Search results for: score prediction
3342 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method
Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood
Abstract:
Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime
Procedia PDF Downloads 3793341 Impact of Output Market Participation on Cassava-Based Farming Households' Welfare in Nigeria
Authors: Seyi Olalekan Olawuyi, Abbyssiania Mushunje
Abstract:
The potential benefits of agricultural production to improve the welfare condition of smallholder farmers in developing countries is no more a news because it has been widely documented. Yet majority of these farming households suffer from shortfall in production output to meet both the consumption needs and market demand which adversely affects output market participation and by extension welfare condition. Therefore, this study investigated the impacts of output market participation on households’ welfare of cassava-based farmers in Oyo State, Nigeria. Multistage sampling technique was used to select 324 sample size used for this study. The findings from the data obtained and analyzed through composite score and crosstab analysis revealed that there is varying degree of output market participation among the farmers which also translate to the observed welfare profile differentials in the study area. The probit model analysis with respect to the selection equation identified gender of household head, household size, access to remittance, off-farm income and ownership of farmland as significant drivers of output market participation in the study area. Furthermore, the treatment effect model of the welfare equation and propensity score matching (PSM) technique were used as robust checks; and the findings attest to the fact that, complimentarily with other significant variables highlighted in this study, output market participation indeed has a significant impact on farming households’ welfare. As policy implication inferences, the study recommends female active inclusiveness and empowerment in farming activities, birth control strategies, secondary income smoothing activities and discouragement of land fragmentation habits, to boost productivity and output market participation, which by extension can significantly improve farming households’ welfare.Keywords: Cassava market participation, households' welfare, propensity score matching, treatment effect model
Procedia PDF Downloads 1623340 Investigation of the Relationship between Digital Game Playing, Internet Addiction and Perceived Stress Levels in University Students
Authors: Sevim Ugur, Cemile Kutmec Yilmaz, Omer Us, Sevdenur Koksaldi
Abstract:
Aim: This study aims to investigate the effect of digital game playing and Internet addiction on perceived stress levels in university students. Method: The descriptive study was conducted through face-to-face interview method with a total of 364 university students studying at Aksaray University between November 15 and December 30, 2017. The research data were collected using personal information form, a questionnaire to determine the characteristics of playing digital game, the Internet addiction scale and the perceived stress scale. In the evaluation of the data, Mann-Whitney U test was used for two-group comparison of the sample with non-normal distribution, Kruskal-Wallis H-test was used in the comparison of more than two groups, and the Spearman correlation test was used to determine the relationship between Internet addiction and the perceived stress level. Results: It was determined that the mean age of the students participated in the study was 20.13 ± 1.7 years, 67.6% was female, 35.7% was sophomore, and 62.1% had an income 500 TL or less. It was found that 83.5% of the students use the Internet every day and 70.6% uses the Internet for 5 hours or less per day. Of the students, 12.4% prefers digital games instead of spending time outdoors, 8% plays a game as the first activity in leisure time, 12.4% plays all day, 15.7% feels anger when he/she is prevented from playing, 14.8% prefers playing games to get away from his/her problems, 23.4% had his/her school achievement affected negatively because of game playing, and 8% argues with family members due to the time spent for gaming. Students who play games on the computer for a long time were found to feel back pain (30.8%), headache (28.6%), insomnia (26.9%), dryness and pain in the eyes (26.6%), pain in the wrist (21.2%), feeling excessive tension and anger (16.2%), humpback (12.9), vision loss (9.6%) and pain in the wrist and fingers (7.4%). In our study, students' Internet addiction scale mean score was found to be 45.47 ± 16.1 and mean perceived stress scale score was 28.56 ± 2.7. A significant and negative correlation (p=0.037) was found between the total score of the Internet addiction scale and the total score of the perceived stress scale (r=-0.110). Conclusion: It was found in the study that Internet addiction and perceived stress of the students were at a moderate level and that there was a negative correlation between Internet addiction and perceived stress levels. Internet addiction was found to increase with the increasing perceived stress levels of students, and students were found to have health problems such as back pain, dryness in the eyes, pain, insomnia, headache, and humpback. Therefore, it is recommended to inform students about different coping methods other than spending time on the Internet to cope with the stress they perceive.Keywords: digital game, internet addiction, student, stress level
