Search results for: learning from history
1267 Iraqi Women’s Rights Under State Civil Law and Conservative Influences: A Study of Legal Documents and Social Implementation
Authors: Rose Hattab
Abstract:
Women have been an important dynamic in religious context and the state-building process of Arab countries throughout history. During the 1970s as the movement for women’s activism and rights developed, the Iraqi state under the Ba’ath Party began to provide Iraqi women with legal and civil rights. This was done to liberate women from the grasps of social traditions and was a tangible espousing of equality between men and women in the process of nation-building. Whereas women’s rights were stronger and more supported throughout the earliest years of the Ba’ath Regime (1970-1990), the aftermath of the Gulf War and economic sanctions on the conditions of Iraqi society laid the foundation for a division of women’s rights between civil and religious authorities. Personal status codes that were secured in 1959 were being pushed back by amendments made in coordination with religious leaders. Civil laws were present on paper, but religious authority took prominence in practice. The written legal codes were inclusive of women’s rights, but there is not an active or ensured practice of these rights within Iraqi society. This is due to many different factors, such as religious, sectarian, political and conservative reasons that hold back or limit the ability for Iraqi women to have autonomy in aspects such as participation in the workforce, getting married, and ensuring social justice. This paper argues that the Personal Status Code introduced in 1959 – which replaced Sharia-run courts with personal status courts – provided Iraqi women with equality and increased mobility in social and economic dynamics. The statewide crisis felt after the Gulf War and the economic sanctions imposed by the United Nations led to a stark shift in the Ba’ath party’s political ideology. This ideological turn guided the social system to the embracement of social conservatism and religious traditions in the 1990s. The effect of this implementation continued after the establishment of a new Iraqi government during 2003-2005. Consequently, Iraqi women's rights in employment, marriage, and family became divided into paper and practice by religious authorities and civil law from that period to the present day. This paper also contributes to the literature by expanding on the gap between legal codes on paper and in practice, through providing an analysis of Iraqi women’s rights in the Iraqi Constitution of 2005 and Iraq’s Penal Code. The turn to conservative and religious traditions is derived from the multiplicity of identities that make up the Iraqi social fabric. In the aftermath of a totalitarian regime, active wars, and economic sanctions, the Iraqi people attempted to unite together through their different identities to create a sense of security in the midst of violence and chaos. This is not an excuse to diminish the importance of women’s rights, but in the process of building a new nation-state, women were lost from the narrative. Thus, the presence of gender equity is found in the written text but is not practiced and upheld in the social context.Keywords: civil rights, Iraqi women, nation building, religion and conflict
Procedia PDF Downloads 1421266 ‘Internationalize Yourself’: Mobility in Academia as a Form of Continuing Professional Training
Authors: Sonja Goegele, Petra Kletzenbauer
Abstract:
The FH JOANNEUM- a university of applied sciences based in Austria - cooperates in teaching and research with well-known international universities and thus aims to foster so-called strategic partnerships. The exchange of university lecturers and other faculty members is a way to achieve and secure strategic company goals, in which excellent research and teaching play a central role in order to improve both the development of academics and administration. Thanks to mobility not only the university but also the involved people truly benefit in their professional development which can be seen on several levels: increased foreign language proficiency, excellent networking possibilities within the scientific community as well as reinforced didactic competencies in the form of different teaching and learning methodologies. The paper discusses mobility in the light of the university’s strategic paper entitled ‘Hands on 2022’ by presenting results from an empirical research study among faculty members who participate in exchange programmes on a regular basis. In the form of an online questionnaire, mobility was discussed from different angles such as networking, collaborative research, professional training for academics and the overall impact of the exchange within and outside the organization. From the findings, it can be concluded that mobility is an asset for any university. However, keeping in constant dialogue with partner universities requires more than the purpose of the exchange itself. Building rapport and keeping a relationship of trust are challenges that need to be addressed more closely in order to run successful mobility programmes. Best Practice examples should highlight the importance of mobility as a vital initiative to transfer disciplines.Keywords: higher education, internationalization, mobility, strategic partnerships
