Tomsk and available data from the 1000 Genomes project. It was found that polymorphism rs1800629 region demonstrated that Tomsk population was significantly different from Japanese (P = 0.0007), but it was similar with the following Europeans subpopulations: Italians (P = 0.052), Finns (P = 0.124) and British (P = 0.910). Polymorphism rs525891 clear demonstrated that group from Tomsk was significantly different from population of South Africa (P = 0.019). However, rs652625 demonstrated significant differences from Asian population: Chinese (P = 0.03) and Japanese (P = 0.004). Next, we have compared healthy individuals versus patients with TB. It was detected that no association between rs1800629, rs652625 polymorphisms, and positive TB cases. Importantly, AT genotype of polymorphism rs525891 was significantly associated with resistance to TB (odds ratio (OR) = 0.61; 95% confidence interval (CI): 0.41-0.9; P < 0.05). Conclusion: To the best of our knowledge, the polymorphism of TNFRSF1B (rs525891) was associated with TB, while genotype AT is protective [OR = 0.61] in Tomsk population. In contrast, no significant correlation was detected between polymorphism TNF-α (rs1800629) and TNFRSF1B (rs652625) genes and alveolar TB cases among population of Tomsk. In conclusion, our data expands the molecular particularities associated with TB. The study was supported by the grant of the Russia for Basic Research #15-04-05852.

Keywords: polymorphism, tuberculosis, TNF-α, TNFRSF1B gene

Procedia PDF Downloads 178
840 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 325