Search results for: water supply systems
17568 The Development of a Precision Irrigation System for Durian
Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai
Abstract:
Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.Keywords: Durian, precision irrigation, precision agriculture, smart farm
Procedia PDF Downloads 11817567 Developing Alternative Recovery Technology of Waste Heat in Automobile Factory
Authors: Kun-Ping Cheng, Dong-Shang Chang, Rou-Wen Wang
Abstract:
Pre-treatment of automobile paint-shop procedures are the preparation of warm water rinsing tank, hot water rinsing tank, degreasing tank, phosphate tank. The conventional boiler steam fuel is natural gas, producing steam to supply the heat exchange of each tank sink. In this study, the high-frequency soldering economizer is developed for recovering waste heat in the automotive paint-shop (RTO, Regenerative Thermal Oxidation). The heat recovery rate of the new economizer is 20% to 30% higher than the conventional embedded heat pipe. The adaptive control system responded to both RTO furnace exhaust gas and heat demands. In order to maintain the temperature range of the tanks, pre-treatment tanks are directly heated by waste heat recovery device (gas-to-water heat exchanger) through the hot water cycle of heat transfer. The performance of developed waste heat recovery system shows the annual recovery achieved to 1,226,411,483 Kcal of heat (137.8 thousand cubic meters of natural gas). Boiler can reduce fuel consumption by 20 to 30 percent compared to without waste heat recovery. In order to alleviate environmental impacts, the temperature at the end of the flue is further reduced from 160 to 110°C. The innovative waste heat recovery is helpful to energy savings and sustainable environment.Keywords: waste heat recovery system, sustainability, RTO (Regenerative Thermal Oxidation), economizer, automotive industry
Procedia PDF Downloads 26217566 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell
Authors: You-Kai Jhang, Yang-Cheng Lu
Abstract:
Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance
Procedia PDF Downloads 17617565 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation
Authors: Meysam Abedinpour
Abstract:
Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.Keywords: deficit irrigation, water use efficiency, yield, soybean
Procedia PDF Downloads 46917564 Demulsification of Oil from Produced water Using Fibrous Coalescer
Authors: Nutcha Thianbut
Abstract:
In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application.Keywords: produced water, fiber, surface modification, coalescer
Procedia PDF Downloads 16617563 Classification Systems of Peat Soils Based on Their Geotechnical, Physical and Chemical Properties
Authors: Mohammad Saberian, Reza Porhoseini, Mohammad Ali Rahgozar
Abstract:
Peat is a partially carbonized vegetable tissue which is formed in wet conditions by decomposition of various plants, mosses and animal remains. This restricted definition, including only materials which are entirely of vegetative origin, conflicts with several established soil classification systems. Peat soils are usually defined as soils having more than 75 percent organic matter. Due to this composition, the structure of peat soil is highly different from the mineral soils such as silt, clay and sand. Peat has high compressibility, high moisture content, low shear strength and low bearing capacity, so it is considered to be in the category of problematic. Since this kind of soil is generally found in many countries and various zones, except for desert and polar zones, recognizing this soil is inevitably significant. The objective of this paper is to review the classification of peats based on various properties of peat soils such as organic contents, water content, color, odor, and decomposition, scholars offer various classification systems which Von Post classification system is one of the most well-known and efficient system.Keywords: peat soil, degree of decomposition, organic content, water content, Von Post classification
Procedia PDF Downloads 59517562 Integration of FMEA and Human Factor in the Food Chain Risk Assessment
Authors: Mohsen Shirani, Micaela Demichela
Abstract:
During the last decades, a number of food crises such as Bovine Spongiform Encephalopathy (BSE), Mad-Cow disease, Dioxin in chicken food, Food-and-Mouth Disease (FMD), have certainly inflicted the reliability of the food industry. Consequently, the trend in applying different scientific methods of risk assessment in food safety has obtained more attentions in the academic and practice. However, lack of practical approach considering entire food supply chain is tangible in the academic literature. In this regard, this paper aims to apply risk assessment tool (FMEA) with integration of Human Factor along the entire supply chain of food production and test the method in a case study of Diary production, and analyze its results.Keywords: FMEA, food supply chain, risk assessment, human factor
Procedia PDF Downloads 44717561 Achieving Environmentally Sustainable Supply Chain in Textile and Apparel Industries
Authors: Faisal Bin Alam
Abstract:
Most of the manufacturing entities cause negative footprint to nature that demand due attention. Textile industries have one of the longest supply chains and bear the liability of significant environmental impact to our planet. Issues of environmental safety, scarcity of energy and resources, and demand for eco-friendly products have driven research to search for safe and suitable alternatives in apparel processing. Consumer awareness, increased pressure from fashion brands and actions from local legislative authorities have somewhat been able to improve the practices. Objective of this paper is to reveal the best selection of raw materials and methods of production, taking environmental sustainability into account. Methodology used in this study is exploratory in nature based on personal experience, field visits in the factories of Bangladesh and secondary sources. Findings are limited to exploring better alternatives to conventional operations of a Readymade Garment manufacturing, from fibre selection to final product delivery, therefore showing some ways of achieving greener environment in the supply chain of a clothing industry.Keywords: textile and apparel, environmental sustainability, supply chain, production, clothing
Procedia PDF Downloads 13717560 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems
Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain
Abstract:
This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order
Procedia PDF Downloads 56417559 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon
Authors: A. Hamieh, Z. Olama, H. Holail
Abstract:
Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion
Procedia PDF Downloads 43417558 Wave Powered Airlift PUMP for Primarily Artificial Upwelling
Authors: Bruno Cossu, Elio Carlo
Abstract:
The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter
Procedia PDF Downloads 14817557 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain
Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik
Abstract:
The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.Keywords: distribution strategy, mathematical model, network design, supply chain management
Procedia PDF Downloads 29717556 Water Education in the Middle East: Case Study of Iran and Turkey
Authors: Seyedeh Zahra Seyed Sharifi, M. R. M. Tabatabaei
Abstract:
Due to increase of population and healthy food demand, management and conservation of water resources have become one of the main concerns of governments, scientists and economists. In recent years, Iran has exposed to water scarcity as a result of which its rivers, lakes and wetlands have dried up or are in the drying process. Therefore, water crisis has become the most important environmental issue in the country. Under these circumstances, increasing public awareness by promoting their culture as well as public collaboration to protect water resources could only be possible by making courses to reflect water importance. This could be approached by school and high-school students to learn optimum use of water resources. This study initially focuses on the current position of water courses in levels of school and high-school educations in Iran and Turkey and then deals with the challenges to be faced for the promotion of the system. The course titles and number of pages related to water in all primary and secondary textbooks of the education system of Iran and Turkey were determined using content analysis method and the results were presented. The results indicate that primary and secondary textbooks in both countries must focus on water shortage and water protection and teach children the optimum use of water in order to promote water protection.Keywords: educational system, environmental awareness, Iran, Turkey, water crisis
Procedia PDF Downloads 30717555 Detection of Brackish Water Biological Fingerprints in Potable Water
Authors: Abdullah Mohammad, Abdullah Alshemali, Esmaeil Alsaleh
Abstract:
The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines.Keywords: potable water, brackish water, pseudomonas aeroginosa, multidrug resistance
Procedia PDF Downloads 12217554 Sustainable Supply Chain Management Practices, Challenges, and Opportunities: A Case Study of Small and Medium-Sized Enterprises Within the Oil and Gas Sector
Authors: Igho Ekiugbo, Christos Papanagnou
Abstract:
The energy sector continues to face increased scrutiny due to climate change challenges emanating from the burning of fossil fuels, such as coal, oil, and gas. These climate change challenges have motivated industry practitioners and researchers alike to gain an interest in the way businesses operate. This paper aimed to investigate and assess how small and medium-sized enterprises (SMEs) are reducing the impact of their operations, especially those within their supply chains, by assessing the sustainability practices they have adopted and implemented as well as the benefits and challenges of adopting such practices. Data will be collected from SMEs operating across the downstream oil and gas sector in Nigeria using questionnaire surveys. To analyse the data, confirmatory factor analysis and regression analysis will be performed. This method is deemed more suitable and appropriate for testing predefined measurements of sustainable supply chain practices as contained in the extant literature. Preliminary observations indicate a consensus on the awareness of the sustainability concept amongst the target participants. To the best of our knowledge, this paper is among the first to investigate the sustainability practices of SMEs operating in the Nigerian oil and gas sector and will therefore contribute to the sustainability and circular economic literature.Keywords: small and medium-sized enterprises, sustainability practices, supply chains, sustainable supply chain management, corporate sustainability, oil and gas, business performance