Procedia PDF Downloads 1361265 Climate Change Law and Transnational Corporations
Authors: Manuel Jose Oyson
Abstract:
The Intergovernmental Panel on Climate Change (IPCC) warned in its most recent report for the entire world “to both mitigate and adapt to climate change if it is to effectively avoid harmful climate impacts.” The IPCC observed “with high confidence” a more rapid rise in total anthropogenic greenhouse gas emissions (GHG) emissions from 2000 to 2010 than in the past three decades that “were the highest in human history”, which if left unchecked will entail a continuing process of global warming and can alter the climate system. Current efforts, however, to respond to the threat of global warming, such as the United Nations Framework Convention on Climate Change and the Kyoto Protocol, have focused on states, and fail to involve Transnational Corporations (TNCs) which are responsible for a vast amount of GHG emissions. Involving TNCs in the search for solutions to climate change is consistent with an acknowledgment by contemporary international law that there is an international role for other international persons, including TNCs, and departs from the traditional “state-centric” response to climate change. Putting the focus of GHG emissions away from states recognises that the activities of TNCs “are not bound by national borders” and that the international movement of goods meets the needs of consumers worldwide. Although there is no legally-binding instrument that covers TNC activities or legal responsibilities generally, TNCs have increasingly been made legally responsible under international law for violations of human rights, exploitation of workers and environmental damage, but not for climate change damage. Imposing on TNCs a legally-binding obligation to reduce their GHG emissions or a legal liability for climate change damage is arguably formidable and unlikely in the absence a recognisable source of obligation in international law or municipal law. Instead a recourse to “soft law” and non-legally binding instruments may be a way forward for TNCs to reduce their GHG emissions and help in addressing climate change. Positive effects have been noted by various studies to voluntary approaches. TNCs have also in recent decades voluntarily committed to “soft law” international agreements. This development reflects a growing recognition among corporations in general and TNCs in particular of their corporate social responsibility (CSR). While CSR used to be the domain of “small, offbeat companies”, it has now become part of mainstream organization. The paper argues that TNCs must voluntarily commit to reducing their GHG emissions and helping address climate change as part of their CSR. One, as a serious “global commons problem”, climate change requires international cooperation from multiple actors, including TNCs. Two, TNCs are not innocent bystanders but are responsible for a large part of GHG emissions across their vast global operations. Three, TNCs have the capability to help solve the problem of climate change. Assuming arguendo that TNCs did not strongly contribute to the problem of climate change, society would have valid expectations for them to use their capabilities, knowledge-base and advanced technologies to help address the problem. It would seem unthinkable for TNCs to do nothing while the global environment fractures.Keywords: climate change law, corporate social responsibility, greenhouse gas emissions, transnational corporations
Procedia PDF Downloads 3491264 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 1621263 Risk Assessment Tools Applied to Deep Vein Thrombosis Patients Treated with Warfarin
Authors: Kylie Mueller, Nijole Bernaitis, Shailendra Anoopkumar-Dukie
Abstract:
Background: Vitamin K antagonists particularly warfarin is the most frequently used oral medication for deep vein thrombosis (DVT) treatment and prophylaxis. Time in therapeutic range (TITR) of the international normalised ratio (INR) is widely accepted as a measure to assess the quality of warfarin therapy. Multiple factors can affect warfarin control and the subsequent adverse outcomes including thromboembolic and bleeding events. Predictor models have been developed to assess potential contributing factors and measure the individual risk of these adverse events. These predictive models have been validated in atrial fibrillation (AF) patients, however, there is a lack of literature on whether these can be successfully applied to other warfarin users including DVT patients. Therefore, the aim of the study was to assess the ability of these risk models (HAS BLED and CHADS2) to predict haemorrhagic and ischaemic incidences in DVT patients treated with warfarin. Methods: A retrospective analysis of DVT patients receiving warfarin management by a private pathology clinic was conducted. Data was collected from November 2007 to September 2014 and included demographics, medical and drug history, INR targets and test results. Patients receiving continuous warfarin therapy with an INR reference range between 2.0 and 3.0 were included in the study with mean TITR calculated