Search results for: qualitative simulation
8894 Medication Errors in Neonatal Intensive Care Unit
Authors: Ramzi Shawahna
Abstract:
Background: Neonatal intensive care units are high-risk settings where medication errors can occur and cause harm to this fragile segment of patients. This multicenter qualitative study was conducted to describe medication errors that occurred in neonatal intensive care units in Palestine from the perspectives of healthcare providers. Methods: This exploratory multicenter qualitative study was conducted and reported in adherence to the consolidated criteria for reporting qualitative research checklist. Semi-structured in-depth interviews were conducted with healthcare professionals (4 pediatricians/neonatologists and 11 intensive care unit nurses) who provided care services for patients admitted to neonatal intensive care units in Palestine. An interview schedule guided the semi-structured in-depth interviews. The qualitative interpretive description approach was used to thematically analyze the data. Results: The total duration of the interviews was 282 min. The healthcare providers described their experiences with 41 different medication errors. These medication errors were categorized under 3 categories and 10 subcategories. Errors that occurred while preparing/diluting/storing medications were related to calculations, using a wrong solvent/diluent, dilution errors, failure to adhere to guidelines while preparing the medication, failure to adhere to storage/packaging guidelines, and failure to adhere to labeling guidelines. Errors that occurred while prescribing/administering medications were related to inappropriate medication for the neonate, using a different administration technique from the one that was intended and administering a different dose from the one that was intended. Errors that occurred after administering the medications were related to failure to adhere to monitoring guidelines. Conclusion: In this multicenter study, pediatricians/neonatologists and neonatal intensive care unit nurses described medication errors occurring in intensive care units in Palestine. Medication errors occur in different stages of the medication process: preparation/dilution/storage, prescription/administration, and monitoring. Further studies are still needed to quantify medication errors occurring in neonatal intensive care units and investigate if the designed strategies could be effective in minimizing medication errors.Keywords: medication errors, pharmacist, pharmacology, neonates
Procedia PDF Downloads 808893 The Exploration of Persuasive Skills and Participants Characteristics in Pyramid-Sale: A Qualitative Study
Authors: Xing Yan Fan, Xing Lin Xu, Man Yuan Chen, Pei Tzu Lee, Yu Ting Wang, Yi Xiao Cao, Rui Yao
Abstract:
Pyramid sales have been a widespread issue in China. Victims who are defrauded not only lose money but damage interpersonal relationship. A deeper understanding of pyramid-sale models can be beneficial to prevent potential victims from fraud and improve the property security. The goals of this study were to detect psychological characteristics of pyramid-sale sellers, and analyse persuasive skills in pyramid organizations. A qualitative study was conducted in this study. Participants (n=6) recruited by 'snowball' sampling from present pyramid-sale sellers (n=3) and imprisoned pyramid-sale sellers (n=3). All participants accepted semi-structured interview for collecting data. Content analysis was adopted for data coding and analysis. The results indicate that pyramid organizations are used to utilize their appearance packaging and celebrity effect to strengthen the positions in participants’ mind. The status gap between pyramid-sale sellers in same organization, as well as rewards to increase reputation, are used to motivate participants in pyramid. The most significant common characteristics among all participants are that they tend to possess a high sense of belongingness within the firm. Moreover, the expression of pyramid-sale sellers on gambling mentality is expected to growth as constantly losing money. Findings suggest that the psychological characteristics of pyramid-sale sellers in accordance with Maslow’s hierarchy of needs, persuasive skills of pyramid organization confront to 'attitude-behaviour change model'. These findings have implication on 'immune education' that providing guidance for victims out of stuck and protecting ordinary people from the jeopardizing of pyramid sales.Keywords: pyramid sales, characteristics, persuasive skills, qualitative study
Procedia PDF Downloads 2558892 Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method
Authors: I Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi
Abstract:
In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm.Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation
Procedia PDF Downloads 3158891 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.Keywords: nanosecond, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 828890 'You Block Yourself from the Emotion': A Qualitative Inquiry into Teacher's Use of Discordant Emotional Labor Strategies in Student Aggression
Authors: Michal Levy
Abstract:
Despite the emotional impact students' misbehavior and aggression has on teacher's emotional wellbeing, teachers frequently use suppressive strategies in the classroom, which maintain a discordance between felt and expressed emotions. The current study sought to gain a deeper insight into teachers' utilization of discordant emotional labor strategies (i.e., expressive suppression, surface acting and emotional dissonance) and their motives to using these strategies in student aggression. A qualitative study was conducted on 16 special education Jewish Israeli teachers. Thematic analysis of the in-depth semi-structured interviews revealed novice teachers were inclined to use expressive suppression, while experienced teachers used emotional dissonance. The teacher's motives for using discordant emotional labor strategies included both instrumental and hedonic goals. Implications for policymakers and professionals in practice are discussed to improve teachers' emotional wellbeing.Keywords: discordant strategies, emotional labor, student aggression, teachers
Procedia PDF Downloads 2608889 A Simulation-Based Study of Dust Ingression into Microphone of Indoor Consumer Electronic Devices
Authors: Zhichao Song, Swanand Vaidya
Abstract:
Nowadays, most portable (e.g., smartphones) and wearable (e.g., smartwatches and earphones) consumer hardware are designed to be dustproof following IP5 or IP6 ratings to ensure the product is able to handle potentially dusty outdoor environments. On the other hand, the design guideline is relatively vague for indoor devices (e.g., smart displays and speakers). While it is generally believed that the indoor environment is much less dusty, in certain circumstances, dust ingression is still able to cause functional failures, such as microphone frequency response shift and camera black spot, or cosmetic dissatisfaction, mainly the dust build up in visible pockets and gaps which is hard to clean. In this paper, we developed a simulation methodology to analyze dust settlement and ingression into known ports of a device. A closed system is initialized with dust particles whose sizes follow Weibull distribution based on data collected in a user study, and dust particle movement was approximated as a settlement in stationary fluid, which is governed by Stokes’ law. Following this method, we simulated dust ingression into MEMS microphone through the acoustic port and protective mesh. Various design and environmental parameters are evaluated including mesh pore size, acoustic port depth-to-diameter ratio, mass density of dust material and inclined angle of microphone port. Although the dependencies of dust resistance on these parameters are all monotonic, smaller mesh pore size, larger acoustic depth-to-opening ratio and more inclined microphone placement (towards horizontal direction) are preferred for dust resistance; these preferences may represent certain trade-offs in audio performance and compromise in industrial design. The simulation results suggest the quantitative ranges of these parameters, with more pronounced effects in the improvement of dust resistance. Based on the simulation results, we proposed several design guidelines that intend to achieve an overall balanced design from audio performance, dust resistance, and flexibility in industrial design.Keywords: dust settlement, numerical simulation, microphone design, Weibull distribution, Stoke's equation
Procedia PDF Downloads 1078888 Off-Grid Sparse Inverse Synthetic Aperture Imaging by Basis Shift Algorithm
Authors: Mengjun Yang, Zhulin Zong, Jie Gao
Abstract:
In this paper, a new and robust algorithm is proposed to achieve high resolution for inverse synthetic aperture radar (ISAR) imaging in the compressive sensing (CS) framework. Traditional CS based methods have to assume that unknown scatters exactly lie on the pre-divided grids; otherwise, their reconstruction performance dropped significantly. In this processing algorithm, several basis shifts are utilized to achieve the same effect as grid refinement does. The detailed implementation of the basis shift algorithm is presented in this paper. From the simulation we can see that using the basis shift algorithm, imaging precision can be improved. The effectiveness and feasibility of the proposed method are investigated by the simulation results.Keywords: ISAR imaging, sparse reconstruction, off-grid, basis shift
Procedia PDF Downloads 2658887 Joint Path and Push Planning among Moveable Obstacles
Authors: Victor Emeli, Akansel Cosgun
Abstract:
This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).Keywords: motion planning, path planning, push planning, robot navigation
Procedia PDF Downloads 1648886 Analysis of Hard Turning Process of AISI D3-Thermal Aspects
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of hard turning by using commercial software DEFORM 3D has been compared to experimental results of stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.Keywords: hard turning, computer aided engineering, computational machining, finite element method
Procedia PDF Downloads 4548885 Effectiveness of Simulation Resuscitation Training to Improve Self-Efficacy of Physicians and Nurses at Aga Khan University Hospital in Advanced Cardiac Life Support Courses Quasi-Experimental Study Design
Authors: Salima R. Rajwani, Tazeen Ali, Rubina Barolia, Yasmin Parpio, Nasreen Alwani, Salima B. Virani
Abstract:
Introduction: Nurses and physicians have a critical role in initiating lifesaving interventions during cardiac arrest. It is important that timely delivery of high quality Cardio Pulmonary Resuscitation (CPR) with advanced resuscitation skills and management of cardiac arrhythmias is a key dimension of code during cardiac arrest. It will decrease the chances of patient survival if the healthcare professionals are unable to initiate CPR timely. Moreover, traditional training will not prepare physicians and nurses at a competent level and their knowledge level declines over a period of time. In this regard, simulation training has been proven to be effective in promoting resuscitation skills. Simulation teaching learning strategy improves knowledge level, and skills performance during resuscitation through experiential learning without compromising patient safety in real clinical situations. The purpose of the study is to evaluate the effectiveness of simulation training in Advanced Cardiac Life Support Courses by using the selfefficacy tool. Methods: The study design is a quantitative research design and non-randomized quasi-experimental study design. The study examined the effectiveness of simulation through self-efficacy in two instructional methods; one is Medium Fidelity Simulation (MFS) and second is Traditional Training Method (TTM). The sample size was 220. Data was compiled by using the SPSS tool. The standardized simulation based training increases self-efficacy, knowledge, and skills and improves the management of patients in actual resuscitation. Results: 153 students participated in study; CG: n = 77 and EG: n = 77. The comparison was done between arms in pre and post-test. (F value was 1.69, p value is <0.195 and df was 1). There was no significant difference between arms in the pre and post-test. The interaction between arms was observed and there was no significant difference in interaction between arms in the pre and post-test. (F value was 0.298, p value is <0.586 and df is 1. However, the results showed self-efficacy scores were significantly higher within experimental group in post-test in advanced cardiac life support resuscitation courses as compared to Traditional Training Method (TTM) and had overall (p <0.0001) and F value was 143.316 (mean score was 45.01 and SD was 9.29) verses pre-test result showed (mean score was 31.15 and SD was 12.76) as compared to TTM in post-test (mean score was 29.68 and SD was 14.12) verses pre-test result showed (mean score was 42.33 and SD was 11.39). Conclusion: The standardized simulation-based training was conducted in the safe learning environment in Advanced Cardiac Life Suport Courses and physicians and nurses benefited from self-confidence, early identification of life-threatening scenarios, early initiation of CPR, and provides high-quality CPR, timely administration of medication and defibrillation, appropriate airway management, rhythm analysis and interpretation, and Return of Spontaneous Circulation (ROSC), team dynamics, debriefing, and teaching and learning strategies that will improve the patient survival in actual resuscitation.Keywords: advanced cardiac life support, cardio pulmonary resuscitation, return of spontaneous circulation, simulation
Procedia PDF Downloads 808884 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform
Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee
Abstract:
This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.Keywords: Boid Algorithm, Crowd Simulation, Mobile Platform, Newtonian Laws, Virtual Heritage
Procedia PDF Downloads 2778883 Study of Natural Patterns on Digital Image Correlation Using Simulation Method
Authors: Gang Li, Ghulam Mubashar Hassan, Arcady Dyskin, Cara MacNish
Abstract:
Digital image correlation (DIC) is a contactless full-field displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices.Keywords: Digital Image Correlation (DIC), deformation simulation, natural pattern, subset size
Procedia PDF Downloads 4198882 Electricity Demand Modeling and Forecasting in Singapore
Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh
Abstract:
In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.Keywords: power industry, electricity demand, modeling, forecasting
Procedia PDF Downloads 6408881 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D
Authors: Nima E. Gorji
Abstract:
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling
Procedia PDF Downloads 3308880 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes
Authors: Hamed K. Esfahani, Bithin Datta
Abstract:
Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites
Procedia PDF Downloads 2768879 A Qualitative Study of the Psychologically Challenging Aspects of Taking Part in an Ultra-Endurance Atlantic Rowing Event
Authors: John Allbutt, Andrew Murray, Jonathan Ling, Thomas M. Heffernan
Abstract:
Ultra-endurance events place unique physical and psychological pressures on participants. In this study, we examined the psychologically challenging aspects of taking part in a 3000 mile transatlantic rowing race using a qualitative approach. To date, more people have been into space than have rowed an ocean and only one psychological study has been conducted on this experience which had a specific research focus. The current study was a qualitative study using semi-structured interviews. Participants were an opportunity sample of seven competitors from a recent ocean rowing race. Participants were asked about the psychological aspects of the event after it had finished. The data were analysed using thematic analysis. Several themes emerged from the analysis. These related to: 1) preparation; 2) bodily aches/pains, 3) race setbacks; 4) boat conditions; 5) interpersonal factors and communication; 6) strategies for managing stress and interpersonal tensions. While participants were generally very positive about the event, the analysis showed that they experienced significant psychological challenges during their voyage. Competitors paid considerable attention to preparing for the physical challenges of the event. However, not all prospective competitors gave the same time to preparing for psychological factors or were aware how they might play out during their voyage. All Atlantic rowing crews should be aware of the psychological challenges they face, and have strategies in place to help cope with the psychological strain of taking part.Keywords: confinement experiences, ocean rowing, stress, ultra-endurance sport
Procedia PDF Downloads 3328878 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application