Procedia PDF Downloads 12717553 Simulation of Wind Solar Hybrid Power Generation for Pumping Station
Authors: Masoud Taghavi, Gholamreza Salehi, Ali Lohrasbi Nichkoohi
Abstract:
Despite the growing use of renewable energies in different fields of application of this technology in the field of water supply has been less attention. Photovoltaic and wind hybrid system is that new topics in renewable energy, including photovoltaic arrays, wind turbines, a set of batteries as a storage system and a diesel generator as a backup system is. In this investigation, first climate data including average wind speed and solar radiation at any time during the year, data collection and analysis are performed in the energy. The wind turbines in four models, photovoltaic panels at the 6 position of relative power, batteries and diesel generator capacity in seven states in the two models are combined hours of operation with renewables, diesel generator and battery bank check and a hybrid system of solar power generation-wind, which is optimized conditions, are presented.Keywords: renewable energy, wind and solar energy, hybrid systems, cloning station
Procedia PDF Downloads 39917552 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications
Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian
Abstract:
The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.Keywords: smart food packaging, supply chain management, food waste, radio frequency identification
Procedia PDF Downloads 11417551 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 12717550 Collaborative Management Approach for Logistics Flow Management of Cuban Medicine Supply Chain
Authors: Ana Julia Acevedo Urquiaga, Jose A. Acevedo Suarez, Ana Julia Urquiaga Rodriguez, Neyfe Sablon Cossio
Abstract:
Despite the progress made in logistics and supply chains fields, it is unavoidable the development of business models that use efficiently information to facilitate the integrated logistics flows management between partners. Collaborative management is an important tool for materializing the cooperation between companies, as a way to achieve the supply chain efficiency and effectiveness. The first face of this research was a comprehensive analysis of the collaborative planning on the Cuban companies. It is evident that they have difficulties in supply chains planning where production, supplies and replenishment planning are independent tasks, as well as logistics and distribution operations. Large inventories generate serious financial and organizational problems for entities, demanding increasing levels of working capital that cannot be financed. Problems were found in the efficient application of Information and Communication Technology on business management. The general objective of this work is to develop a methodology that allows the deployment of a planning and control system in a coordinated way on the medicine’s logistics system in Cuba. To achieve these objectives, several mechanisms of supply chain coordination, mathematical programming models, and other management techniques were analyzed to meet the requirements of collaborative logistics management in Cuba. One of the findings is the practical and theoretical inadequacies of the studied models to solve the current situation of the Cuban logistics systems management. To contribute to the tactical-operative management of logistics, the Collaborative Logistics Flow Management Model (CLFMM) is proposed as a tool for the balance of cycles, capacities, and inventories, always to meet the final customers’ demands in correspondence with the service level expected by these. The CLFMM has as center the supply chain planning and control system as a unique information system, which acts on the processes network. The development of the model is based on the empirical methods of analysis-synthesis and the study cases. Other finding is the demonstration of the use of a single information system to support the supply chain logistics management, allows determining the deadlines and quantities required in each process. This ensures that medications are always available to patients and there are no faults that put the population's health at risk. The simulation of planning and control with the CLFMM in medicines such as dipyrone and chlordiazepoxide, during 5 months of 2017, permitted to take measures to adjust the logistic flow, eliminate delayed processes and avoid shortages of the medicines studied. As a result, the logistics cycle efficiency can be increased to 91%, the inventory rotation would increase, and this results in a release of financial resources.Keywords: collaborative management, medicine logistic system, supply chain planning, tactical-operative planning