using the Rosendaal method. Bleeding and thromboembolic events were recorded and reported as incidences per patient. The haemorrhagic risk model HAS BLED and ischaemic risk model CHADS2 were applied to the data. Patients were then stratified into either the low, moderate, or high-risk categories. The analysis was conducted to determine if a correlation existed between risk assessment tool and patient outcomes. Data was analysed using GraphPad Instat Version 3 with a p value of <0.05 considered to be statistically significant. Patient characteristics were reported as mean and standard deviation for continuous data and categorical data reported as number and percentage. Results: Of the 533 patients included in the study, there were 268 (50.2%) female and 265 (49.8%) male patients with a mean age of 62.5 years (±16.4). The overall mean TITR was 78.3% (±12.7) with an overall haemorrhagic incidence of 0.41 events per patient. For the HAS BLED model, there was a haemorrhagic incidence of 0.08, 0.53, and 0.54 per patient in the low, moderate and high-risk categories respectively showing a statistically significant increase in incidence with increasing risk category. The CHADS2 model showed an increase in ischaemic events according to risk category with no ischaemic events in the low category, and an ischaemic incidence of 0.03 in the moderate category and 0.47 high-risk categories. Conclusion: An increasing haemorrhagic incidence correlated to an increase in the HAS BLED risk score in DVT patients treated with warfarin. Furthermore, a greater incidence of ischaemic events occurred in patients with an increase in CHADS2 category. In an Australian population of DVT patients, the HAS BLED and CHADS2 accurately predicts incidences of haemorrhage and ischaemic events respectively.Keywords: anticoagulant agent, deep vein thrombosis, risk assessment, warfarin
Procedia PDF Downloads 2621262 Teaching Translation during Covid-19 Outbreak: Challenges and Discoveries
Authors: Rafat Alwazna
Abstract:
Translation teaching is a particular activity that includes translators and interpreters training either inside or outside institutionalised settings, such as universities. It can also serve as a means of teaching other fields, such as foreign languages. Translation teaching began in the twentieth century. Teachers of translation hold the responsibilities of educating students, developing their translation competence and training them to be professional translators. The activity of translation teaching involves various tasks, including curriculum design, course delivery, material writing as well as application and implementation. The present paper addresses translation teaching during COVID-19 outbreak, seeking to find out the challenges encountered by translation teachers in online translation teaching and the discoveries/solutions arrived at to resolve them. The paper makes use of a comprehensive questionnaire, containing closed-ended and open-ended questions to elicit both quantitative as well as qualitative data from about sixty translation teachers who have been teaching translation at BA and MA levels during COVID-19 outbreak. The data shows that about 40% of the participants evaluate their online translation teaching experience during COVID-19 outbreak as enjoyable and exhilarating. On the contrary, no participant has evaluated his/her online translation teaching experience as being not good, nor has any participant evaluated his/her online translation teaching experience as being terrible. The data also presents that about 23.33% of the participants evaluate their online translation teaching experience as very good, and the same percentage applies to those who evaluate their online translation teaching experience as good to some extent. Moreover, the data indicates that around 13.33% of the participants evaluate their online translation teaching experience as good. The data also demonstrates that the majority of the participants have encountered obstacles in online translation teaching and have concurrently proposed solutions to resolve them.Keywords: online translation teaching, electronic learning platform, COVID-19 outbreak, challenges, solutions
Procedia PDF Downloads 2211261 A Script for Presentation to the Management of a Teaching Hospital on MYCIN: A Clinical Decision Support System
Authors: Rashida Suleiman, Asamoah Jnr. Boakye, Suleiman Ahmed Ibn Ahmed
Abstract:
In recent years, there has been an enormous success in discoveries of scientific knowledge in medicine coupled with the advancement of technology. Despite all these successes, diagnoses and treatment of diseases have become complex. MYCIN is a groundbreaking illustration of a clinical decision support system (CDSS), which was developed to assist physicians in the diagnosis and treatment of bacterial infections by providing suggestions for antibiotic regimens. MYCIN was one of the earliest expert systems to demonstrate how CDSSs may assist human decision-making in complicated areas. Relevant databases were searched using google scholar, PubMed and general Google search, which were peculiar to clinical decision support systems. The articles were then screened for a comprehensive overview of the functionality, consultative style and statistical usage of MYCIN, a clinical decision support system. Inferences drawn from the articles showed some usage of MYCIN for problem-based learning among clinicians and students in some countries. Furthermore, the data demonstrated that MYCIN had completed clinical testing at Stanford University Hospital following years of research. The system (MYCIN) was shown to be extremely accurate and effective in diagnosing and treating bacterial infections, and it demonstrated how CDSSs might enhance clinical decision-making in difficult circumstances. Despite the challenges MYCIN presents, the benefits of its usage to clinicians, students and software developers are enormous.Keywords: clinical decision support system, MYCIN, diagnosis, bacterial infections, support systems
