Search results for: under vehicle inspection
988 Effects of Gamma-Tocotrienol Supplementation on T-Regulatory Cells in Syngeneic Mouse Model of Breast Cancer
Authors: S. Subramaniam, J. S. A. Rao, P. Ramdas, K. R. Selvaduray, N. M. Han, M. K. Kutty, A. K. Radhakrishnan
Abstract:
Immune system is a complex system where the immune cells have the capability to respond against a wide range of immune challenges including cancer progression. However, in the event of cancer development, tumour cells trigger immunosuppressive environment via activation of myeloid-derived suppressor cells and T regulatory (Treg) cells. The Treg cells are subset of CD4+ T lymphocytes, known to have crucial roles in regulating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. Dysregulation of these mechanisms could lead to cancer progression and immune suppression. Recently, there are many studies reporting on the effects of natural bioactive compounds on immune responses against cancer. It was known that tocotrienol-rich-fraction consisting 70% tocotrienols and 30% α-tocopherol is able to exhibit immunomodulatory as well as anti-cancer properties. Hence, this study was designed to evaluate the effects of gamma-tocotrienol (G-T3) supplementation on T-reg cells in a syngeneic mouse model of breast cancer. In this study, female BALB/c mice were divided into two groups and fed with either soy oil (vehicle) or gamma-tocotrienol (G-T3) for two weeks followed by inoculation with tumour cells. All the mice continued to receive the same supplementation until day 49. The results showed a significant reduction in tumour volume and weight in G-T3 fed mice compared to vehicle-fed mice. Lung and liver histology showed reduced evidence of metastasis in tumour-bearing G-T3 fed mice. Besides that, flow cytometry analysis revealed T-helper cell population was increased, and T-regulatory cell population was suppressed following G-T3 supplementation. Moreover, immunohistochemistry analysis showed that there was a marked decrease in the expression of FOXP3 in the G-T3 fed tumour bearing mice. In conclusion, the G-T3 supplementation showed good prognosis towards breast cancer by enhancing the immune response in tumour-bearing mice. Therefore, gamma-T3 can be used as immunotherapy agent for the treatment of breast cancer.Keywords: breast cancer, gamma tocotrienol, immune suppression, supplement
Procedia PDF Downloads 223987 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications
Authors: Hatim Laalej, Jon Stammers
Abstract:
In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.Keywords: machining, manufacturing, tool wear, signal processing
Procedia PDF Downloads 246986 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, NDT, artificial defect, ultrasonic testing
Procedia PDF Downloads 475985 Videoconference Technology: An Attractive Vehicle for Challenging and Changing Tutors Practice in Open and Distance Learning Environment
Authors: Ramorola Mmankoko Ziphorah
Abstract:
Videoconference technology represents a recent experiment of technology integration into teaching and learning in South Africa. Increasingly, videoconference technology is commonly used as a substitute for the traditional face-to-face approaches to teaching and learning in helping tutors to reshape and change their teaching practices. Interestingly, though, some studies point out that videoconference technology is commonly used for knowledge dissemination by tutors and not so much for the actual teaching of course content in Open and Distance Learning context. Though videoconference technology has become one of the dominating technologies available among Open and Distance Learning institutions, it is not clear that it has been used as effectively to bridge the learning distance in time, geography, and economy. While tutors are prepared theoretically, in most tutor preparation programs, on the use of videoconference technology, there are still no practical guidelines on how they should go about integrating this technology into their course teaching. Therefore, there is an urgent need to focus on tutor development, specifically on their capacities and skills to use videoconference technology. The assumption is that if tutors become competent in the use of the videoconference technology for course teaching, then their use in Open and Distance Learning environment will become more commonplace. This is the imperative of the 4th Industrial Revolution (4IR) on education generally. Against the current vacuum in the practice of using videoconference technology for course teaching, the current study proposes a qualitative phenomenological approach to investigate the efficacy of videoconferencing as an approach to student learning. Using interviews and observation data from ten participants in Open and Distance Learning institution, the author discusses how dialogue and structure interacted to provide the participating tutors with a rich set of opportunities to deliver course content. The findings to this study highlight various challenges experienced by tutors when using videoconference technology. The study suggests tutor development programs on their capacity and skills and on how to integrate this technology with various teaching strategies in order to enhance student learning. The author argues that it is not merely the existence of the structure, namely the videoconference technology, that provides the opportunity for effective teaching, but that is the interactions, namely, the dialogue amongst tutors and learners that make videoconference technology an attractive vehicle for challenging and changing tutors practice.Keywords: open distance learning, transactional distance, tutor, videoconference
