Search results for: nontrivial task
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2112

Search results for: nontrivial task

1302 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models

Authors: Manisha Mukherjee, Diptarka Saha

Abstract:

Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.

Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function

Procedia PDF Downloads 165
1301 Analysis of Resource Consumption Accounting as a New Approach to Management Accounting

Authors: Yousef Rostami Gharainy

Abstract:

This paper presents resource consumption accounting as an imaginative way to deal with management accounting which concentrates on administrators as the essential clients of the data and gives the best information of conventional management accounting. This system underscores that association's asset reasons costs, accordingly in costing frameworks the emphasis ought to be on assets and utilization of them. Resource consumption accounting consolidates two costing methodologies, action based and German cost accounting method known as GPK. This methodology notwithstanding giving a chance to managers to decide, makes task management accounting as operational. The reason for this article is to clarify the idea of resource consumption accounting, its parts and highlights and use of this strategy in associations. In the first place we deliver to presentation of resource consumption accounting, foundation, reasons for its development and the issues that past costing frameworks confronted it. At that point we give standards and presumptions of this technique; at last we depict the execution of this strategy in associations and its preferences over other costing strategies.

Keywords: resource consumption accounting, management accounting, action based method, German cost accounting method

Procedia PDF Downloads 310
1300 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 268
1299 An Examination on How Poetry Linguistic Elements Predict Trait Mindfulness

Authors: Crystal Jewell

Abstract:

Substantial evidence suggests a link exists between trait or dispositional mindfulness and creativity. While most studies on the mindfulness-creativity link focus on measures of divergent thinking, no study to date has explored the link through the lens of poetry writing. Thus, the present study sought to examine the relation between mindfulness and poetry through various linguistic elements, including word count, references to the self versus references to the collective, and frequency of past-, present-, and future-tense verb usage. Following a questionnaire on demographics, university undergraduates at a United States college completed a survey measuring trait mindfulness, then engaged in a two-part associated poetry-writing task intended to mimic writing tasks used to counter writer’s block. Results indicated no significant relations among any measures of poetry linguistic elements and trait mindfulness, as well as the facets of trait mindfulness. Limitations and future directions call for replication of results and further examination of different poetry linguistic elements.

Keywords: mindfulness, poetry, linguistics, psychology

Procedia PDF Downloads 81
1298 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 181
1297 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 130
1296 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
1295 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 51
1294 The Effect of Explicit Focus on Form on Second Language Learning Writing Performance

Authors: Keivan Seyyedi, Leila Esmaeilpour, Seyed Jamal Sadeghi

Abstract:

Investigating the effectiveness of explicit focus on form on the written performance of the EFL learners was the aim of this study. To provide empirical support for this study, sixty male English learners were selected and randomly assigned into two groups of explicit focus on form and meaning focused. Narrative writing was employed for data collection. To measure writing performance, participants were required to narrate a story. They were given 20 minutes to finish the task and were asked to write at least 150 words. The participants’ output was coded then analyzed utilizing Independent t-test for grammatical accuracy and fluency of learners’ performance. Results indicated that learners in explicit focus on form group appear to benefit from error correction and rule explanation as two pedagogical techniques of explicit focus on form with respect to accuracy, but regarding fluency they did not yield any significant differences compared to the participants of meaning-focused group.

Keywords: explicit focus on form, rule explanation, accuracy, fluency

Procedia PDF Downloads 511
1293 Triadic Relationship of Icon Design for Semi-Literate Communities

Authors: Peng-Hui Maffee Wan, Klarissa Ting Ting Chang, Rax Suen Chun Lung

Abstract:

Icons, or pictorial and graphical objects, are commonly used in Human-Computer Interaction (HCI) fields as the mediator in order to communicate information to users. Yet there has been little studies focusing on a majority of the world’s population, semi-literate communities, in terms of the fundamental know-how for designing icons for such population. In this study, two sets of icons belonging in different icon taxonomy, abstract and concrete are designed for a mobile application for semi-literate agricultural communities. In this paper, we propose a triadic relationship of an icon, namely meaning, task and mental image, which inherits the triadic relationship of a sign. User testing with the application and a post-pilot questionnaire are conducted as the experimental approach in two rural villages in India. Icons belonging to concrete taxonomy perform better than abstract icons on the premise that the design of the icon fulfills the underlying rules of the proposed triadic relationship.