Procedia PDF Downloads 1431260 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder
Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu
Abstract:
Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network
Procedia PDF Downloads 1481259 Gender Differences in Biology Academic Performances among Foundation Students of PERMATApintar® National Gifted Center
Authors: N. Nor Azman, M. F. Kamarudin, S. I. Ong, N. Maaulot
Abstract:
PERMATApintar® National Gifted Center is, to the author’s best of knowledge, the first center in Malaysia that provides a platform for Malaysian talented students with high ability in thinking. This center has built a teaching and learning biology curriculum that suits the ability of these gifted students. The level of PERMATApintar® biology curriculum is basically higher than the national biology curriculum. Here, the foundation students are exposed to the PERMATApintar® biology curriculum at the age of as early as 11 years old. This center practices a 4-time-a-year examination system to monitor the academic performances of the students. Generally, most of the time, male students show no or low interest towards biology subject compared to female students. This study is to investigate the association of students’ gender and their academic performances in biology examination. A total of 39 students’ scores in twelve sets of biology examinations in 3 years have been collected and analyzed by using the statistical analysis. Based on the analysis, there are no significant differences between male and female students against the biology academic performances with a significant level of p = 0.05. This indicates that gender is not associated with the scores of biology examinations among the students. Another result showed that the average score for male studenta was higher than the female students. Future research can be done by comparing the biology academic achievement in Malaysian National Examination (Sijil Pelajaran Malaysia, SPM) between the Foundation 3 students (Grade 9) and Level 2 students (Grade 11) with similar PERMATApintar® biology curriculum.Keywords: academic performances, biology, gender differences, gifted students,
Procedia PDF Downloads 2421258 Algerian EFL Students' Perceptions towards the Development of Writing through Weblog Storytelling
Authors: Nawel Mansouri
Abstract:
Weblog as a form of internet-based resources has become popular as an authentic and constructive learning tool, especially in the language classroom. This research explores the use of weblog storytelling as a pedagogical tool to develop Algerian EFL students’ creative writing. This study aims to investigate the effectiveness of weblog- writing and the attitudes of both Algerian EFL students and teachers towards weblog storytelling. It also seeks to explore the potential benefits and problems that may affect the use of weblog and investigate the possible solutions to overcome the problems encountered. The research work relies on a mixed-method approach which combines both qualitative and quantitative methods. A questionnaire will be applied to both EFL teachers and students as a means to obtain preliminary data. Interviews will be integrated in accordance with the primary data that will be gathered from the questionnaire with the aim of validating its accuracy or as a strategy to follow up any unexpected results. An intervention will take place on the integration of weblog- writing among 15 Algerian EFL students for a period of two months where students are required to write five narrative essays about their personal experiences, give feedback through the use of a rubric to two or three of their peers, and edit their work based on the feedback. After completion, questionnaires and interviews will also take place as a medium to obtain both the students’ perspectives towards the use of weblog as an innovative teaching approach. This study is interesting because weblog storytelling has recently been emerged as a new form of digital communication and it is a new concept within Algerian context. Furthermore, the students will not just develop their writing skill through weblog storytelling but it can also serve as a tool to develop students’ critical thinking, creativity, and autonomy.Keywords: Weblog writing, EFL writing, EFL learners' attitudes, EFL teachers' views
Procedia PDF Downloads 1731257 Film Therapy on Adolescent Body Image: A Pilot Study
Authors: Sonia David, Uma Warrier
Abstract:
Background: Film therapy is the use of commercial or non-commercial films to enhance healing for therapeutic purposes. Objectives: The mixed-method study aims to evaluate the effect of film-based counseling on body image dissatisfaction among adolescents to precisely ascertain the cause of the alteration in body image dissatisfaction due to the said intervention. Method: The one group pre-test post-test research design study using inferential statistics and thematic analysis is based on a pre-test post-test design conducted on 44 school-going adolescents between 13 and 17. The Body Shape Questionnaire (BSQ- 34) was used as a pre-test and post-test measure. The film-based counseling intervention model was used through individual counseling sessions. The analysis involved paired sample t-test used to examine the data quantitatively, and thematic analysis was used to evaluate qualitative data. Findings: The results indicated that there is a significant difference between the pre-test and post-test means. Since t(44)= 9.042 is significant at a 99% confidence level, it is ascertained that film-based counseling intervention reduces body image dissatisfaction. The five distinct themes from the thematic analysis are “acceptance, awareness, empowered to change, empathy, and reflective.” Novelty: The paper originally contributes to the repertoire of research on film therapy as a successful counseling intervention for addressing the challenges of body image dissatisfaction. This study also opens avenues for considering alteration of teaching pedagogy to include video-based learning in various subjects.Keywords: body image dissatisfaction, adolescents, film-based counselling, film therapy, acceptance and commitment therapy
Procedia PDF Downloads 2941256 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction
Authors: Sudikshya Bhandari, Jonathan K. London
Abstract:
The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.Keywords: earthquake, Nepal, reconstruction, settlement, transformation
Procedia PDF Downloads 1171255 From Dissection to Diagnosis: Integrating Radiology into Anatomy Labs for Medical Students
Authors: Julia Wimmers-Klick
Abstract:
At the Canadian University of British Columbia's Faculty of Medicine, anatomy has traditionally been taught through a combination of lectures and dissection labs in the first two years, with radiology taught separately through lectures and online modules. However, this separation may leave students underprepared for medical practice, as medical imaging is essential for diagnosing anatomical and pathological conditions. To address this, a pilot project was initiated aimed at integrating radiological imaging into anatomy dissection labs from day one of medical school. The incorporated radiological images correlated with the current dissection areas. Additional stations were added within the lab, tailored to the specific content being covered. These stations focused on bones, and quiz questions, along with light-box exercises using radiographs, CT scans, and MRIs provided by the radiology department. The images used were free of pathologies. Examples of these will be presented in the poster. Feedback from short interviews with students and instructors has been positive, particularly among second-year students who appreciated the integration compared to their first-year experience. This low-budget approach was easy to implement but faced challenges, as lab instructors were not radiologists and occasionally struggled to answer students' questions. Instructors expressed a desire for basic training or a refresher course in radiology image reading, particularly focused on identifying healthy landmarks. Overall, all participants agreed that integrating radiology with anatomy reinforces learning during dissection, enhancing students' understanding and preparation for clinical practice.Keywords: quality improvement, radiology education, anatomy education, integration
Procedia PDF Downloads 21254 Improving Medication Understanding, Use and Self-Efficacy among Stroke Patients: A Randomised Controlled Trial; Study Protocol
Authors: Jamunarani Appalasamy, Tha Kyi Kyi, Quek Kia Fatt, Joyce Pauline Joseph, Anuar Zaini M. Zain
Abstract:
Background: The Health Belief Theory had always been associated with chronic disease management. Various health behaviour concepts and perception branching from this Health Belief Theory had involved with medication understanding, use, and self-efficacy which directly link to medication adherence. In a previous quantitative and qualitative study, stroke patients in Malaysia were found to be strongly believing information obtained by various sources such as the internet and social communication. This action leads to lower perception of their stroke preventative medication benefit which in long-term creates non-adherence. Hence, this study intends to pilot an intervention which uses audio-visual concept incorporated with mHealth service to enhance learning and self-reflection among stroke patients to manage their disease. Methods/Design: Twenty patients will be allocated to a proposed intervention whereas another twenty patients are allocated to the usual treatment. The intervention involves a series of developed audio-visual videos sent via mobile phone which later await for responses and feedback from the receiver (patient) via SMS or recorded calls. The primary outcome would be the medication understanding, use and self-efficacy measured over two months pre and post intervention. Secondary outcome is measured from changes of blood parameters and other self-reported questionnaires. Discussion: This study shall also assess uptake/attrition, feasibility, and acceptability of this intervention. Trial Registration: NMRR-15-851-24737 (IIR)Keywords: health belief, medication understanding, medication use, self-efficacy