Procedia PDF Downloads 2883339 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma
Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren
Abstract:
We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values
Procedia PDF Downloads 1553338 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 2863337 Model Averaging in a Multiplicative Heteroscedastic Model
Authors: Alan Wan
Abstract:
In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk
Procedia PDF Downloads 3873336 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 773335 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer
Authors: Yilei Song, Linlin Tian, Ning Zhao
Abstract:
Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake
Procedia PDF Downloads 1743334 Reviewing Special Education Preservice Teachers' Reflective Practices over Two Field Experiences: Topics and Changes in Reflection
Authors: Laurie U. deBettencourt
Abstract:
During pre-service field experiences teacher candidates are often asked to reflect as part of their training and in this investigation candidates’ reflective journal entries were reviewed, coded and analyzed with results suggesting teacher candidates need more direct instruction on how to describe, analyze, and make judgements on their instructional practices so that their practices improve over time. Teacher education programs often incorporate reflective-based activities during field experiences. The purpose of this investigation was to determine if special education teacher candidate’s reflective practices changed as they completed their two supervised field experiences and to determine what topics the candidates focused on in their reflections. The six females graduate students were completing two field experiences in special education classrooms within one academic year as part of their coursework leading to a master’s degree and special education teacher state certification. Each candidate wrote 15 reflection journal entries (approximately 200 words each) per field experience. Each of the journal entries were reviewed sentence by sentence to determine a reflective practice score and to determine the topics discussed. The reflective practice score was calculated using four dimensions of reflection (describe, analyze, judge, and apply) in order to create a continuous variable representing their reflective practice across four points of time. A One-way Repeated Measures Analysis of Variance (ANOVA) suggested that special education teacher candidates did not change their reflective practices over time (i.e., at time-point one the practitioner’s mean score was 56.0 out of 100 (SD = 7.6), 53.8 (SD = 4.3) at time-point two, 51.2 (SD = 4.5) at time-point three, and 57.7 (SD = 8.2) at time-point four). Qualitative findings suggest candidates focused mostly on themselves in their reflections. Conclusions suggest the need for teacher preparation programs to provide more direct instruction on how a teacher should reflect. Specific implications are provided for teacher training and future research.Keywords: field experiences, reflective practices, special educators, teacher preparation
Procedia PDF Downloads 3513333 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression
Procedia PDF Downloads 4283332 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 1003331 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 943330 Medical/Surgical Skills Day Improves Nurse Competence and Satisfaction
Authors: Betsy Hannam
Abstract:
Background: Staff nurses felt overwhelmed to learn new skills or complete competencies during their shift. Med/Surg units need to provide dedicated, uninterrupted time to complete training and mandatory competencies and practice skills. Purpose: To improve nurse satisfaction and competence by creating a Skills Day with uninterrupted time to complete competencies, brush up on skills, and evaluate skills learned through pre- and post-tests. Methods: The USL and CNL interviewed nurses to obtain input regarding skills needing reinforcement and included mandatory competencies relevant to Med/Surg to create the Skills Day agenda. Content experts from multiple disciplines were invited to educate staff to help address knowledge gaps. To increase attendance, multiple class days were offered. Results: 2018 Skills Day was held for an inpatient unit with 95% participation (n=35 out of 37RNs). The average pretest score, comprised of content questions from topics discussed, was 57%, and post test scoresaveraged 80%. 94% of test scores improved or remained the same. RNs were given an evaluation at the end of the day, where100% of staff noted Skills Day as beneficial, and 97% requested to repeat next year. Another Med/Surg unit asked to join Skills Day in 2019. In 2019, with 89% participation (n=57 out 64 RNs), the average pretest score was 68%, and the average post test score was 85%. 97% of scores improved or remained the same. 98% reported the class as beneficial, and 96% requested to repeat next year. Skills Day 2020-2022 on hold due to COVID. Looking forward to Skills Day 2023. Conclusion: Skills Day allows nurses to maintain competencies and improve knowledge in areas of interest without the stress of a patient assignment. Having unit leaders organize Skills Day, with the involvement of content experts from multiple disciplines, showed to be a successful and innovative team approach to support professional development.Keywords: education, competency, skills day, medical/surgical
Procedia PDF Downloads 1003329 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method
Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.