Procedia PDF Downloads 129984 Prevalence of Sarcocystosis in Slaughtered Sheep and Goats
Authors: Shivan N. Hussein, Ihsan K. Zangana
Abstract:
A total of 2358 sheep and 532 goats were examined for the presence of macrocystis of Sarcocystis. For microcysts, different muscle tissues were randomly taken from 118 sheep and 110 goats. Macrocystis were examined through naked eye inspection, while microcysts were examined microscopically by using histopathology, pepsin digestion, mincing & squeezing, and muscle squash method. Overall prevalence of macrocystis was 1.2% in sheep and 2.6% in goats. The intensity rate of the cysts was 4 cysts/ gram in sheep & 3 cysts/ gram in goats, respectively, while the overall prevalence of microcysts in sheep and goats was 96.5%. The infection rate in sheep was 96.6% and in goats was 96.4%. The total intensity rate of microcysts was 32.4 cysts/ field in sheep and 16.8 cysts/ field in goats, respectively. Histopathological examination found different shapes, size, wall thickness, and intensity rates of microcysts in muscle tissues of sheep & goats. The pathological reaction showed mild to moderate granulocytosis, and mononuclear cells infiltrated surrounding the microcysts with necrotizing and degeneration of myofibrils. The largest average size of spindle and round shaped cysts (290 ± 89.7 x 76.1 ± 10 µm and 88.8 ± 10.3 µm) in goats and (127.2 ± 18.9 x 53.3 ± 5.4 µm and 74.4 ± 7.5 µm) in sheep, was detected in the esophageal muscle. Statistically, there was a significant difference (p < 0.05) in the prevalence of macrocystis in sheep and goats, while no significant difference (p > 0.05) was observed in the prevalence of microcysts between both animal species.Keywords: macrocystis, microcysts, intensity rate, measurement size
Procedia PDF Downloads 148983 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor
Procedia PDF Downloads 222982 Hydroxy Safflower Yellow A (HSYA) Mediated Neuroprotective Effect against Ischemia Reperfusion (I/R) Injury in Cerebral Stroke
Authors: Sruthi Ramagiri, Rajeev T.
Abstract:
Free radical damage has been entailed as the major culprit in the ischemic stroke contributing for oxidative damage. Recent investigations on Hydroxy Safflower Yellow A (HSYA) suggested its role in cerebral ischemia and various neurodegenerative disorders with unidentified molecular mechanisms. The current study was designed to investigate putative therapeutic role and possible molecular mechanisms of HSYA administration during the onset of reperfusion in cerebral ischemia-reperfusion (I/R) injury in cerebral stroke. Cerebral stroke was achieved by focal ischemic model. HSYA (10 mg/kg) was injected intravenously via the tail vein 5 minutes before reperfusion. Losses of sensorimotor abilities were evaluated by neurological scoring, spontaneous locomotor activity, and rotarod performance. Extent of oxidative stress was evaluated by biochemical parameters i.e., malondialdehyde (MDA), Glutathione (GSH), Super Oxide Dismutase (SOD) and catalase levels. The infarct volume of brain was assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining technique. Increased cerebral injury (I/R) was evidenced by motor impairment, increased infarct volume and elevation of MDA levels along with significant reduction in antioxidant i.e.,MDA levels along with significant reduction in antioxidant i.e., GSH, SOD and catalase levels when compared to sham control. However, post conditioning with HSYA (10 mg/kg, i.v.) at the onset of reperfusion has significantly ameliorated sensorimotor abilities, attenuated MDA levels and reduced the infarct volume as compared with vehicle treated I/R injury group. Moreover, HSYA treatments improved antioxidant enzyme levels as compared with vehicle treated I/R-injury group. In conclusion, it may be suggested that HSYA post conditioning could be novel therapeutic approach against I/R injury in cerebral stroke possibly through its anti-oxidant mechanism.Keywords: HSYA, Ischemia reperfusion injury, oxidative stress, stroke
Procedia PDF Downloads 427981 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8
Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti
Abstract:
In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports
Procedia PDF Downloads 84980 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment
Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett
Abstract:
Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle
Procedia PDF Downloads 78979 An Image Stitching Approach for Scoliosis Analysis
Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris
Abstract:
Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.Keywords: image stitching, MACE filter, panorama image, scoliosis
Procedia PDF Downloads 461978 Correlates of Modes of Transportation to Work among Working Adults in Ernakulam District, Kerala
Authors: Anjaly Joseph, Elezebeth Mathews
Abstract:
Transportation and urban planning is the least recognised area for physical activity promotion in India, unlike developed regions. Identifying the preferred transportation modalities and factors associated with it is essential to address these lacunae. The objective of the study was to assess the prevalence of modes of transportation to work, and its correlates among working adults in Ernakulam District, Kerala. A cross sectional study was conducted among 350 working individuals in the age group of 18-60 years, selected through multi-staged stratified random sampling in Ernakulam district of Kerala. The inclusion criteria were working individuals 18-60 years, workplace at a distance of more than 1 km from the home and who worked five or more days a week. Pregnant women/women on maternity leave and drivers (taxi drivers, autorickshaw drivers, and lorry drivers) were excluded. An interview schedule was used to capture the modes of transportation namely, public, private and active transportation, socio demographic details, travel behaviour, anthropometric measurements and health status. Nearly two-thirds (64 percent) of them used private transportation to work, while active commuters were only 6.6 percent. The correlates identified for active commuting compared to other modes were low socio-economic status (OR=0.22, CI=0.5-0.85) and presence of a driving license (OR=4.95, CI= 1.59-15.45). The correlates identified for public transportation compared to private transportation were female gender (OR= 17.79, CI= 6.26-50.31), low income (OR=0.33, CI= 0.11-0.93), being unmarried (OR=5.19, CI=1.46-8.37), presence of no or only one private vehicle in the house (OR=4.23, CI=1.24-20.54) and presence of convenient public transportation facility to workplace (OR=3.97, CI= 1.66-9.47). The association between body mass index (BMI) and public transportation were explored and found that public transport users had lesser BMI than private commuters (OR=2.30, CI=1.23-4.29). Policies that encourage active and public transportation needs to be introduced such as discouraging private vehicle through taxes, introduction of convenient and safe public transportation facility, walking/cycling paths, and paid parking facility.Keywords: active transportation, correlates, India, public transportation, transportation modes
Procedia PDF Downloads 166977 Using ROVs to Teach a Blended STEM Curriculum
Authors: Geoffrey A. Wright
Abstract:
Over the past year we have developed and implemented a blended STEM curriculum based on ROV (Remotely Operated Vehicle) underwater technology with over 300 students in grades 2–9. This paper presents an overview of the curriculum, what we have learned from the development and implementation, with suggestions of how to build a similar statewide ROV program, and how we will continue and enhance the effort this next year with more than 300 additional students. The benefits of the program are the application and blending of STEM principles using inquiry based instruction, where students have shown to increase in STEM self-efficacy and interest.Keywords: STEM, technology, engineering, ROV
Procedia PDF Downloads 364976 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response
Authors: Reza Behboodian
Abstract:
Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.Keywords: failure, time history analysis, dynamic response, strain energy
Procedia PDF Downloads 135975 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 82974 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model
Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf
Abstract:
Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV
Procedia PDF Downloads 129973 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator
Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters
Abstract:
Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation
Procedia PDF Downloads 127972 The Effects of Different Types of Herbicides Used for Lawn Maintenance on the Dynamics of Weeds in an Urban Environment
Authors: Yetunde I. Bulu, Moses B. Adewole, Julius O. Faluyi
Abstract:
This study investigates the effect of aggressive application of herbicide on weed succession in an urban environment in Ile-Ife, Osun State. An inspection of the communities was carried out to identify sites maintained by herbicides (test plots) and those without herbicide history (control plots). Four different experimental plots located at Olasode, Eleweran, Ife City and Parakin within Ile-Ife town were monitored during the study. Comprehensive enumeration and identification of plant populations to species level was carried out on each of the plots and at every visit to determine the direction of succession. Index of similarities was used to determine the relationship in plant species composition between plots treated with herbicide and the untreated plots. The trend of increasing plant species was observed in all the study plots. Low Similarity Index between the treated plots and the control vegetation was observed at all visitations. Low similarity was also observed between the above-ground vegetation and the seed bank in all the plots. The study concluded that the weed population observed from the experimental plots showed an increase in species richness and diversity when the plots were left to recover compared to the control plots.Keywords: herbicide, index of similarity, population, soil seed bank, succession
Procedia PDF Downloads 162971 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data
Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu
Abstract:
Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.Keywords: graph theory, walkability, accessibility, street network
Procedia PDF Downloads 228970 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle
Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito
Abstract:
Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks
Procedia PDF Downloads 69969 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 26968 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity
Authors: Marcin Baranski
Abstract:
This article presents a vibration diagnostic method designed for permanent magnets (PM) traction motors. Those machines are commonly used in traction drives of electrical vehicles. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. This work presents: field-circuit model, results of static tests, results of calculations and simulations.Keywords: electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity
Procedia PDF Downloads 629967 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes
Authors: Sezer Kefeli, Sertaç Arslan
Abstract:
In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters
Procedia PDF Downloads 173966 Sound Quality Analysis of Sloshing Noise from a Rectangular Tank
Authors: Siva Teja Golla, B. Venkatesham
Abstract:
The recent technologies in hybrid and high-end cars have subsided the noise from major sources like engines and transmission systems. This resulted in the unmasking of the previously subdued noises. These noises are becoming noticeable to the passengers, causing annoyance to them and affecting the perceived quality of the vehicle. Sloshing in the fuel tank is one such source of noise. Sloshing occurs due to the excitations undergone by the fuel tank due to the vehicle's movement. Sloshing noise occurs due to the interaction of the fluid with the surrounding tank walls or with the fluid itself. The noise resulting from the interaction of the fluid with the structure is ‘Hit noise’, and the noise due to fluid-fluid interaction is ‘Splash noise’. The type of interactions the fluid undergoes inside the tank, and the type of noise generated depends on a variety of factors like the fill level of the tank, type of fluid, presence of objects like baffles inside the tank, type and strength of the excitation, etc. There have been studies done to understand the effect of each of these parameters on the generation of different types of sloshing noises. But little work is done in the psychoacoustic aspect of these sounds. The psychoacoustic study of the sloshing noises gives an understanding of the level of annoyance it can cause to the passengers and helps in taking necessary measures to address it. In view of this, the current paper focuses on the calculation of the psychoacoustic parameters like loudness, sharpness, roughness and fluctuation strength for the sloshing noise. As the noise generation mechanisms for the hit and splash noises are different, these parameters are calculated separately for them. For this, the fluid flow regimes that predominantly cause the hit-and-splash noises are to be separately emulated inside the tank. This is done through a reciprocating test rig, which imposes reciprocating excitation to a rectangular tank filled with the fluid. By varying the frequency of excitation, the fluid flow regimes with the predominant generation of hit-and-splash noises can be separately created inside the tank. These tests are done in a quiet room and the noise generated is captured using microphones and is used for the calculation of psychoacoustic parameters of the sloshing noise. This study also includes the effect of fill level and the presence of baffles inside the tank on these parameters.Keywords: sloshing, hit noise, splash noise, sound quality
Procedia PDF Downloads 33965 The Emerging Multi-Species Trap Fishery in the Red Sea Waters of Saudi Arabia
Authors: Nabeel M. Alikunhi, Zenon B. Batang, Aymen Charef, Abdulaziz M. Al-Suwailem
Abstract:
Saudi Arabia has a long history of using traps as a traditional fishing gear for catching commercially important demersal, mainly coral reef-associated fish species. Fish traps constitute the dominant small-scale fisheries in Saudi waters of Arabian Gulf (eastern seaboard of Saudi Arabia). Recently, however, traps have been increasingly used along the Saudi Red Sea coast (western seaboard), with a coastline of 1800 km (71%) compared to only 720 km (29%) in the Saudi Gulf region. The production trend for traps indicates a recent increase in catches and percent contribution to traditional fishery landings, thus ascertaining the rapid proliferation of trap fishing along the Saudi Red Sea coast. Reef-associated fish species, mainly groupers (Serranidae), emperors (Lethrinidae), parrotfishes (Scaridae), scads and trevallies (Carangidae), and snappers (Lutjanidae), dominate the trap catches, reflecting the reef-dominated shelf zone in the Red Sea. This ongoing investigation covers following major objectives (i) Baseline studies to characterize trap fishery through landing site visit and interview surveys (ii) Stock assessment by fisheries and biological data obtained through monthly landing site monitoring using fishery operational model by FLBEIA, (iii) Operational impacts, derelict traps assessment and by-catch analysis through bottom-mounted video camera and onboard monitoring (iv) Elucidation of fishing grounds and derelict traps impacts by onboard monitoring, Remotely Operated underwater Vehicle and Autonomous Underwater Vehicle surveys; and (v) Analysis of gear design and operations which covers colonization and deterioration experiments. The progress of this investigation on the impacts of the trap fishery on fish stocks and the marine environment in the Saudi Red Sea region is presented.Keywords: red sea, Saudi Arabia, fish trap, stock assessment, environmental impacts
Procedia PDF Downloads 350964 Observation of Critical Sliding Velocity
Authors: Visar Baxhuku, Halil Demolli, Alishukri Shkodra