Procedia PDF Downloads 2181253 Exclusive Value Adding by iCenter Analytics on Transient Condition
Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata
Abstract:
During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.Keywords: analytics, diagnostics, monitoring, turbomachinery
Procedia PDF Downloads 721252 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 551251 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 3461250 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 771249 Head and Neck Extranodal Rosai-Dorfman Disease- Utility of immunohistochemistry
Authors: Beverly Wang
Abstract:
Background: Rosai-Dorfman disease (RDD), aka sinus histiocytosis with massive lymphadenopathy, is a rare, idiopathic histiocytic proliferative disorder. Although RDD can be seen involving the head and neck lymph nodes, rarely it can affect other extranodal sites. It present 3 unique cases of RDD affecting the nasal cavity, paranasal sinuses, and ear canal. The initial clinical presentation on two cases mimicked a malignant neoplasm. The 3rd case of RDD co-existed with a cholesteatoma of the ear canal. The clinical presentation, histology and immunohistochemical stains, and radiographic findings are discussed. Design: An overview of 3 cases of RDD affected sinonasal cavity and ear canal from UCI Medical Center was conducted. Case 1: A 61 year old male complaining of breathing difficulty presented with bilateral polypoid sinonasal masses and severe nasal obstruction. The masses elevated the nasal floor, and involved the anterior nasal septum to lateral wall. It was endoscopically excised. At intraoperative consultation, frozen section reported a pleomorphic spindle cell neoplasm with scattered large atypical spindle cells, resembling a high grade sarcoma. Case 2: A 46 year old male presented with recurrent bilateral maxillary chronic sinusitis with mass formation, clinically suspicious for malignant lymphoma. Excisional tissue sample showed large irregular spindled histiocytes with abundant granular and vacuolated cytoplasm. Case 3: A 36 year old female with a history of asthma initially presented with left-sided chronic otalgia, occasional nausea, vertigo, and fluctuating pain exacerbated by head movement and temperature changes. CT scan revealed an external auditory canal mass extending to the middle ear, coexisting with a small cholesteatoma. Results: The morphology of all cases revealed large atypical spindled histiocytes resembling fibrohistiocytic or myofibroblastic proliferative neoplasms. Scattered emperipolesis was seen. All 3 cases were confirmed as extranodal sinus RDD, confirmed by immunohistochemistry. The large atypical cells were positive for S100, CD68, and CD163. No evidence for malignancy was identified. Case 3 showed concurrent RDD co-existing with a cholesteatoma. Conclusion: Due to its rarity and variable clinical presentations, the diagnosis of RDD is seldom clinically considered. Extranodal sinus RDD morphologically can be pitfall as mimicker of spindly neoplasm, especially at intraoperative consultation. It can create diagnostic and therapeutic challenges. Correlation of radiological findings with histologic features will help to reach the diagnosis.Keywords: head and neck, extranodal, rosai-dorfman disease, mimicker, immunohistochemistry
Procedia PDF Downloads 761248 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1531247 English Test Success among Syrian Refugee Girls Attending Language Courses in Lebanon
Authors: Nina Leila Mussa
Abstract:
Background: The devastating effects of the war on Syria’s educational infrastructure has been widely reported, with millions of children denied access. However, among those who resettled in Lebanon, the impact of receiving educational assistance on their abilities to pass the English entrance exam is not well described. The aim of this study was to identify predictors of success among Syrian refugees receiving English language courses in a Lebanese university. Methods: The database of Syrian refugee girls matriculated in English courses at the American University of Beirut (AUB) was reviewed. The study period was 7/2018-09/2020. Variables compared included: family size and income, welfare status, parents’ education, English proficiency, access to the internet, and need for external help with homework. Results: For the study period, there were 28 girls enrolled. The average family size was 6 (range 4-9), with eight having completed primary, 14 secondary education, and 6 graduated high school. Eighteen were single-income families. After 12 weeks of English courses, 16 passed the Test of English as Foreign Language (TOEFL) from the first attempt, and 12 failed. Out of the 12, 8 received external help, and 6 passed on the second attempt, which brings the total number of successful passing to 22. Conclusion: Despite the tragedy of war, girls receiving assistance in learning English in Lebanon are able to pass the basic language test. Investment in enhancing those educational experiences will be determinantal in achieving widespread progress among those at-risk children.Keywords: refugee girls, TOEFL, education, success