Abstract:
Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.Keywords: cancer, time series, prediction, double exponential smoothing
Procedia PDF Downloads 893328 A Method to Assess Aspect of Sustainable Development: Walkability
Authors: Amna Ali Al-Saadi, Riken Homma, Kazuhisa Iki
Abstract:
Despite the fact that many places have successes in achieving some aspects of sustainable urban development, there are no scientific facts to convince decision makers. Also, each of them was developed to fulfill the need of specific city only. Therefore, objective method to generate the solutions from a successful case is the aim of this research. The questions were: how to learn the lesson from each case study; how to distinguish the potential criteria and negative one; snd how to quantify their effects in the future development. Walkability has been selected as a goal. This is because it has been found as a solution to achieve healthy life style as well as social, environmental and economic sustainability. Moreover, it has complication as every aspect of sustainable development. This research is stand on quantitative- comparative methodology in order to assess pedestrian oriented development. Three analyzed area (AAs) were selected. One site is located in Oman in which hypotheses as motorized oriented development, while two sites are in Japan where the development is pedestrian friendly. The study used Multi- criteria evaluation method (MCEM). Initially, MCEM stands on analytic hierarchy process (AHP). The later was structured into main goal (walkability), objectives (functions and layout) and attributes (the urban form criteria). Secondly, the GIS were used to evaluate the attributes in multi-criteria maps. Since each criterion has different scale of measurement, all results were standardized by z-score and used to measure the co-relations among criteria. As results, different scenario was generated from each AA. MCEM (AHP-OWA)-GIS measured the walkability score and determined the priority of criteria development in the non-walker friendly environment. The comparison criteria for z-score presented a measurable distinguished orientation of development. This result has been used to prove that Oman is motorized environment while Japan is walkable. Also, it defined the powerful criteria and week criteria regardless to the AA. This result has been used to generalize the priority for walkable development. In conclusion, the method was found successful in generate scientific base for policy decisions.Keywords: walkability, policy decisions, sustainable development, GIS
Procedia PDF Downloads 4403327 Enhancing Coping Strategies of Student: A Case Study of 'Choice Theory' Group Counseling
Authors: Warakorn Supwirapakorn
Abstract:
The purpose of this research was to study the effects of choice theory in group counseling on coping strategies of students. The sample consisted of 16 students at a boarding school, who had the lowest score on the coping strategies. The sample was divided into two groups by random assignment and then were assigned into the experimental group and the control group, with eight members each. The instruments were the Adolescent Coping Scale and choice theory group counseling program. The data collection procedure was divided into three phases: The pre-test, the post-test, and the follow-up. The data were analyzed by repeated measure analysis of variance: One between-subjects and one within-subjects. The results revealed that the interaction between the methods and the duration of the experiment was found statistically significant at 0.05 level. The students in the experimental group demonstrated significantly higher at 0.05 level on coping strategies score in both the post-test and the follow-up than in the pre-test and the control group. No significant difference was found on coping strategies during the post-test phase and the follow-up phase of the experimental group.Keywords: coping strategies, choice theory, group counseling, boarding school
Procedia PDF Downloads 2143326 The Effect of Midwifery Counseling Based on Gamble Approach on the Coping Strategies of Women with Abortion: A Randomized Controlled Clinical Trial
Authors: Hasanzadeh Tahraband F., Kheirkhah M.
