Search results for: thermal stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6241

Search results for: thermal stability

5431 Performance Analysis of Solar Air Heater with Fins and Perforated Twisted Tape Insert

Authors: Rajesh Kumar, Prabha Chand

Abstract:

The present paper deals with the analytical investigation on the thermal and thermo-hydraulic performance of the solar air collector fitted with fins and perforated twisted tapes (PTT) of twist ratio 2 with different axial pitch ratio. The mathematical models are presented, and the effect of mass flow rate and axial pitch ratios on the thermal and effective efficiency has been discussed. The results obtained are compared with the results of the solar air heater without fins and twisted tapes. Results conveyed that the collectors with fins and perforated twisted tape perform better but at the expense of increased pressure drop. Also, twisted tape with minimum axial pitch ratio is found to be more efficient than others.

Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio

Procedia PDF Downloads 249
5430 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 419
5429 Thermal Effects of Disc Brake Rotor Design for Automotive Brake Application

Authors: K. Shahril, M. Ridzuan, M. Sabri

Abstract:

The disc rotor is solid, ventilated or drilled. The ventilated type disc rotor consists of a wider disc with cooling fins cast through the middle to ensure good cooling. The disc brakes use pads that are pressed axially against a rotor or disc. Solid and ventilated disc design are same which it free with any form, unless inside the ventilated disc has several ventilation holes. Different with drilled disc has some construction on the surface which is has six lines of drill hole penetrate the disc and a little bit deep twelve curves. From the thermal analysis that was conducted by using ANSYS Software, temperature distribution and heat transfer rate on the disc were obtained on each design. Temperature occurred on the drilled disc was lowest than ventilated and solid disc, it is 66% better than ventilated while ventilated is 21% good than solid disc.

Keywords: disc brakes, drilled disc, thermal analysis, ANSYS software

Procedia PDF Downloads 373
5428 Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy

Authors: Uwa C. A., Jamiru T.

Abstract:

Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components.

Keywords: Al-Cu-Nb-Mo, electrical conductivity, alloy, sintering, thermal conductivity

Procedia PDF Downloads 74
5427 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 528
5426 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: polymer, TGA, pollution, landfill, waste, plastic

Procedia PDF Downloads 118
5425 Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit

Authors: Brahim Mazian, Anne Bergeret, Jean-Charles Benezet, Sandrine Bayle, Luc Malhautier

Abstract:

Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation.

Keywords: controlled retting, hemp fibre, mechanical properties, thermal stability

Procedia PDF Downloads 140
5424 Calculating Approach of Thermal Conductivity of 8 YSZ in Different Relative Humidities Corresponding to Low Water Contents

Authors: Yun Chol Kang, Myong Nam Kong, Nam Chol Yu, Jin Sim Kim, Un Yong Paek, Song Ho Kim

Abstract:

This study focuses on the calculating approach of the thermal conductivity of 8 mol% yttria-stabilized zirconia (8YSZ) in different relative humidity corresponding to low water contents. When water content in 8YSZ is low, water droplets can accumulate in the neck regions. We assume that spherical water droplets are randomly located in the neck regions formed by grains and surrounded by the pores. Based on this, a new hypothetical pore constituted by air and water is proposed using the microstructural modeling. We consider 8YSZ is a two-phase material constituted by the solid region and the hypothetical pore region where the water droplets are penetrated in the pores, randomly. The results showed that the thermal conductivity of the hypothetical pore is calculated using the parallel resistance for low water contents, and the effective thermal conductivity of 8YSZ material constituted by solid and hypothetical pore in different relative humidities using EMPT. When the numbers of water layers on the surface of 8YSZ are less than 1.5, the proposed approach gives a good interpretation of the experimental results. When the theoretical value of the number of water layers on 8YSZ surface is 1, the water content is not enough to cover the internal solid surface completely. The proposed approach gives a better interpretation of the experimental results in different relative humidities that numbers of water layers on the surface of 8YSZ are less than 1.5.

Keywords: 8YSZ, microstructure, thermal conductivity, relative humidity

Procedia PDF Downloads 75
5423 Three Types of Mud-Huts with Courtyards in Composite Climate: Thermal Performance in Summer and Winter

Authors: Janmejoy Gupta, Arnab Paul, Manjari Chakraborty

Abstract:

Jharkhand is a state located in the eastern part of India. The Tropic of Cancer (23.5 degree North latitude line) passes through Ranchi district in Jharkhand. Mud huts with burnt clay tiled roofs in Jharkhand are an integral component of the state’s vernacular architecture. They come in various shapes, with a number of them having a courtyard type of plan. In general, it has been stated that designing dwellings with courtyards in them is a climate-responsive strategy in composite climate. The truth behind this hypothesis is investigated in this paper. In this paper, three types of mud huts with courtyards situated in Ranchi district in Jharkhand are taken as a study and through temperature measurements in the south-side rooms and courtyards, in addition to Autodesk Ecotect (Version 2011) software simulations, their thermal performance throughout the year are observed. Temperature measurements are specifically taken during the peak of summer and winter and the average temperatures in the rooms and courtyards during seven day-periods in peak of summer and peak of winter are plotted graphically. Thereafter, on the basis of the study and software simulations, the hypothesis is verified and the thermally better performing dwelling types in summer and winter identified among the three sub-types studied. Certain recommendations with respect to increasing thermal comfort in courtyard type mud huts in general are also made. It is found that all courtyard type dwellings do not necessarily show better thermal performance in summer and winter in composite climate. The U shaped dwelling with open courtyard on southern side offers maximum amount of thermal-comfort inside the rooms in the hotter part of the year and the square hut with a central courtyard, with the courtyard being closed from all sides, shows superior thermal performance in winter. The courtyards in all the three case-studies are found to get excessively heated up during summer.

Keywords: courtyard, mud huts, simulations, temperature measurements, thermal performance

Procedia PDF Downloads 389
5422 Thermal Properties of Chitosan-Filled Empty Fruit Bunches Filter Media

Authors: Aziatul Niza Sadikin, Norasikin Othman, Mohd Ghazali Mohd Nawawi, Umi Aisah Asli, Roshafima Rasit Ali, Rafiziana Md Kasmani

Abstract:

Non-woven fibrous filter media from empty fruit bunches were fabricated by using chitosan as a binder. Chitosan powder was dissolved in a 1 wt% aqueous acetic acid and 1 wt% to 4 wt% of chitosan solutions was prepared. Chitosan-filled empty fruit bunches filter media have been prepared via wet-layup method. Thermogravimetric analysis (TGA) was performed to study various thermal properties of the fibrous filter media. It was found that the fibrous filter media have undergone several decomposition stages over a range of temperatures as revealed by TGA thermo-grams, where the temperature for 10% weight loss for chitosan-filled EFB filter media and binder-less filter media was at 150oC and 300oC, Respectively.

Keywords: empty fruit bunches, chitosan, filter media, thermal property

Procedia PDF Downloads 435
5421 Chemical Stability of Ceramic Crucibles to Molten Titanium

Authors: Jong-Min Park, Hyung-Ki Park, Seok Hong Min, Tae Kwon Ha

Abstract:

Titanium is widely used due to its high specific strength, good biocompatibility, and excellent corrosion resistance. In order to produce titanium powders, it is necessary to melt titanium, and generally it is conducted by an induction heating method using Al₂O₃ ceramic crucible. However, since titanium reacts chemically with Al₂O₃, it is difficult to melt titanium by the induction heating method using Al₂O₃ crucible. To avoid this problem, we studied the chemical stability of the various crucibles such as Al₂O₃, MgO, ZrO₂, and Y₂O₃ crucibles to molten titanium. After titanium lumps (Grade 2, O(oxygen)<0.25wt%) were placed in each crucible, they were heated to 1800℃ with a heating rate of 5 ℃/min, held at 1800℃ for 30 min, and finally cooled to room temperature with a cooling rate of 5 ℃/min. All heat treatments were carried out in high purity Ar atmosphere. To evaluate the chemical stability, thermodynamic data such as Ellingham diagram were utilized, and also Vickers hardness test, microstructure analysis, and EPMA quantitative analysis were performed. As a result, Al₂O₃, MgO and ZrO₂ crucibles chemically reacted with molten titanium, but Y₂O₃ crucible rarely reacted with it.

Keywords: titanium, induction melting, crucible, chemical stability

Procedia PDF Downloads 289
5420 Thermal End Effect on the Isotachophoretic Separation of Analytes

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We investigate the thermal end effect on the pseudo-steady state behavior of the isotachophoretic transport of ionic species in a 2-D microchannel. Both ends of the channel are kept at a constant temperature which may lead to significant changes in electrophoretic migration speed. A mathematical model based on Nernst-Planck equations for transport of ions coupled with the equation for temperature field is considered. In addition, the charge conservation equations govern the potential field due to the external electric field. We have computed the equations for ion transport, potential and temperature in a coupled manner through the finite volume method. The diffusive terms are discretized via central difference scheme, while QUICK (Quadratic Upwind Interpolation Convection Kinematics) scheme is used to discretize the convective terms. We find that the thermal end effect has significant effect on the isotachophoretic (ITP) migration speed of the analyte. Our result shows that the ITP velocity for temperature dependent case no longer varies linearly with the applied electric field. A detailed analysis has been made to provide a range of the key parameters to minimize the Joule heating effect on ITP transport of analytes.