Procedia PDF Downloads 1221246 Education in Schools and Public Policy in India
Authors: Sujeet Kumar
Abstract:
Education has greater importance particularly in terms of increasing human capital and economic competitiveness. It plays a crucial role in terms of cognitive and skill development. Its plays a vital role in process of socialization, fostering social justice, and enhancing social cohesion. Policy related to education has been always a priority for developed countries, which is later adopted by developing countries also. The government of India has also brought change in education polices in line with recognizing change at national and supranational level. However, quality education is still not become an open door for every child in India and several reports are produced year to year about level of school education in India. This paper is concerned with schooling in India. Particularly, it focuses on two government and two private schools in Bihar, but reference has made to schools in Delhi especially around slum communities. The paper presents brief historical context and an overview of current school systems in India. Later, it focuses on analysis of current development in policy in reference with field observation, which is anchored around choice, diversity, market – orientation and gap between different groups of pupils. There is greater degree of difference observed at private and government school levels in terms of quality of teachers, method of teaching and overall environment of learning. The paper concludes that the recent policy development in education particularly Sarva Siksha Abhiyaan (SAA) and Right to Education Act (2009) has required renovating new approach to bridge the gap through broader consultation at grassroots and participatory approach with different stakeholders.Keywords: education, public policy, participatory approach
Procedia PDF Downloads 3931245 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 3481244 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1021243 Brand Building in Higher Education: A Grounded Theory Investigation of the Impact of the ‘Positive-Visualization-Course in Brand Identity’ upon Freshmen Student's Perception
Authors: Maria Kountouridou, Dino Domic
Abstract:
Within an increasingly competitive and dynamic environment, the higher education sector is becoming more commodified, with the concept of branding to become exceedingly imperative and an inextricable ingredient for the university’s success. Branding in higher education has proven to be an effective strategy that managed to receive considerable attention in the recent few years, and a growing number of articles have begun to appear in the literature. However, a clear void in the literature confirms that the concept of students’ perceptions towards the university’s brand image has not been researched extensively. An investigation on this central concept is of paramount importance since it will facilitate the development of an inductively generated theoretical model concerning branding in higher education. This research focuses on examining the impact of the ‘positive-visualization-course in brand identity’ upon the perception of freshmen students towards a university’s brand image. A grounded theory methodology has been selected, consisting of semi-structured interviews. Forty-two students have participated in the research, among which twenty-five women and seventeen men. The identification of the sample emerged through the use of the snowball sampling technique. The participants were divided into two groups (experimental and control group) after the researcher had taken into consideration the factor ‘program of study’, to eliminate any possible interaction between the participants of each group. An experiment was carried out where a ‘positive-visualization-course in brand identity’ was conducted among the participants of the experimental group, while the participants of the control group have not been exposed to the course. For the purpose of this research, the term ‘positive-visualization-course in brand identity’ refers to a course where brand history, past achievements/recognitions/awards, its values, and its mission are presented. Prior to the course implementation, face-to-face semi-structured interviews were carried out among the participants of both groups, with the aim of examining the freshmen students’ perceptions towards the university’s brand image. One week after the course implementation, the researcher carried out semi-structured interviews with the participants of the experimental group only in order to identify whether students’ perceptions had been affected after the course completion. Four months after the course completion, semi-structured interviews were carried out among the participants of both