Abstract:
The trauma resulting from abortion causes fear, frustration, inability, lack of self-confidence, and psychological distress in women. The present study was conducted to determine the effect of midwifery counseling based on the Gamble approach on coping strategies of women with abortion. This randomized controlled clinical trial was conducted on women with abortions in April–October 2021, Karaj, Iran. Ninety-six eligible women were randomly assigned to two 48-member groups with 4, 6, and 8 blocks. The women in the intervention group participated in two 45-75-minute Gamble counseling programs. They were asked to fill out the demographic and fertility information questionnaire before the intervention and the cope operations preference inquiry questionnaire before, immediately (in the 4-6th week of the study), and three months after the intervention. The analysis of the data was done through Chi-square, independent sample t-test. The significance level was considered P<0.05. The results showed that the differences between the two groups before the intervention were not statistically significant in terms of demographic and fertility variables (P>0.05). However, the total mean score of the problem-focused dimension in 3-month post-abortion (97/34±8/69) and the emotion-focused dimension in 4-6 weeks and 3-month post-abortion (34/14±3/48 and 32/41±3/41) in the intervention group was significantly different from the control group (P<0.001). According to the results of the repeated measures ANOVA, the level of coping and its dimensions significantly changed in the intervention group over time (P<0.001). The results of the present study showed that Gamble counseling promoted the problem-focused dimension score and reduced the emotion-focused dimension score in women with abortion. It is recommended that Gamble counseling should be used as midwife-led counseling to increase coping strategies and reduce the psychological distress of women who have experienced abortion.Keywords: midwife-led counseling, coping strategies, post-abortion, psychological distress, Iran
Procedia PDF Downloads 983325 Outcome of Using Penpat Pinyowattanasilp Equation for Prediction of 24-Hour Uptake, First and Second Therapeutic Doses Calculation in Graves’ Disease Patient
Authors: Piyarat Parklug, Busaba Supawattanaobodee, Penpat Pinyowattanasilp
Abstract:
The radioactive iodine thyroid uptake (RAIU) has been widely used to differentiate the cause of thyrotoxicosis and treatment. Twenty-four hours RAIU is routinely used to calculate the dose of radioactive iodine (RAI) therapy; however, 2 days protocol is required. This study aims to evaluate the modification of Penpat Pinyowattanasilp equation application by the exclusion of outlier data, 3 hours RAIU less than 20% and more than 80%, to improve prediction of 24-hour uptake. The equation is predicted 24 hours RAIU (P24RAIU) = 32.5+0.702 (3 hours RAIU). Then calculating separation first and second therapeutic doses in Graves’ disease patients. Methods; This study was a retrospective study at Faculty of Medicine Vajira Hospital in Bangkok, Thailand. Inclusion were Graves’ disease patients who visited RAI clinic between January 2014-March 2019. We divided subjects into 2 groups according to first and second therapeutic doses. Results; Our study had a total of 151 patients. The study was done in 115 patients with first RAI dose and 36 patients with second RAI dose. The P24RAIU are highly correlated with actual 24-hour RAIU in first and second therapeutic doses (r = 0.913, 95% CI = 0.876 to 0.939 and r = 0.806, 95% CI = 0.649 to 0.897). Bland-Altman plot shows that mean differences between predictive and actual 24 hours RAI in the first dose and second dose were 2.14% (95%CI 0.83-3.46) and 1.37% (95%CI -1.41-4.14). The mean first actual and predictive therapeutic doses are 8.33 ± 4.93 and 7.38 ± 3.43 milliCuries (mCi) respectively. The mean second actual and predictive therapeutic doses are 6.51 ± 3.96 and 6.01 ± 3.11 mCi respectively. The predictive therapeutic doses are highly correlated with the actual dose in first and second therapeutic doses (r = 0.907, 95% CI = 0.868 to 0.935 and r = 0.953, 95% CI = 0.909 to 0.976). Bland-Altman plot shows that mean difference between predictive and actual P24RAIU in the first dose and second dose were less than 1 mCi (-0.94 and -0.5 mCi). This modification equation application is simply used in clinical practice especially patient with 3 hours RAIU in range of 20-80% in a Thai population. Before use, this equation for other population should be tested for the correlation.Keywords: equation, Graves’disease, prediction, 24-hour uptake
Procedia PDF Downloads 1393324 The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway
Authors: Agustyas Tjiptaningrum, Intanri Kurniati, Fadilah Fadilah, Linda Erlina, Tiwuk Susantiningsih