Keywords: finite volume method, isotachophoresis, QUICK scheme, thermal effect

Procedia PDF Downloads 261
5419 An Energy and Economic Comparison of Solar Thermal Collectors for Domestic Hot Water Applications

Authors: F. Ghani, T. S. O’Donovan

Abstract:

Today, the global solar thermal market is dominated by two collector types; the flat plate and evacuated tube collector. With regards to the number of installations worldwide, the evacuated tube collector is the dominant variant primarily due to the Chinese market but the flat plate collector dominates both the Australian and European markets. The market share of the evacuated tube collector is, however, growing in Australia due to a common belief that this collector type is ‘more efficient’ and, therefore, the better choice for hot water applications. In this study, we investigate this issue further to assess the validity of this statement. This was achieved by methodically comparing the performance and economics of several solar thermal systems comprising of; a low-performance flat plate collector, a high-performance flat collector, and an evacuated tube collector coupled with a storage tank and pump. All systems were simulated using the commercial software package Polysun for four climate zones in Australia to take into account different weather profiles in the study and subjected to a thermal load equivalent to a household comprising of four people. Our study revealed that the energy savings and payback periods varied significantly for systems operating under specific environmental conditions. Solar fractions ranged between 58 and 100 per cent, while payback periods range between 3.8 and 10.1 years. Although the evacuated tube collector was found to operate with a marginally higher thermal efficiency over the selective surface flat plate collector due to reduced ambient heat loss, the high-performance flat plate collector outperformed the evacuated tube collector on thermal yield. This result was obtained as the flat plate collector possesses a significantly higher absorber to gross collector area ratio over the evacuated tube collector. Furthermore, it was found for Australian regions operating with a high average solar radiation intensity and ambient temperature, the lower performance collector is the preferred choice due to favorable economics and reduced stagnation temperature. Our study has provided additional insight into the thermal performance and economics of the two prevalent solar thermal collectors currently available. A computational investigation has been carried out specifically for the Australian climate due to its geographic size and significant variation in weather. For domestic hot water applications were fluid temperatures between 50 and 60 degrees Celsius are sought, the flat plate collector is both technically and economically favorable over the evacuated tube collector. This research will be useful to system design engineers, solar thermal manufacturers, and those involved in policy to encourage the implementation of solar thermal systems into the hot water market.

Keywords: solar thermal, energy analysis, flat plate, evacuated tube, collector performance

Procedia PDF Downloads 203
5418 Tomato Peels Prevented Margarine and Soya/Sunflower Oils Oxidation

Authors: S. Zidani, A. Benakmoum, A. Mansouri, A. Ammouche

Abstract:

In this research paper, we studied the oxidative stability of table margarine and soya/sunflower oils rich in lycopene with tomato peel powder (TPP). For this 1%, 2%, and 3% (w/w) of TPP was added to oil used in margarine manufacture. Chromatic characteristics of margarine and soya/sunflower oil have been studied using 'Tristimulus Colorimetry' method. The main point of the research was to determine the antioxidant activity and the oxidative resistance of soya/sunflower and margarine with TPP (peroxide index, TBA index, and rancimat test). The sensory and textural properties, overall acceptability of margarine and oil were good, indicating that TPP could be added to oil to produce a margarine enriched in lycopene with excellent stability oxidative.

Keywords: tomato peel powder, lycopene, table margarine, soya/sunflower oils, antioxidant activity, stability oxidative

Procedia PDF Downloads 284
5417 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production

Authors: Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.

Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector

Procedia PDF Downloads 110
5416 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa

Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak

Abstract:

Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.

Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 187
5415 The Effect of Lande G-Factors on the Quantum and Thermal Entanglement in the Mixed Spin-(1/2,S) Heisenberg Dimer

Authors: H. Vargova, J. Strecka, N. Tomasovicova

Abstract:

A rigorous analytical treatment, with the help of a concept of negativity, is used to study the quantum and thermal entanglement in an isotropic mixed spin-(1/2,S) Heisenberg dimer. The effect of the spin-S magnitude, as well as the effect of diversity between Landé g-factors of magnetic constituents on system entanglement, is exhaustively analyzed upon the variation of the external magnetic and electric field, respectively. It was identified that the increasing magnitude of the spin-S species in a mixed spin-(1/2,S) Heisenberg dimer with comparative Landé g-factors have always a reduction effect on a degree of the quantum entanglement, but it strikingly shifts the thermal entanglement to the higher temperatures. Surprisingly, out of the limit of identical Landé g-factors, the increasing magnitude of spin-S entities can enhance the system entanglement in both low and high magnetic fields. Besides this, we identify that the analyzed dimer with a high-enough magnitude of the spin-S entities at a sufficiently high magnetic field can exhibit unconventional thermally driven re-entrance between the entangled and unentangled mixed state. The importance of the electric-field stimuli is also discussed in detail.