Procedia PDF Downloads 17617549 Micro-Hydrokinetic for Remote Rural Electrification
Authors: S. P. Koko, K. Kusakana, H. J. Vermaak
Abstract:
Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)
Procedia PDF Downloads 43217548 Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test
Authors: Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed
Abstract:
An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement.Keywords: foundation settlement, ground water table, liquefaction, hake table test
Procedia PDF Downloads 11317547 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows
Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih
Abstract:
This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.Keywords: central region, rod bundles, transient void fraction, two-phase flow
Procedia PDF Downloads 18517546 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review
Authors: Anastasia Tsakiridi
Abstract:
Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.Keywords: supply chain management, logistics, systematic literature review, GIS
Procedia PDF Downloads 14217545 Water Harvest and Recycling with Principles of Permaculture in Rural Buildings in Southeastern Anatolia Region, Turkey
Authors: Muhammed Gündoğan
Abstract:
Permaculture is an important source of science and experience that can ensure the integration of sustainable architecture with nature. Since the past, many applications have been applied in rural areas for generations with the principle of benefiting from the self-renewal potential of nature. This culture, which has been transferred from generation to generation with architectural disciplines, has the potential to significantly improve the sustainability of the rural area and is an important guide with its nature-based solution proposals. Şanlıurfa has arid and semi-arid climate characteristics. Although it has substantial agricultural potential, water is limited, especially in rural areas. In the region, rainwater harvesting practices such as artificial water canals and cisterns have been used for a long time. However, these solutions remained mostly at the urban scale, and their reflections at the building scale were restricted and inadequate solutions. Impermeable surfaces are required for water harvesting, but water harvesting is not possible as rural buildings are mostly surrounded by cultivated land. Therefore, existing structures are important in terms of applicability. In this context, considering the typology of Traditional Şanlıurfa Houses, the aim of the project was to create a proposal for limited potable and utility water, which is a serious problem, especially for rural buildings in Şanlıurfa. In the project proposal, roof systems that can work integrated with the structural shape of Traditional Şanlıurfa Houses, rainwater collection systems in the inner courtyard, and greywater recycling were provided. While the average precipitation amount was 453.7 kg/m3 between 1929 and 2012, this value was measured as 622.7 kg/m3 in 2012. Greywater was used to produce natural fertilizers and compost for small-scale fruit and vegetable gardens, and it was combined with the principles of Permaculture to make it a lifestyle. As a result, it has been estimated that a total of 976.4 m3 kg of water can be saved, with an annual average of 158.8 m3 of rainwater recycling and 817.6 m3 of greywater recycling within the scope of the project.Keywords: rural, traditional residential building, permaculture, rainwater harvesting, greywater recycling
Procedia PDF Downloads 13117544 Power System Cyber Security Risk in the Era of Digital Transformation
Authors: Rafat Rob, Khaled Alotaibi, Dana Nour, Abdullah Albadrani, Abdulmohsen Mulhim
Abstract:
Power systems digitization solutions provides a comprehensive smart, cohesive, interconnected network, extensive connectivity between digital assets, physical power plants, and resources to form digital economies. However, digitization has exposed the classical air gapped power plants to the rapid spread of cyber threats and attacks in the process delaying and forcing many organizations to rethink their cyber security policies and standards before they can augment their operation the new advanced digital devices. Cyber Security requirements for power systems (and industry control systems therein) demand a new approach, unique methodology, and design process that is completely different to Cyber Security measures designed for the IT systems. In practice, Cyber Security strategy, as applied to power systems, tends to be closely aligned to those measures applied for IT system purposes. The differentiator for Cyber Security in terms of power systems are the physical assets and applications used, alongside the ever-growing rate of expansion within the industry controls sector (in comparison to the relatively saturated growth observed for corporate IT systems). These factors increase the magnitude of the cyber security risk within such systems. The introduction of smart devices and sensors along the grid initiate vulnerable entry points to the systems. Every installed Smart Meter is a target; the way these devices communicate with each other may instigate a Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack. Attacking one sensor or meter has the potential to propagate itself throughout the power grid reaching the IT network, where it may manifest itself as a malware infiltration.Keywords: supply chain, cybersecurity, maturity model, risk, smart grid