Authors: M. Rahou, A. J. Andrews, G. Rosengarten
Abstract:
One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission
Procedia PDF Downloads 5648877 Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts
Authors: Shuxin Li, Peihao Song, Haixiao Hu, Dongfeng Cao
Abstract:
The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination.Keywords: cohesive elements, composite laminates, delamination, local and global bucking, field-bolt repair
Procedia PDF Downloads 1208876 Simulation of Remove the Fouling on the in vivo By Using MHD
Authors: Farhad Aalizadeh, Ali Moosavi
Abstract:
When a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets(small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.”We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The Maxwell and the flow equations are solved for this purpose. It is assumed that the blood is non-Newtonian and the number of particles has been considered enough to rely on the results statistically. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form.Keywords: MHD, fouling, in-vivo, blood clots, simulation
Procedia PDF Downloads 4698875 Kinetic Monte Carlo Simulation of ZnSe Homoepitaxial Growth and Characterization
Authors: Hamid Khachab, Yamani Abdelkafi, Mouna Barhmi
Abstract:
The epitaxial growth has great important in the fabricate of the new semi-conductors devices and upgrading many factors, such as the quality of crystallization and efficiency with their deferent types and the most effective epitaxial technique is the molecular beam epitaxial. The MBE growth modeling allows to confirm the experiments results out by atomic beam and to analyze the microscopic phenomena. In of our work, we determined the growth processes specially the ZnSe epitaxial technique by Kinetic Monte Carlo method and we also give observations that are made in real time at the growth temperature using reflection high energy electron diffraction (RHEED) and photoemission current.Keywords: molecular beam epitaxy, II-VI, morpholy, photoemission, RHEED, simulation, kinetic Monte Carlo, ZnSe
Procedia PDF Downloads 4908874 Exploring the Landscape of Information Visualization through a Mark Lombardi Lens
Authors: Alon Friedman, Antonio Sanchez Chinchon
Abstract:
This bibliometric study takes an artistic and storytelling approach to explore the term ”information visualization.” Analyzing over 1008 titles collected from databases that specialize in data visualization research, we examine the titles of these publications to report on the characteristics and development trends in the field. Employing a qualitative methodology, we delve into the titles of these publications, extracting leading terms and exploring the cooccurrence of these terms to gain deeper insights. By systematically analyzing the leading terms and their relationships within the titles, we shed light on the prevailing themes that shape the landscape of ”information visualization” by employing the artist Mark Lombardi’s techniques to visualize our findings. By doing so, this study provides valuable insights into bibliometrics visualization while also opening new avenues for leveraging art and storytelling to enhance data representation.Keywords: bibliometrics analysis, Mark Lombardi design, information visualization, qualitative methodology
Procedia PDF Downloads 898873 Investigation of Bubble Growth During Nucleate Boiling Using CFD
Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu
Abstract:
Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity
Procedia PDF Downloads 3858872 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS
Authors: Raza Abdulla Saeed
Abstract:
In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a three-dimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.Keywords: computational fluid dynamics, hydraulic francis turbine, numerical simulation, two-phase mixture cavitation model
Procedia PDF Downloads 5608871 Translating Empathy in a Senior Community
Authors: Denver E. Severt, Cynthia Mejia
Abstract:
With a grey wave sweeping across the world and people living longer than ever, more individuals will reside in retirement communities in unprecedented numbers. Enhancing the resident stay within these communities is imperative to reduce past stigmas associated with senior communities. This exploratory quantitative investigation examined interview contents of employees and residents to see if empathy was observed. The results showed the employees across all ranges had a much better grasp of affective empathy, yet with greater experience and age, it was clear that cognitive empathy had to be used with affective empathy in order to gain better trust across the community of residents. Outcomes from the study suggest that future training programs for employees are operationalized to include both affective and cognitive empathy practices. This study is unique in that two scales of empathy were transformed into qualitative questions, and in-depth employee and resident interviews were conducted. The study answers many calls of research to provide more specific studies in senior living communities.Keywords: senior living community, transformational service research, qualitative research
Procedia PDF Downloads 1438870 Patients Reactions to Medical Errors in Hospitals: The Need for Social Workers in Nigeria
Authors: Emmanuel Temitope Adaranijo
Abstract:
Medical error is on the increase in many nations and like many developing nations, Nigeria is not excluded and more importantly, Lafia, Nasarawa state, where the study was carried. The study was undertaken to explore Patients' knowledge and their reactions to medical errors in hospitals in Lafia Local Government Area; therefore, five objectives were formulated to guide the study. The survey research design was employed and triangulation of quantitative and qualitative instruments was used to collect data. The total population for the study was 330,712 and the sample size was 400; however, only 343 patients and three doctors responded to the quantitative and qualitative study, respectively. Frequency distribution, simple percentage, and r test were used to analyze the data obtained from respondents. The findings revealed that medical errors are prevalent in hospitals in Lafia and the patients are neither aware nor willing to report such occurrence. The study recommends that social workers, hospital management, and governments should take up their roles in reducing the occurrence of medical errors.Keywords: health, hospital, medical errors, social work
Procedia PDF Downloads 1308869 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications
Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar
Abstract:
Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.Keywords: boron nitride nanotube, radiation shielding, young modulus, atomistic modeling
Procedia PDF Downloads 2978868 Psychological Assessment of Living Kidney Donors: A Systematic Review
Authors: Valentina Colonnello, Paolo Maria Russo
Abstract:
Living kidney donation requires psychological evaluation and ongoing follow-up. A crucial aspect of this evaluation is assessing the social functioning of donors after donation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a review of quantitative and qualitative studies on the psychological assessment of living kidney donors' social functioning. The majority of quantitative studies examining the long-term social health post-donation have primarily utilized the Short Form Health Survey (SF) and the World Health Organization Quality of Life-BREF (WHOQoL-BREF) questionnaires. These studies have indicated that donors' social functioning and relationships either remained stable post-donation or returned to pre-donation levels. In some instances, donors' social functioning even surpassed that of the general population. Qualitative studies, conducted through interviews and focus groups, have revealed donors' experiences and emotional concerns that are often overlooked in quantitative analyses. Specifically, qualitative analysis has identified two main themes: "connecting to others" and "acknowledgment and social support." Our review highlights that the majority of published quantitative studies on donors have employed measures of social functioning that may not fully capture donors' experiences and needs. It underscores the importance of further investigation in quantitative studies to assess donors' actual social health and psychological needs accurately. Overall, this review provides valuable insights into specific constructs that warrant deeper exploration in quantitative studies concerning the assessment of donors' social health and psychological well-being.Keywords: reported outcomes, personalized medicine, individual differences, emotions, psychological assessment
Procedia PDF Downloads 668867 Appropriation of Cryptocurrencies as a Payment Method by South African Retailers
Authors: Neliswa Dyosi
Abstract:
Purpose - Using an integrated Technology-Organization-Environment (TOE) framework and the model of technology appropriation (MTA) as a theoretical lens, this interpretive qualitative study seeks to understand and explain the factors that influence the appropriation, non-appropriation, and disappropriation of bitcoin as a payment method by South African retailers. Design/methodology/approach –The study adopts the interpretivist philosophical paradigm. Multiple case studies will be adopted as a research strategy. For data collection, the study follows a qualitative approach. Qualitative data will be collected from the six retailers in various industries. Semi-structured interviews and documents will be used as the data collection techniques. Purposive and snowballing sampling techniques will be used to identify participants within the organizations. Data will be analyzed using thematic analysis. Originality/value - Using the deduction approach, the study seeks to provide a descriptive and explanatory contribution to theory. The study contributes to theory development by integrating the MTA and TOE frameworks as a means to understand technology adoption behaviors of organizations, in this case, retailers. This is also the first study that looks at an integrated approach of the Technology-Organization-Environment (TOE) framework and the MTA framework to understand the adoption and use of a payment method. South Africa is ranked amongst the top ten countries in the world on cryptocurrency adoption. There is, however, still a dearth of literature on the current state of adoption and usage of bitcoin as a payment method in South Africa. The study will contribute to the existing literature as bitcoin cryptocurrency is gaining popularity as an alternative payment method across the globe.Keywords: cryptocurrency, bitcoin, payment methods, blockchain, appropriation, online retailers, TOE framework, disappropriation, non-appropriation
Procedia PDF Downloads 1368866 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils
Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan
Abstract:
In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.Keywords: elasto-plasticity, uncertainty, soils, fokker-planck equation, fourier spectral method, finite difference method
Procedia PDF Downloads 3798865 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method
Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi
Abstract:
This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure
Procedia PDF Downloads 491