Abstract:
Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19.Keywords: antiinflammation, COVID-19, cytokine storm, NF-κβ, M. cajuputi
Procedia PDF Downloads 883323 Needle Track Technique In Strabismus Surgery
Authors: Seema Dutt Bandhu, Yashi Bansal, Tania Moudgil, Barinder Kaur
Abstract:
Introduction: Scleral perforation during the passage of suture needle is a known complication of strabismus surgery. The present study was conducted to evolve a safe and easy technique of passing the suture needle through the sclera. A scleral tunnel was created with a 26-guage needle through which the suture needle was passed. The rest of the steps of strabismus surgery were carried out as usual. Material and Methods: After taking clearance from the Institutional Ethics Committee, an interventional study was carried out on twenty patients. The scleral tunnel technique was performed on the patients of strabismus after taking written informed consent. Before passing the suture needle through the sclera during strabismus surgery, a tunnel through approximately half the thickness of the sclera was created with the help of a bent 26-gauge needle. The suture needle was then passed through this tunnel. Rest of the steps of the surgery were carried out in the conventional manner. In a control group of same number of patients, the surgery was performed in the conventional method. Both the groups were followed up for any complications. Ease of passing suture and surgeons’ satisfaction with the technique was noted on a 10-point Likert scale. Results: None of the patients in either group suffered from any complications. Four surgeons participated in the study. The average Likert scale score of the surgeons for satisfaction with the technique was 4.5 on a scale of 5. The score for ease of passage of suture needle was 5 on a score of 5. Discussion: Scleral perforation during passing the sutures through the sclera is a known complication of strabismus surgery. Incidence reported is 7.8% It occurs due to inappropriate engagement of the scleral tissue or passage of the suture needle along a wrong axis during the process of passing the suture needle. The needle track technique eases the passage of passing the suture needle through the sclera as the engagement of the scleral tissue can be done with greater control with a 26-guage needle. The surgeons have reported that they are highly satisfied with the technique and they have reported that the technique eased the passage of the suture needle through the sclera.Keywords: suture, scleral tunnel, strabismus, scleral perforation
Procedia PDF Downloads 793322 Exploring Factors Related to Unplanning Readmission of Elderly Patients in Taiwan
Authors: Hui-Yen Lee, Hsiu-Yun Wei, Guey-Jen Lin, Pi-Yueh Lee Lee
Abstract:
Background: Unplanned hospital readmissions increase healthcare costs and have been considered a marker of poor healthcare performance. The elderly face a higher risk of unplanned readmission due to elderly-specific characteristics such as deteriorating body functions and the relatively high incidence of complications after treatment of acute diseases. Purpose: The aim of this study was exploring the factors that relate to the unplanned readmission of elderly within 14 days of discharge at our hospital in southern Taiwan. Methods: We retrospectively reviewed the medical records of patients aged ≥65 years who had been re-admitted between January 2018 and December 2018.The Charlson Comorbidity score was calculated using previous used method. Related factors that affected the rate of unplanned readmission within 14 days of discharge were screened and analyzed using the chi-squared test and logistic regression analysis. Results: This study enrolled 829 subjects aged more than 65 years. The numbers of unplanned readmission patients within 14 days were 318 cases, while those did not belong to the unplanned readmission were 511 cases. In 2018, the rate of elderly patients in unplanned 14 days readmissions was 38.4%. The majority patients were females (166 cases, 52.2%), with an average age of 77.6 ± 7.90 years (65-98). The average value of Charlson Comorbidity score was 4.42±2.76. Using logistic regression analysis, we found that the gastric or peptic ulcer (OR=1.917 , P< 0.002), diabetes (OR= 0.722, P< 0.043), hemiplegia (OR= 2.292, P< 0.015), metastatic solid tumor (OR= 2.204, P< 0.025), hypertension (OR= 0.696, P< 0.044), and skin ulcer/cellulitis (OR= 2.747, P< 0.022) have significantly higher risk of 14-day readmissions. Conclusion: The results of the present study may assist the healthcare teams to understand the factors that may affect unplanned readmission in the elderly. We recommend that these teams give efficient approach in their medical practice, provide timely health education for elderly, and integrative healthcare for chronic diseases in order to reduce unplanned readmissions.Keywords: unplanning readmission, elderly, Charlson comorbidity score, logistic regression analysis