Abstract:
This paper presents the monitoring of vehicle movement, namely the developing of speed of vehicles during movement in a certain twist. The basic geometry data of twist are measured with the purpose of calculating the slide in border speed. During the research, measuring developed speed of passenger vehicles for the real conditions of the road surface, dry road with average damage, was realised. After setting values, the analysis was done in function security of movement in twist.Keywords: critical sliding velocity, moving velocity, curve, passenger vehicles
Procedia PDF Downloads 421963 Influence of Environmental Temperature on Dairy Herd Performance and Behaviour
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, S. Harapanahalli, J. Walsh
Abstract:
The objective of this study was to determine the effects of environmental stressors on the performance of lactating dairy cows and discuss some future trends. There exists a relationship between the meteorological data and milk yield prediction accuracy in pasture-based dairy systems. New precision technologies are available and are being developed to improve the sustainability of the dairy industry. Some of these technologies focus on welfare of individual animals on dairy farms. These technologies allow the automatic identification of animal behaviour and health events, greatly increasing overall herd health and yield while reducing animal health inspection demands and long-term animal healthcare costs. The data set consisted of records from 489 dairy cows at two dairy farms and temperature measured from the nearest meteorological weather station in 2018. The effects of temperature on milk production and behaviour of animals were analyzed. The statistical results indicate different effects of temperature on milk yield and behaviour. The “comfort zone” for animals is in the range 10 °C to 20 °C. Dairy cows out of this zone had to decrease or increase their metabolic heat production, and it affected their milk production and behaviour.Keywords: behavior, milk yield, temperature, precision technologies
Procedia PDF Downloads 109962 Design and Development of an Autonomous Beach Cleaning Vehicle
Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk
Abstract:
In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics
Procedia PDF Downloads 29961 Analysis of Inventory Control, Lot Size and Reorder Point for Engro Polymers and Chemicals
Authors: Ali Akber Jaffri, Asad Naseem, Javeria Khan
Abstract:
The purpose of this study is to determine safety stock, maximum inventory level, reordering point, and reordering quantity by rearranging lot sizes for supplier and customer in MRO (maintenance repair operations) warehouse of Engro Polymers & Chemicals. To achieve the aim, physical analysis method and excel commands were carried out to elicit the customer and supplier data provided by the company. Initially, we rearranged the current lot sizes and MOUs (measure of units) in SAP software. Due to change in lot sizes we have to determine the new quantities for safety stock, maximum inventory, reordering point and reordering quantity as per company's demand. By proposed system, we saved extra cost in terms of reducing the time of receiving from vendor and in issuance to customer, ease of material handling in MRO warehouse and also reduce human efforts. The information requirements identified in this study can be utilized in calculating Economic Order Quantity.Keywords: carrying cost, economic order quantity, fast moving, lead time, lot size, MRO, maximum inventory, ordering cost, physical inspection, reorder point
Procedia PDF Downloads 239960 An Immune-Inspired Web Defense Architecture
Authors: Islam Khalil, Amr El-Kadi
Abstract:
With the increased use of web technologies, microservices, and Application Programming Interface (API) for integration between systems, and with the development of containerization of services on the operating system level as a method of isolating system execution and for easing the deployment and scaling of systems, there is a growing need as well as opportunities for providing platforms that improve the security of such services. In our work, we propose an architecture for a containerization platform that utilizes various concepts derived from the human immune system. The goal of the proposed containerization platform is to introduce the concept of slowing down or throttling suspected malicious digital pathogens (intrusions) to reduce their damage footprint while providing more opportunities for forensic inspection of suspected pathogens in addition to the ability to snapshot, rollback, and recover from possible damage. The proposed platform also leverages existing intrusion detection algorithms by integrating and orchestrating their cooperative operation for more effective intrusion detection. We show how this model reduces the damage footprint of intrusions and gives a greater time window for forensic investigation. Moreover, during our experiments, our proposed platform was able to uncover unintentional system design flaws that resulted in internal DDoS-like attacks by submodules of the system itself rather than external intrusions.Keywords: containers, human immunity, intrusion detection, security, web services
Procedia PDF Downloads 97959 Application of Stochastic Models to Annual Extreme Streamflow Data
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.Keywords: stochastic models, ARIMA, extreme streamflow, Karkheh river
Procedia PDF Downloads 148