groups. Eight months after the course completion, semi-structured interviews were conducted with the aim of identifying the freshmen students’ updated perceptions. Data has been analyzed using substantive coding (open and selective coding), theoretical coding, field memos, and constant comparative analysis. The findings strongly suggest that the ‘positive-visualization-course in brand identity’ can positively affect freshmen students’ perceptions towards a university’s brand image. Additionally, other factors conduce to the formation of perception throughout the months. This study contributes and expands upon the existing literature by presenting an inductively generated theoretical model to guide future research in the links between ‘positive-visualization-course in brand identity’ and the perception of freshmen students towards a university’s brand image.Keywords: brand image, brand name, branding, higher education marketing, perception
Procedia PDF Downloads 1771242 Studying the Impact of Farmers Field School on Vegetable Production in Peshawar District of Khyber Pakhtunkhwa Province of Pakistan
Authors: Muhammad Zafarullah Khan, Sumeera Abbasi
Abstract:
The Farmers Field School (FFS) learning approach aims to improve knowledge of the farmers through integrated crop management and provide leadership in their decision making process. The study was conducted to assess the impact of FFS on vegetables production before and after FFS intervention in four villages of district Peshawar in cropping season 2012, by interviewing 80 FFS respondents, twenty from each selected village. It was observed from the study results that all the respondents were satisfied from the impact of FFS and they informed an increased in production in vegetables. It was further observed that after the implementation of FFS the sowing seed rate of tomato and cucumber were decreased from 0.185kg/kanal to 0.100 kg/ kanal and 0.120kg/kanal to 0.010kg/kanal where as the production of tomato and cucumber were increased from 8158.75kgs/kanal to 10302. 5kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively. The cost of agriculture inputs per kanal including seed cost, crop management, Farm Yard Manure, and weedicides in case of tomato were reduced by Rs.28, Rs. 3170, Rs.658and Rs 205 whereas in cucumber reduced by Rs.35, Rs.570, Rs 80 and Rs.430 respectively. Only fertilizers cost was increased by Rs. 2200 in case of tomato and Rs 465 in case of cucumber. Overall the cost was reduced to Rs 545 in tomato and Rs 490 in cucumber production.FFS provided a healthy vegetables and also reduced input cost by adopting integrated crop management. Therefore the promotion of FFS is needed to be planned for farmers to reduce cost of production, so that the more farmers should be benefited.Keywords: impact, farmer field schools, vegetable production, Peshawar Khyber Pakhtunkhwa
Procedia PDF Downloads 2551241 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 4071240 Academic Literacy: A Study of L2 Academic Reading Literacy among a Group of EFL/ESL Postgraduate Arab Learners in a British University
Authors: Hanadi Khadawardi
Abstract:
The current study contributes to research on foreign/second language (L2) academic reading by presenting a significant case study, which seeks to investigate specific groups of international (Arab) postgraduate students’ L2 academic reading practices in the UK educational context. In particular, the study scrutinises postgraduate students’ L2 paper-based and digital-based academic reading strategies, and their use of digital aids while engaged in L2 academic reading. To this end, the study investigates Arab readers’ attitudes toward digital L2 academic reading. The study aims to compare between paper and digital L2 academic reading strategies that the students employ and which reading formats they prefer. This study tracks Masters-level students and examines the way in which their reading strategies and attitudes change throughout their Masters programme in the UK educational context. The academic reading strategies and attitudes of five students from four different disciplines (Health Science, Psychology, Management, and Education) are investigated at two points during their one-year Masters programmes. In addition, the study investigates the same phenomenon with 15 Saudi PhD students drawn from seven different disciplines (Computer Science, Engineering, Psychology, Management, Marketing, Health Science, and Applied Linguistics) at one period of their study in the same context. The study uses think-aloud protocol, field notes, stimulated recall, and semi-structured interviews to collect data. The data is analysed qualitatively. The results of the study will explain the process of learning in terms of reading L2 paper and digital academic texts in the L2 context.Keywords: EFL: English as a foreign language, ESL: English as a second language, L: Language
Procedia PDF Downloads 3801239 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia PDF Downloads 1521238 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction
Authors: Arunima Verma, Padmabati Mondal
Abstract:
Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.Keywords: allostery, CADD, MD simulations, MM-PBSA
Procedia PDF Downloads 85