Procedia PDF Downloads 1313321 Use of Real Time Ultrasound for the Prediction of Carcass Composition in Serrana Goats
Authors: Antonio Monteiro, Jorge Azevedo, Severiano Silva, Alfredo Teixeira
Abstract:
The objective of this study was to compare the carcass and in vivo real-time ultrasound measurements (RTU) and their capacity to predict the composition of Serrana goats up to 40% of maturity. Twenty one females (11.1 ± 3.97 kg) and Twenty one males (15.6 ± 5.38 kg) were utilized to made in vivo measurements with a 5 MHz probe (ALOKA 500V scanner) at the 9th-10th, 10th-11th thoracic vertebrae (uT910 and uT1011, respectively), at the 1st- 2nd, 3rd-4th, and 4th-5th lumbar vertebrae (uL12, ul34 and uL45, respectively) and also at the 3rd-4th sternebrae (EEST). It was recorded the images of RTU measurements of Longissimus thoracis et lumborum muscle (LTL) depth (EM), width (LM), perimeter (PM), area (AM) and subcutaneous fat thickness (SFD) above the LTL, as well as the depth of tissues of the sternum (EEST) between the 3rd-4th sternebrae. All RTU images were analyzed using the ImageJ software. After slaughter, the carcasses were stored at 4 ºC for 24 h. After this period the carcasses were divided and the left half was entirely dissected into muscle, dissected fat (subcutaneous fat plus intermuscular fat) and bone. Prior to the dissection measurements equivalent to those obtained in vivo with RTU were recorded. Using the Statistica 5, correlation and regression analyses were performed. The prediction of carcass composition was achieved by stepwise regression procedure, with live weight and RTU measurements with and without transformation of variables to the same dimension. The RTU and carcass measurements, except for SFD measurements, showed high correlation (r > 0.60, P < 0.001). The RTU measurements and the live weight, showed ability to predict carcass composition on muscle (R2 = 0.99, P < 0.001), subcutaneous fat (R2 = 0.41, P < 0.001), intermuscular fat (R2 = 0.84, P < 0.001), dissected fat (R2 = 0.71, P < 0.001) and bone (R2 = 0.94, P < 0.001). The transformation of variables allowed a slight increase of precision, but with the increase in the number of variables, with the exception of subcutaneous fat prediction. In vivo measurements by RTU can be applied to predict kid goat carcass composition, from 5 measurements of RTU and the live weight.Keywords: carcass, goats, real time, ultrasound
Procedia PDF Downloads 2613320 Knowledge, Attitudes and Its Associated Factors on the Provision of Psychological First Aid during Response to Disasters among Public Health Midwives in Colombo
Authors: S. P. Hewagama
Abstract:
Different kinds of distressing events happen in the world causing a wide range of reactions and feelings. Psychological first aid (PFA) is humane supportive response for suffering. All health workers especially PHMs who play a major role as first responders in a disaster should be able to provide basic PFA effectively. Aim of this study was to assess the knowledge, attitudes and associated factors on the provision of PFA among PHMs during disasters. A descriptive cross-sectional study was carried out among 307 Public Health Midwives in Colombo RDHS area. In the study population, 86.6% (n=266) of the respondents were aware of the term “Psychological first aid” while 13.4% (n=41) were not aware. The total knowledge score was good in majority 85.4%(n=262) of the respondents while only 14.3%(n=45) had a poor knowledge on PFA. There was the statistically significant difference in relation to the level of education with the total knowledge score. Comprehensive desirable attitudes towards PFA was low (30.61%, n=94). According to the study, only a less than a quarter (21.82%, (n = 67)) of the study population had received training on PFA. More than half (56%, n=172) of the respondents had experience in responding to disasters. Conclusions and Recommendations: The overall knowledge and attitudes were found to be satisfactory. However, it is important to improve the knowledge level of the PHMs by providing training and workshops on PFA.Keywords: disaster, humane supportive assistance, psychological first aid, public health midwives
Procedia PDF Downloads 2613319 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 3663318 The Impact of Adopting Cross Breed Dairy Cows on Households’ Income and Food Security in the Case of Dejen Woreda, Amhara Region, Ethiopia
Authors: Misganaw Chere Siferih
Abstract:
This study assessed the impact of crossbreed dairy cows on household income and food security. The study area is found in Dejen Woreda, East Gojam Zone, and Amhara region of Ethiopia. Random sampling technique was used to obtain a sample of 80 crossbreed dairy cow owners and 176 indigenous dairy cow owners. The study employed food consumption score analytical framework to measure food security status of the household. No Statistical significant mean difference is found between crossbreed owners and indigenous owners. Logistic regression was employed to investigate crossbreed dairy cow adoption determinants , the result indicates that gender, education, labor number, land size cultivated, dairy cooperatives membership, net income and food security status of the household are statistically significant independent variables, which explained the binary dependent variable, crossbreed dairy cow adoption. Propensity score matching (PSM) was employed to analyze the impact of crossbreed dairy cow owners on farmers’ income and food security. The average net income of crossbreed dairy cow owners was found to be significantly higher than indigenous dairy cow owners. Estimates of average treatment effect of the treated (ATT) indicated that crossbreed dairy cow is able to impact households’ net income by 42%, 38.5%, 30.8% and 44.5% higher in kernel, radius, nearest neighborhood and stratification matching algorithms respectively as compared to indigenous dairy cow owners. However, estimates of average treatment of the treated (ATT) suggest that being an owner of crossbreed dairy cow is not able to affect food security significantly. Thus, crossbreed dairy cow enables farmers to increase income but not their food security in the study area. Finally, the study recommended establishing dairy cooperatives and advice farmers to become a member of them, attention to promoting the impact of crossbreed dairy cows and promotion of nutrition focus projects.Keywords: crossbreed dairy cow, net income, food security, propensity score matching
Procedia PDF Downloads 653317 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 1153316 Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires
Authors: Kazeem K. Adewole
Abstract:
This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally.Keywords: across-the-width lamination, tensile properties, lamination location, wire
Procedia PDF Downloads 4743315 Effects of Umbilical Cord Clamping on Puppies Neonatal Vitality
Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
In veterinary medicine, the standard procedure during a caesarian section is clamping the umbilical cord immediately after birth. In human neonates, when the umbilical cord is kept intact after birth, blood continues to flow from the cord to the newborn, but this procedure may prove to be difficult in dogs due to the shorter umbilical cord and the number of newborns in the litter. However, a possible detachment of the placenta while keeping the umbilical cord intact may make the residual blood to flow to the neonate. This study compared the effects on neonatal vitality between clamping and no clamping the umbilical cord of dogs born through cesarean section, assessing them through Apgar and reflex scores. Fifty puppies delivered from 16 bitches were randomly allocated to receive clamping of the umbilical cord immediately (n=25) or to not receive the clamping until breathing (n=25). The neonates were assessed during the first five min of life and once again 10 min after the first assessment. The differences observed between the two moments were significant (p < 0.01) for both the Apgar and reflex scores. The differences observed between the groups (clamped vs. not clamped) were not significant for the Apgar score in the 1st moment (p=0.1), but the 2nd moment was significantly (p < 0.01) in the group not clamped, as well as significant (p < 0.05) for the reflex score in the 1st moment and 2nd moment (p < 0.05), revealing higher neonatal vitality in the not clamped group. The differences observed between the moments (1st vs. 2nd) of each group as significant (p < 0.01), revealing higher neonatal vitality in the 2nd moments. In the no clamping group, after removing the neonates together with the umbilical cord and the placenta, we observed that the umbilical cords were full of blood at the time of birth and later became whitish and collapsed, demonstrating the blood transfer. The results suggest that keeping the umbilical cord intact for at least three minutes after the onset breathing is not detrimental and may contribute to increase neonate vitality in puppies delivered by cesarean section.Keywords: puppy vitality, newborn dog, cesarean section, Apgar score
Procedia PDF Downloads 1533314 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 733313 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game
Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha
Abstract:
Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm
Procedia PDF Downloads 405