Procedia PDF Downloads 11417543 The Value of Audit in Managing Supplier’s Process Improvement
Authors: Mohammad E. Nikoofal, Mehmet Gumus
Abstract:
Besides the many benefits of outsourcing, firms are still concerned about the lack of critical information regarding both the risk levels and actions of their suppliers that are just a few links away. In this paper, we study the effectiveness of audit for the manufacturer in managing her supplier’s process improvement effort when the supplier is privately informed about his disruption risk and actions. By comparing the agency costs associated with the optimal menu of contracts with and without audit, we completely characterize the value of audit for all the cases from the perspectives of both manufacturer, and supplier as well as total supply chain. First, the analysis of value of audit from the manufacturer’s perspective shows that she can strictly benefit from auditing her supplier’s actions. To the best of our knowledge, this result has not been documented before in the principal-agent literature under a standard setting where the agent is assumed to be risk-neutral and not protected by limited liability constraints. Second, we find that not only the manufacturer but also the supplier can strictly benefit from audit. Third, the audit enables the manufacturer to customize her contract offerings based on the reliability of the supplier. Finally, by analyzing the impact of problem parameters on the value of audit, we identify the conditions under which an audit would be beneficial for individual supply chain parties as well as total supply chain.Keywords: supply disruption, adverse selection, moral hazard incentives, audit
Procedia PDF Downloads 46117542 Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka
Authors: Iranga Weerakkody, Palitha Sri Geegana Arachchige, Dasith Tilakaratna
Abstract:
The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys.Keywords: folklife, Ingini seeds, Strychnos potatorum, organic forest produce, water purification
Procedia PDF Downloads 19417541 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems
Authors: Malinwo Estone Ayikpa
Abstract:
With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance
Procedia PDF Downloads 33217540 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers
Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia
Abstract:
The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions
Procedia PDF Downloads 10317539 Water Quality Calculation and Management System
Authors: H. M. B. N Jayasinghe
Abstract:
The water is found almost everywhere on Earth. Water resources contain a lot of pollution. Some diseases can be spread through the water to the living beings. So to be clean water it should undergo a number of treatments necessary to make it drinkable. So it is must to have purification technology for the wastewater. So the waste water treatment plants act a major role in these issues. When considering the procedures taken after the water treatment process was always based on manual calculations and recordings. Water purification plants may interact with lots of manual processes. It means the process taking much time consuming. So the final evaluation and chemical, biological treatment process get delayed. So to prevent those types of drawbacks there are some computerized programmable calculation and analytical techniques going to be introduced to the laboratory staff. To solve this problem automated system will be a solution in which guarantees the rational selection. A decision support system is a way to model data and make quality decisions based upon it. It is widely used in the world for the various kind of process automation. Decision support systems that just collect data and organize it effectively are usually called passive models where they do not suggest a specific decision but only reveal information. This web base system is based on global positioning data adding facility with map location. Most worth feature is SMS and E-mail alert service to inform the appropriate person on a critical issue. The technological influence to the system is HTML, MySQL, PHP, and some other web developing technologies. Current issues in the computerized water chemistry analysis are not much deep in progress. For an example the swimming pool water quality calculator. The validity of the system has been verified by test running and comparison with an existing plant data. Automated system will make the life easier in productively and qualitatively.Keywords: automated system, wastewater, purification technology, map location
Procedia PDF Downloads 247