Search results for: vertical cavity surface emitting lasers
7224 Fundamental Research on Factors Affecting the Under-Film Corrosion Behavior of Coated Steel Members
Authors: T. Sakamoto, S. Kainuma
Abstract:
Firstly, in order to examine the influence of the remaining amount of the rust on the coating film durability, the accelerated deterioration tests were carried out. In order to prepare test specimens, uncoated steel plates were corroded by the Salt Spray Test (SST) prior to the accelerated deterioration tests, and then the prepared test specimens were coated by epoxy resin and phthalic acid resin each of which has different gas-barrier performance. As the result, it was confirmed that the under-film corrosion occurred in the area and the adjacency to great quantities of salt exists in the rust, and did not occurred in the specimen which was applied the epoxy resin paint after the surface preparation by the power tool. Secondly, in order to clarify the influence of the corrosive factors on the coating film durability, outdoor exposure tests were conducted for one year on actual steel bridge located at a coastal area. The tests specimens consist of coated corroded plates and the uncoated steel plates, and they were installed on the different structural members of the bridge for one year. From the test results, the uncoated steel plates which were installed on the underside of the member are easily corrosive and had highly correlation with the amount of salt in the rust. On the other hand, the most corrosive under-film steel was the vertical surface of the web plate. Thus, it was confirmed that under-film corrosion rate was not match with corrosion rate of the uncoated steel. Consequently, it is estimated that the main factors of under-film corrosion are gas-barrier property of coating film and corrosive factors such as water vapor and temperature. The salt which significantly corrodes the uncoated steel plate is not directly related to the under-film corrosion.Keywords: accelerated deterioration test, coating durability, environmental factor, under-film corrosion
Procedia PDF Downloads 3677223 Crystallization Fouling from Potable Water in Heat Exchangers and Evaporators
Authors: Amthal Al-Gailani, Olujide Sanni, Thibaut Charpentier, Anne Neville
Abstract:
Formation of inorganic scale on heat transfer surfaces is a serious problem encountered in industrial, commercial, and domestic heat exchangers and systems. Several industries use potable/groundwater sources such as rivers, lakes, and oceans to use water as a working fluid in heat exchangers and steamers. As potable/surface water contains diverse salt ionic species, the scaling kinetics and deposit morphology are expected to be different from those found in artificially hardened solutions. In this work, scale formation on the heat transfer surfaces from potable water has been studied using a once-through open flow cell under atmospheric pressure. The surface scaling mechanism and deposit morphology are investigated at high surface temperature. Thus the water evaporation process has to be considered. The effect of surface temperature, flow rate, and inhibitor deployment on the thermal resistance and morphology of the scale have been investigated. The study findings show how an increase in surface temperature enhances the crystallization reaction kinetics on the surface. There is an increase in the amount of scale and the resistance to heat transfer. The fluid flow rate also increases the fouling resistance and the thickness of the scale layer.Keywords: fouling, heat exchanger, thermal resistance, crystallization, potable water
Procedia PDF Downloads 1447222 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application
Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka
Abstract:
Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET
Procedia PDF Downloads 2927221 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis
Authors: Hana Gebremariam Liliso
Abstract:
This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion
Procedia PDF Downloads 567220 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime
Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda
Abstract:
Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels
Procedia PDF Downloads 1217219 Fabrication of Durable and Renegerable Superhydrophobic Coatings on Metallic Surfaces for Potential Industrial Applications
Authors: Priya Varshney, Soumya S. Mohapatra
Abstract:
Fabrication of anti-corrosion and self-cleaning superhydrophobic coatings for metallic surfaces which are regenerable and durable in the aggressive conditions has shown tremendous interest in materials science. In this work, the superhydrophobic coatings on metallic surfaces (aluminum, steel, copper) were prepared by two-step and one-step chemical etching process. In two-step process, roughness on surface was created by chemical etching and then passivation of roughened surface with low surface energy materials whereas, in one-step process, roughness on surface by chemical etching and passivation of surface with low surface energy materials were done in a single step. Beside this, the effect of etchant concentration and etching time on wettability and morphology was also studied. Thermal, mechanical, ultra-violet stability of these coatings were also tested. Along with this, regeneration of coatings and self-cleaning, corrosion resistance and water repelling characteristics were also studied. The surface morphology shows the presence of a rough microstuctures on the treated surfaces and the contact angle measurements confirms the superhydrophobic nature. It is experimentally observed that the surface roughness and contact angle increases with increase in etching time as well as with concentration of etchant. Superhydrophobic surfaces show the excellent self-cleaning behaviour. Coatings are found to be stable and maintain their superhydrophobicity in acidic and alkaline solutions. Water jet impact, floatation on water surface, and low temperature condensation tests prove the water-repellent nature of the coatings. These coatings are found to be thermal, mechanical and ultra-violet stable. These durable superhydrophobic metallic surfaces have potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 2767218 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers
Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier
Abstract:
The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law
Procedia PDF Downloads 287217 Statistical Analysis of Surface Roughness and Tool Life Using (RSM) in Face Milling
Authors: Mohieddine Benghersallah, Lakhdar Boulanouar, Salim Belhadi
Abstract:
Currently, higher production rate with required quality and low cost is the basic principle in the competitive manufacturing industry. This is mainly achieved by using high cutting speed and feed rates. Elevated temperatures in the cutting zone under these conditions shorten tool life and adversely affect the dimensional accuracy and surface integrity of component. Thus it is necessary to find optimum cutting conditions (cutting speed, feed rate, machining environment, tool material and geometry) that can produce components in accordance with the project and having a relatively high production rate. Response surface methodology is a collection of mathematical and statistical techniques that are useful for modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The work presented in this paper examines the effects of cutting parameters (cutting speed, feed rate and depth of cut) on to the surface roughness through the mathematical model developed by using the data gathered from a series of milling experiments performed.Keywords: Statistical analysis (RSM), Bearing steel, Coating inserts, Tool life, Surface Roughness, End milling.
Procedia PDF Downloads 4297216 Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet
Authors: Soumendu Monia, Vaibhav Jain, Hrishikesh Jugade, Manashi Adhikary, Goutam Mukhopadhyay
Abstract:
'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture.Keywords: annealing, rolled in scale, rolled in scum, skin panel
Procedia PDF Downloads 1857215 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement
Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao
Abstract:
Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.Keywords: feature analysis, machine vision, PCA, surface roughness, SVM
Procedia PDF Downloads 2107214 Using Nature-Based Solutions to Decarbonize Buildings in Canadian Cities
Authors: Zahra Jandaghian, Mehdi Ghobadi, Michal Bartko, Alex Hayes, Marianne Armstrong, Alexandra Thompson, Michael Lacasse
Abstract:
The Intergovernmental Panel on Climate Change (IPCC) report stated the urgent need to cut greenhouse gas emissions to avoid the adverse impacts of climatic changes. The United Nations has forecasted that nearly 70 percent of people will live in urban areas by 2050 resulting in a doubling of the global building stock. Given that buildings are currently recognised as emitting 40 percent of global carbon emissions, there is thus an urgent incentive to decarbonize existing buildings and to build net-zero carbon buildings. To attain net zero carbon emissions in communities in the future requires action in two directions: I) reduction of emissions; and II) removal of on-going emissions from the atmosphere once de-carbonization measures have been implemented. Nature-based solutions (NBS) have a significant role to play in achieving net zero carbon communities, spanning both emission reductions and removal of on-going emissions. NBS for the decarbonisation of buildings can be achieved by using green roofs and green walls – increasing vertical and horizontal vegetation on the building envelopes – and using nature-based materials that either emit less heat to the atmosphere thus decreasing photochemical reaction rates, or store substantial amount of carbon during the whole building service life within their structure. The NBS approach can also mitigate urban flooding and overheating, improve urban climate and air quality, and provide better living conditions for the urban population. For existing buildings, de-carbonization mostly requires retrofitting existing envelopes efficiently to use NBS techniques whereas for future construction, de-carbonization involves designing new buildings with low carbon materials as well as having the integrity and system capacity to effectively employ NBS. This paper presents the opportunities and challenges in respect to the de-carbonization of buildings using NBS for both building retrofits and new construction. This review documents the effectiveness of NBS to de-carbonize Canadian buildings, identifies the missing links to implement these techniques in cold climatic conditions, and determine a road map and immediate approaches to mitigate the adverse impacts of climate change such as urban heat islanding. Recommendations are drafted for possible inclusion in the Canadian building and energy codes.Keywords: decarbonization, nature-based solutions, GHG emissions, greenery enhancement, buildings
Procedia PDF Downloads 917213 Rheological Evaluation of a Mucoadhesive Precursor of Based-Poloxamer 407 or Polyethylenimine Liquid Crystal System for Buccal Administration
Authors: Jéssica Bernegossi, Lívia Nordi Dovigo, Marlus Chorilli
Abstract:
Mucoadhesive liquid crystalline systems are emerging how delivery systems for oral cavity. These systems are interesting since they facilitate the targeting of medicines and change the release enabling a reduction in the number of applications made by the patient. The buccal mucosa is permeable besides present a great blood supply and absence of first pass metabolism, it is a good route of administration. It was developed two systems liquid crystals utilizing as surfactant the ethyl alcohol ethoxylated and propoxylated (30%) as oil phase the oleic acid (60%), and the aqueous phase (10%) dispersion of polymer polyethylenimine (0.5%) or dispersion of polymer poloxamer 407 (16%), with the intention of applying the buccal mucosa. Initially, was performed for characterization of systems the conference by polarized light microscopy and rheological analysis. For the preparation of the systems the components described was added above in glass vials and shaken. Then, 30 and 100% artificial saliva were added to each prepared formulation so as to simulate the environment of the oral cavity. For the verification of the system structure, aliquots of the formulations were observed in glass slide and covered with a coverslip, examined in polarized light microscope (PLM) Axioskop - Zeizz® in 40x magnifier. The formulations were also evaluated for their rheological profile Rheometer TA Instruments®, which were obtained rheograms the selected systems employing fluency mode (flow) in temperature of 37ºC (98.6ºF). In PLM, it was observed that in formulations containing polyethylenimine and poloxamer 407 without the addition of artificial saliva was observed dark-field being indicative of microemulsion, this was also observed with the formulation that was increased with 30% of the artificial saliva. In the formulation that was increased with 100% simulated saliva was shown to be a system structure since it presented anisotropy with the presence of striae being indicative of hexagonal liquid crystalline mesophase system. Upon observation of rheograms, both systems without the addition of artificial saliva showed a Newtonian profile, after addition of 30% artificial saliva have been given a non-Newtonian behavior of the pseudoplastic-thixotropic type and after adding 100% of the saliva artificial proved plastic-thixotropic. Furthermore, it is clearly seen that the formulations containing poloxamer 407 have significantly larger (15-800 Pa) shear stress compared to those containing polyethyleneimine (5-50 Pa), indicating a greater plasticity of these. Thus, it is possible to observe that the addition of saliva was of interest to the system structure, starting from a microemulsion for a liquid crystal system, thereby also changing thereby its rheological behavior. The systems have promising characteristics as controlled release systems to the oral cavity, as it features good fluidity during its possible application and greater structuring of the system when it comes into contact with environmental saliva.Keywords: liquid crystal system, poloxamer 407, polyethylenimine, rheology
Procedia PDF Downloads 4567212 The Effect of Taekwondo on Plantar Pressure Distribution and Arch Index
Authors: Maryam Kakavand, Samira Entezari, Sara Khoshjamalfekri, Raghad Mimar
Abstract:
The objective of this study is 1) to compare elite female and beginner taekwondo players in terms of plantar pressure distribution, vertical ground reaction force, contact area, mean pressure, and right and left longitudinal arches, and 2) to compare preferred and non-preferred limbs among elite players. To the best of authors’ knowledge, as of yet, there is no information available about the plantar pressure distribution and arch index among taekwondo players. Material and Methods: An analytical-comparative research method is applied. Therefore seven elite athletes and eight novice athletes were selected. The emed-C50 platform was used to assess plantar pressure distribution, vertical ground reaction force, contact area, mean pressure of different areas, and planter longitudinal arch in a second step protocol. Independent t-test and dependent t-test were used at a level of 0.05 to compare the elites and beginners' right and left feet, and preferred and non-preferred limbs among elite athletes, respectively. Results: In comparing the right and left limbs of elite and beginner groups, findings indicate that there is only a significant difference in the mean pressure of the first metatarsal of the right foot. Findings also showed a significant difference in the contact area of the toes 3, 4, 5 regions between elites’ preferred and non-preferred limbs. However, no significant difference was found between the two groups’ right and left limbs and elites’ preferred and non-preferred limbs in terms of pressure distribution, vertical ground reaction force, and arch index. Conclusion: It seems that taekwondo exercises have affected pressure distribution patterns among advanced players causing some differences in their planter pressure distribution pattern when compared to that of beginners. Therefore, taekwondo exercises may be a factor contributing to asymmetry performance in preferred and non-preferred limbs.Keywords: planter pressure, arch index, taekwondo, elite
Procedia PDF Downloads 1547211 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil
Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai
Abstract:
Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state
Procedia PDF Downloads 1417210 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach
Authors: Siamak Ghorbani, Nikolay Ivanovich Polushin
Abstract:
Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration
Procedia PDF Downloads 3097209 The Effect of Surface Modified Nano-Hydroxyapatite Incorporation into Polymethylmethacrylate Cement on Biocompatibility and Mechanical Properties
Authors: Yu-Shan Wu, Po-Liang Lai, I-Ming Chu
Abstract:
Poly(methylmethacrylate)(PMMA) is the most frequently used bone void filler for vertebral augmentation in osteoporotic fracture. PMMA bone cement not only exhibits strong mechanical properties but also can fabricate according to the shape of bone defect. However, the adhesion between the PMMA-based cement and the adjacent bone is usually weak and as PMMA bone cement is inherently bioinert. The combination of bioceramics and polymers as composites may increase cell adhesion and improve biocompatibility. The nano-hydroxyapatite(HAP) not only plays a significant role in maintaining the properties of the natural bone but also offers a favorable environment for osteoconduction, protein adhesion, and osteoblast proliferation. However, defects and cracks can form at the polymer/ceramics interface, resulting in uneven distribution of stress and subsequent inferior mechanical strength. Surface-modified HAP nano-crystals were prepared by chemically grafting poly(ε-caprolactone)(PCL) on surface-modified nano-HAP surface to increase the affinity of polymer/ceramic phases .Thus, incorporation of surface-modified nano-hydroxyapatite (EC-HAP) may not only improve the interfacial adhesion between cement and bone and between nanoparticles and cement, but also increase biocompatibility. In this research, PMMA mixing with 0, 5, 10, 15, 20, 25 and 30 wt% EC-HAP were examined. MC3T3-E1 cells were used for the biological evaluation of the response to the cements in vitro. Morphology was observed using scanning electron microscopy (SEM). Mechanical properties of HAP/PMMA and EC-HAP/PMMA cement were investigated by compression test. Surface wettability of the cements was measured by contact angles.Keywords: bone cement, biocompatibility, nano-hydroxyapatite, polycaprolactone, PMMA, surface grafting
Procedia PDF Downloads 3947208 Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects
Authors: Okuyade Ighoroje Wilson Ata
Abstract:
Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance.Keywords: chemical reaction, hall effect, magneto-hydrodynamic, radiation, vertical plates channel
Procedia PDF Downloads 767207 Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations
Authors: Cemre Polat, Dogan B. Saydam, Mustafa Soyler, Coskun Ozalp
Abstract:
In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder.Keywords: bluff body, flow characteristics, PIV, rectangular cylinder
Procedia PDF Downloads 1507206 Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique
Authors: F. Stephen Joe, V. Sathya Narayanan, V. R. Sanal Kumar
Abstract:
A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %.Keywords: BHJ polymer solar cell, photovoltaic cell, solar cell, Stephen Joe technique
Procedia PDF Downloads 5417205 Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption
Authors: Mookyada Mankrut, Manit Nithitanakul
Abstract:
An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support.Keywords: polyHIPEs, CO2 adsorption, solution plasma process, high internal phase emulsion
Procedia PDF Downloads 2727204 A Dynamic Equation for Downscaling Surface Air Temperature
Authors: Ch. Surawut, D. Sukawat
Abstract:
In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.Keywords: dynamic equation, downscaling, inverse distance, weight interpolation
Procedia PDF Downloads 3017203 Vertical and Horizontal Mismatches in Thailand and the Wage Penalty
Authors: Potjana Chunthanom
Abstract:
The Thai labor market experiences increasing challenges due to disruptive technologies and demographic shifts, including the COVID-19 pandemic. Consequently, there is a widening gap between the skills that firms seek and the skills that employees possess. This study aims to examine the incidence of vertical and horizontal mismatches and their impact on wages in Thailand before and during the COVID-19 pandemic using data from the third quarter of 2018 to 2021 from Thailand's National Labor Force Survey. This paper applies three methods: ordinary least squares (OLS), pooled ordinary least squares (Pooled OLS), and counterfactual decomposition. The findings suggest that the incidence of overeducation and field-of-study mismatch continues to increase during the COVID-19 pandemic in comparison to the two previous years. In contrast, there is a notable decline in the percentage of undereducated workers during the same period. Additionally, overeducated workers earn wage premiums, whereas undereducated and horizontally mismatched workers face wage penalties. The result also indicates that the COVID-19 pandemic has significant negative (positive) effects on overeducated (undereducated) workers.Keywords: COVID-19, horizontal mismatch, overeducation, undereducation
Procedia PDF Downloads 367202 Effects of Alkaline Pretreatment Parameters on the Corrosion Resistance and Wettability of Magnesium Implant
Authors: Mahtab Assadian, Mohd Hasbullah Idris, Mostafa Rezazadeh Shirdar, Mohammad Mahdi Taheri, S. Izman
Abstract:
Corrosion behaviour and surface roughness of magnesium substrate were investigated after NaOH pretreatment in different concentrations (1, 5, and 10 molar) and duration of (10 min, 30 min, 1 h, 3 h, 6 h and 24 h). Creation of Mg(OH)2 barrier layer after pretreatment enhanced corrostion resistance as well as wettability of substrate surface. Characterization including Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) was conducted to detect the existence of this barrier layer. Surface roughness and wettability of substrate was evaluated using atomic force microscopy (AFM) and contact angle measurement respectively. It is found that magnesium treated by 1M NaOH for 30 min reveals higher corrosion resistance and lower water contact angle of substrate surface. In addition, this investigation indicates that pH value of SBF solution is strongly influenced by different time and concentration of alkaline pretreatment.Keywords: magnesium, NaOH pretreatment, corrosion resistance, wettability
Procedia PDF Downloads 9597201 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia
Authors: Suzana Ramli, Wardah Tahir
Abstract:
Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.Keywords: surface runoff, geographic information system, curve number method, environment
Procedia PDF Downloads 2797200 Elevated Temperature Shot Peening for M50 Steel
Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang
Abstract:
As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature
Procedia PDF Downloads 4557199 Two-Step Inversion Method for Multi-mode Surface Waves
Authors: Ying Zhang
Abstract:
Surface waves provide critical constraints about the earth's structure in the crust and upper mantle. However, different modes of Love waves with close group velocities often arrive at a similar time and interfere with each other. This problem is typical for Love waves at intermediate periods that travel through the oceanic lithosphere. Therefore, we developed a two-step inversion approach to separate the waveforms of the fundamental and first higher mode of Love waves. We first solve the phase velocities of the two modes and their amplitude ratios. The misfit function is based on the sum of phase differences among the station pairs. We then solve the absolute amplitudes of the two modes and their initial phases using obtained phase velocities and amplitude ratio. The separated waveforms of each mode from the two-step inversion method can be further used in surface wave tomography to improve model resolution.Keywords: surface wave inversion, waveform separation, love waves, higher-mode interference
Procedia PDF Downloads 677198 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes
Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova
Abstract:
Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering
Procedia PDF Downloads 3147197 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control
Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy
Abstract:
This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element
Procedia PDF Downloads 6207196 Investigating Relationship between Body Size and Physical Fitness Factors among University Students
Authors: Allahyar Arabmomeni, Hojjatollah Alaei
Abstract:
Background: The objectives of this study was to investigate effect of anthropometric variables and body composition on physical capabilities among male and female students. Materials and Methods: The study had a descriptive correlation method. The statistical population consisted of all students of Islamic Azad University, Khomeinishahr Branch, from 2011 to 2013, which was about 7000 students. The statistical sample included 300 male and 300 female students who were randomly selected from among university students in proportion to frequency of students in each faculty. Descriptive statistical methods, t-test and Pearson correlation coefficient were used for data analysis. Results: Results of this research showed that body size of male students in the studied variables was more than that of female students (p<0.05). Moreover, there was significant difference between all the variables based on significance level of the table. Also, the results taken from the Pearson correlation of this study's variables showed a positive relationship between height and leg and hand length and sit-up, full-ups bar and vertical jump tests (p<0/01). Besides, there was a positive correlation between hand length, sit-up, full-ups bar and vertical jump tests. As far as tests of length of legs and vertical jump were concerned, a highly positive correlation was observed between them. Additionally, results of this study indicated a significant correlation at alpha level of 0.05 between age and height of the students; but, there was a negative correlation between age, sit-up and 1600-m tests (p<0.05). Conclusion: The results of this study indicated a relationship between size of weight, height, length of hands and legs and some physical fitness tests. Therefore, it is required to consider anthropometric factors in addition to gender and age while preparing norms of physical fitness since variables of height and length of hands also affect physical fitness evaluation.Keywords: anthropometric variables, physical fitness factors, students, body composition
Procedia PDF Downloads 3917195 CFD Modeling of Pollutant Dispersion in a Free Surface Flow
Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Said, Hervé Bournot, Georges Le Palec
Abstract:
In this work, we determine the turbulent dynamic structure of pollutant dispersion in two-phase free surface flow. The numerical simulation was performed using ANSYS Fluent. The flow study is three-dimensional, unsteady and isothermal. The study area has been endowed with a rectangular obstacle to analyze its influence on the hydrodynamic variables and progression of the pollutant. The numerical results show that the hydrodynamic model provides prediction of the dispersion of a pollutant in an open channel flow and reproduces the recirculation and trapping the pollutant downstream near the obstacle.Keywords: CFD, free surface, polluant dispersion, turbulent flows
Procedia PDF Downloads 543