Keywords: icon, GUI, mobile app, semi-literate

Procedia PDF Downloads 489
1292 Head-Mounted Displays for HCI Validations While Driving

Authors: D. Reich, R. Stark

Abstract:

To provide reliable and valid findings when evaluating innovative in-car devices in the automotive context highly realistic driving environments are recommended. Nowadays, in-car devices are mostly evaluated due to driving simulator studies followed by real car driving experiments. Driving simulators are characterized by high internal validity, but weak regarding ecological validity. Real car driving experiments are ecologically valid, but difficult to standardize, more time-robbing and costly. One economizing suggestion is to implement more immersive driving environments when applying driving simulator studies. This paper presents research comparing non-immersive standard PC conditions with mobile and highly immersive Oculus Rift conditions while performing the Lane Change Task (LCT). Subjective data with twenty participants show advantages regarding presence and immersion experience when performing the LCT with the Oculus Rift, but affect adversely cognitive workload and simulator sickness, compared to non-immersive PC condition.

Keywords: immersion, oculus rift, presence, situation awareness

Procedia PDF Downloads 188
1291 The Antecedent Factor Affecting Manpower’s Working Performance of Suan Sunandha Rajabhat University

Authors: Suvimon Wajeetongratana, Sittichai Thammasane

Abstract:

This research objective was to study the development training that affecting the work performance of Suan Sunandha Rajabhat University manpower. The sample of 200 manpower was used to collect data for the survey. The statistics for data analysis were frequency percentage, mean value, standard deviation and hypothesis testing using independent samples (t-test). The study indicated that the development training has the most affect to employees in the high level and the second was coaching by the senior follow by the orientation in case of changing jobs task or changing positions. Interms of manpower work performance have three performance areas are quality of the job is better than the original. Moreover the results of hypothesis testing found that the difference personal information including gender, age, education, income per month have difference effectiveness of attitudes and also found the develop training is correlated with the performance of employees in the same direction.

Keywords: development training, employees job satisfaction, work performance, Sunandha Rajabhat University

Procedia PDF Downloads 217
1290 Epistemic Emotions during Cognitive Conflict: Associations with Metacognitive Feelings in High Conflict Scenarios

Authors: Katerina Nerantzaki, Panayiota Metallidou, Anastasia Efklides

Abstract:

The aim of the study was to investigate: (a) changes in the intensity of various epistemic emotions during cognitive processing in a decision-making task and (b) their associations with metacognitive feelings of difficulty and confidence. One hundred and fifty-two undergraduate university students were asked individually to read in the e-prime environment decision-making scenarios about moral dilemmas concerning self-driving cars, which differed in the level of conflict they produced, and then to make a choice between two options. Further, the participants were asked to rate on a four-point scale four epistemic emotions (surprise, curiosity, confusion, and wonder) and two metacognitive feelings (feeling of difficulty and feeling of confidence) after making their choice in each scenario. Changes in cognitive processing due to the level of conflict affected differently the intensity of the specific epistemic emotions. Further, there were interrelations of epistemic emotions with metacognitive feelings.

Keywords: confusion, curiosity, epistemic emotions, metacognitive experiences, surprise

Procedia PDF Downloads 79
1289 Effects of Listening to Pleasant Thai Classical Music on Increasing Working Memory in Elderly: An Electroencephalogram Study

Authors: Anchana Julsiri, Seree Chadcham

Abstract:

The present study determined the effects of listening to pleasant Thai classical music on increasing working memory in elderly. Thai classical music without lyrics that made participants feel fun and aroused was used in the experiment for 3.19-5.40 minutes. The accuracy scores of Counting Span Task (CST), upper alpha ERD%, and theta ERS% were used to assess working memory of participants both before and after listening to pleasant Thai classical music. The results showed that the accuracy scores of CST and upper alpha ERD% in the frontal area of participants after listening to Thai classical music were significantly higher than before listening to Thai classical music (p < .05). Theta ERS% in the fronto-parietal network of participants after listening to Thai classical music was significantly lower than before listening to Thai classical music (p < .05).