Keywords: quantum and thermal entantanglement, mixed spin Heisenberg model, negativity, reentrant phase transition

Procedia PDF Downloads 84
5414 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 391
5413 SEC-MALLS Study of Hyaluronic Acid and BSA Thermal Degradation in Powder and in Solution

Authors: Vasile Simulescu, Jakub Mondek, Miloslav Pekař

Abstract:

Hyaluronic acid (HA) is an anionic glycosaminoglycan distributed throughout connective, epithelial and neural tissues. The importance of hyaluronic acid increased in the last decades. It has many applications in medicine and cosmetics. Hyaluronic acid has been used in attempts to treat osteoarthritis of the knee via injecting it into the joint. Bovine serum albumin (also known as BSA) is a protein derived from cows, which has many biochemical applications. The aim of our research work was to compare the thermal degradation of hyaluronic acid and BSA in powder and in solution, by determining changes in molar mass and conformation, by using SEC-MALLS (size exclusion chromatography -multi angle laser light scattering). The aim of our research work was to observe the degradation in powder and in solution of different molar mass hyaluronic acid samples, at different temperatures for certain periods. The degradation of the analyzed samples was mainly observed by modifications in molar mass.

Keywords: thermal degradation, hyaluronic acid, BSA, SEC-MALLS

Procedia PDF Downloads 490
5412 Optimisation of Pin Fin Heat Sink Using Taguchi Method

Authors: N. K. Chougule, G. V. Parishwad

Abstract:

The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach.

Keywords: Pin Fin Heat Sink (PFHS), Taguchi method, CFD, thermal performance

Procedia PDF Downloads 236
5411 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 72
5410 Investigation of Stellram Indexable Milling Cutter XDLT09-D41 Tool Wear for Machining of Ti6Al4V

Authors: Saad Nawaz, Yu Gang, Miao Haibin

Abstract:

Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand, titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study, Stellram Indexable milling cutter XDLT09-D41 is used for rough down milling of Ti6Al4V for small depth of cut under different combinations of parameters and application of high-pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, and thermal crack. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal deformations were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. It was found that maximum tool life was obtained at the speed of 40m/min, feed rate of 358mm/min and depth of cut of 0.8mm. In the end, it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and deformation propagation.

Keywords: tool wear, cutting speed, flank wear , tool life

Procedia PDF Downloads 304
5409 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 778
5408 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 378
5407 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties

Authors: J. Samuel, S. Al-Enezi, A. Al-Banna

Abstract:

High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.

Keywords: high-density polyethylene, carbon nanofibers, ionic liquid, complex viscosity

Procedia PDF Downloads 111
5406 The Use of Waste Fibers as Reinforcement in Biopolymer Green Composites

Authors: Dalila Hammiche, Lisa Klaai, Amar Boukerrou

Abstract:

Following this trend, natural fiber reinforcements have been gaining importance in the composites sector. The effectiveness of natural fiber–reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. In this study, we investigated the physicochemical, particle size and distribution, and thermal behavior of prickly pear seed flour (PPSF). Then, composites were manufactured with 20% in PPSF. Thermal, morphological, and mechanical properties have been studied, and water absorption tests as well. The characterization of this fiber has shown that cellulose is the majority constituent (30%), followed by hemicellulose (27%). To improve the fiber-matrix adhesion, the PPS was chemically treated with alkali treatment. The addition of PPSF decreases the thermal properties, and the study of the mechanical properties showed that the increase in the fiber content from 0 to 20% increased Young’s modulus. According to the results, the mechanical and thermal behaviors of composites are improved after fiber treatment. However, there is an increase in water absorption of composites compared to the PLA matrix. The moisture sensitivity of natural fiber composites limits their use in structural applications. Degradation of the fiber-matrix interface is likely to occur when the material is subjected to variable moisture conditions.

Keywords: biopolymer, composites, alcali treatment, mechanical properties

Procedia PDF Downloads 113
5405 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media

Procedia PDF Downloads 140
5404 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading

Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen

Abstract:

This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.

Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD

Procedia PDF Downloads 443
5403 Failure Analysis of Windshield Glass of Automobiles

Authors: Bhupinder Kaur, O. P. Pandey

Abstract:

An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present.

Keywords: failure, windshield, thermal mismatch, carbon

Procedia PDF Downloads 234
5402 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 62