Keywords: brain wave, elderly, pleasant Thai classical music, working memory

Procedia PDF Downloads 459
1288 Study of Treatment Plant of The City Chlef Study of Environmental Impact

Authors: Houmame Benbouali, Aboubakr Gribi

Abstract:

The risks, in general, exist in any project, one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation and are often subjected at the multiple risks being able to influence with their good performance and can have a negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studied the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (- cleansing of water-worn- general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).

Keywords: treatment plant, waste water, waste water treatment, Chlef

Procedia PDF Downloads 334
1287 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
1286 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting

Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam

Abstract:

Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.

Keywords: ANFIS, fuzzy time series, stock forecasting, SVR

Procedia PDF Downloads 247
1285 Decision Support Tool for Green Roofs Selection: A Multicriteria Analysis

Authors: I. Teotónio, C.O. Cruz, C.M. Silva, M. Manso

Abstract:

Diverse stakeholders show different concerns when choosing green roof systems. Also, green roof solutions vary in their cost and performance. Therefore, decision-makers continually face the difficult task of balancing benefits against green roofs costs. Decision analysis methods, as multicriteria analysis, can be used when the decision‑making process includes different perspectives, multiple objectives, and uncertainty. The present study adopts a multicriteria decision model to evaluate the installation of green roofs in buildings, determining the solution with the best trade-off between costs and benefits in agreement with the preferences of the users/investors. This methodology was applied to a real decision problem, assessing the preferences between different green roof systems in an existing building in Lisbon. This approach supports the decision-making process on green roofs and enables robust and informed decisions on urban planning while optimizing buildings retrofitting.

Keywords: decision making, green roofs, investors preferences, multicriteria analysis, sustainable development

Procedia PDF Downloads 184
1284 Risk Analysis in Road Transport of Dangerous Goods Using Complex Multi-Criteria Analysis Method

Authors: Zoran Masoničić, Siniša Dragutinović, Ivan Lazović

Abstract:

In the management and organization of the road transport of dangerous goods, in addition to the existing influential criteria and restrictions that apply to the road transport in general, it is necessary to include an additional criteria related to the safety of people and the environment, considering the danger that comes from the substances being transported. In that manner, the decision making process becomes very complex and rather challenging task that is inherent to the application of complex numerical multi-criteria analysis methods. In this paper some initial results of application of complex analysis method in decision making process are presented. Additionally, the method for minimization or even complete elimination of subjective element in the decision making process is provided. The results obtained can be used in order to point the direction towards some measures have to be applied in order to minimize or completely annihilate the influence of the risk source identified.

Keywords: road transport, dangerous goods, risk analysis, risk evaluation

Procedia PDF Downloads 16
1283 The Standard of Reasonableness in Fundamental Rights Adjudication under the Indian Constitution

Authors: Nandita Narayan

Abstract:

In most constitutional democracies, courts have been the gatekeepers of fundamental rights. The task of determining whether a violation is in fact justified, therefore, is judicial. Any state action, legislative or administrative, has to be tested by the application of two standards – first, the action must be within the scope of the authority conferred by law and, second, it must be reasonable. If any action, within the scope of the authority conferred by law is found to be unreasonable, it will be struck down as unconstitutional or ultra vires. This paper seeks to analyse the varying standards of reasonableness adopted by the Supreme Court of India where there is a violation of fundamental rights by state action. This is sought to be done by scrutinising case laws and classifying the legality of the violation under one of three levels of judicial scrutiny—strict, intermediate, or weak. The paper concludes by proving that there is an irregularity in the standards adopted, thus resulting in undue discretionary power of the judiciary which strikes at the very concept of reasonableness and ultimately becomes arbitrary in nature. This conclusion is reached by the comparison of reasonableness review of fundamental rights in other jurisdictions such as the USA and Canada.

Keywords: constitutional law, judicial review, fundamental rights, reasonableness, India

Procedia PDF Downloads 150
1282 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints

Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao

Abstract:

This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.

Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb

Procedia PDF Downloads 221
1281 Organizational Socialization Levels in Nurses

Authors: Manar Aslan, Ayfer Karaaslan, Serap Selçuk

Abstract:

The research was conducted in order to determine the organizational socialization levels of nurses working in hospitals in the form of a descriptive study. The research population was composed of nurses employed in public and private sector hospitals in the province of Konya with 0-3 years of professional experience in the hospitals (N=1200); and the sample was composed of 495 nurses that accepted to take part in the study voluntarily. Organizational Socialization Scale which was developed by Haueter, Macan and Winter (2003) and whose validity-reliability in Turkish was analyzed by Ataman (2012) was used. Statistical evaluation of data was conducted in SPSS.16 software. The results of the study revealed that the total score taken by nurses at the organizational socialization scale was 262.95; and this was close to the maximum score. Particularly the departmental socialization sub-dimension proved to be higher in comparison to the other two dimensions (organization socialization and task socialization). Statistically meaningful differences were found in the levels of organization socialization in relation to the status of organizational orientation training, level of education and age group.

Keywords: nurses, newcomers, organizational socialization, total score

Procedia PDF Downloads 349
1280 Forest Fire Risk Mapping Using Analytic Hierarchy Process and GIS-Based Application: A Case Study in Hua Sai District, Thailand

Authors: Narissara Nuthammachot, Dimitris Stratoulias

Abstract:

Fire is one of the main causes of environmental and ecosystem change. Therefore, it is a challenging task for fire risk assessment fire potential mapping. The study area is Hua Sai district, Nakorn Sri Thammarat province, which covers in a part of peat swamp forest areas. 55 fire points in peat swamp areas were reported from 2012 to 2016. Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) methods were selected for this study. The risk fire area map was arranged on these factors; elevation, slope, aspect, precipitation, distance from the river, distance from town, and land use. The results showed that the predicted fire risk areas are found to be in appreciable reliability with past fire events. The fire risk map can be used for the planning and management of fire areas in the future.

Keywords: analytic hierarchy process, fire risk assessment, geographic information system, peat swamp forest

Procedia PDF Downloads 211
1279 Morphological Analysis of Manipuri Language: Wahei-Neinarol

Authors: Y. Bablu Singh, B. S. Purkayashtha, Chungkham Yashawanta Singh

Abstract:

Morphological analysis forms the basic foundation in NLP applications including syntax parsing Machine Translation (MT), Information Retrieval (IR) and automatic indexing in all languages. It is the field of the linguistics; it can provide valuable information for computer based linguistics task such as lemmatization and studies of internal structure of the words. Computational Morphology is the application of morphological rules in the field of computational linguistics, and it is the emerging area in AI, which studies the structure of words, which are formed by combining smaller units of linguistics information, called morphemes: the building blocks of words. Morphological analysis provides about semantic and syntactic role in a sentence. It analyzes the Manipuri word forms and produces several grammatical information associated with the words. The Morphological Analyzer for Manipuri has been tested on 3500 Manipuri words in Shakti Standard format (SSF) using Meitei Mayek as source; thereby an accuracy of 80% has been obtained on a manual check.

Keywords: morphological analysis, machine translation, computational morphology, information retrieval, SSF

Procedia PDF Downloads 326
1278 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment

Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah

Abstract:

Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.

Keywords: response time, query, consistency, bandwidth, storage capacity, CERN

Procedia PDF Downloads 271
1277 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin

Procedia PDF Downloads 116
1276 Scenario-Based Scales and Situational Judgment Tasks to Measure the Social and Emotional Skills

Authors: Alena Kulikova, Leonid Parmaksiz, Ekaterina Orel

Abstract:

Social and emotional skills are considered by modern researchers as predictors of a person's success both in specific areas of activity and in the life of a person as a whole. The popularity of this scientific direction ensures the emergence of a large number of practices aimed at developing and evaluating socio-emotional skills. Assessment of social and emotional development is carried out at the national level, as well as at the level of individual regions and institutions. Despite the fact that many of the already existing social and emotional skills assessment tools are quite convenient and reliable, there are now more and more new technologies and task formats which improve the basic characteristics of the tools. Thus, the goal of the current study is to develop a tool for assessing social and emotional skills such as emotion recognition, emotion regulation, empathy and a culture of self-care. To develop a tool assessing social and emotional skills, Rasch-Gutman scenario-based approach was used. This approach has shown its reliability and merit for measuring various complex constructs: parental involvement; teacher practices that support cultural diversity and equity; willingness to participate in the life of the community after psychiatric rehabilitation; educational motivation and others. To assess emotion recognition, we used a situational judgment task based on OCC (Ortony, Clore, and Collins) emotions theory. The main advantage of these two approaches compare to classical Likert scales is that it reduces social desirability in answers. A field test to check the psychometric properties of the developed instrument was conducted. The instrument was developed for the presidential autonomous non-profit organization “Russia - Land of Opportunity” for nationwide soft skills assessment among higher education students. The sample for the field test consisted of 500 people, students aged from 18 to 25 (mean = 20; standard deviation 1.8), 71% female. 67% of students are only studying and are not currently working and 500 employed adults aged from 26 to 65 (mean = 42.5; SD 9), 57% female. Analysis of the psychometric characteristics of the scales was carried out using the methods of IRT (Item Response Theory). A one-parameter rating scale model RSM (Rating scale model) and Graded Response model (GRM) of the modern testing theory were applied. GRM is a polyatomic extension of the dichotomous two-parameter model of modern testing theory (2PL) based on the cumulative logit function for modeling the probability of a correct answer. The validity of the developed scales was assessed using correlation analysis and MTMM (multitrait-multimethod matrix). The developed instrument showed good psychometric quality and can be used by HR specialists or educational management. The detailed results of a psychometric study of the quality of the instrument, including the functioning of the tasks of each scale, will be presented. Also, the results of the validity study by MTMM analysis will be discussed.

Keywords: social and emotional skills, psychometrics, MTMM, IRT

Procedia PDF Downloads 74
1275 3D Numerical Studies on External Aerodynamics of a Flying Car

Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar

Abstract:

The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.

Keywords: aerodynamics of flying car, air taxi, negative lift, roadable airplane

Procedia PDF Downloads 420
1274 Rapid Design Approach for Electric Long-Range Drones

Authors: Adrian Sauer, Lorenz Einberger, Florian Hilpert

Abstract:

The advancements and technical innovations in the field of electric unmanned aviation over the past years opened the third dimension in areas like surveillance, logistics, and mobility for a wide range of private and commercial users. Researchers and companies are faced with the task of integrating their technology into airborne platforms. Especially start-ups and researchers require unmanned aerial vehicles (UAV), which can be quickly developed for specific use cases without spending significant time and money. This paper shows a design approach for the rapid development of a lightweight automatic separate-lift-thrust (SLT) electric vertical take-off and landing (eVTOL) UAV prototype, which is able to fulfill basic transportation as well as surveillance missions. The design approach does not require expensive or time-consuming design loop software. Thereby developers can easily understand, adapt, and adjust the presented method for their own project. The approach is mainly focused on crucial design aspects such as aerofoil, tuning, and powertrain.

Keywords: aerofoil, drones, rapid prototyping, powertrain

Procedia PDF Downloads 71
1273 Determination of Flow Arrangement for Optimum Performance in Heat Exchangers

Authors: Ahmed Salisu Atiku

Abstract:

This task involves the determination of the flow arrangement for optimum performance and the calculation of total heat transfer of two identical double pipe heat exchangers in series. The inner pipe contains the cold water stream at 27°C, whilst the outer pipe contains the two hot stream of water at 50°C and 90 °C which can be mixed in any way desired. The analysis was carried out using counter flow arrangement due to its good heat transfer ability. The best way of heating this cold stream was found out to be passing the 90°C hot stream through the two heat exchangers. The outlet temperature of the cold stream was found to be 39.6°C and overall heat transfer of 131.3 kW. Though starting with 50°C hot stream in the first heat exchanger followed by 90°C hot stream in the second heat exchanger gives an outlet temperature almost the same as 90°C hot stream alone, but the heat transfer is low. The reason for the low heat transfer was that only the heat transfer in the second heat exchanger is considered. Whilst the reason behind high outlet temperature was that the cold stream was already preheated by the first stream.

Keywords: cold stream, flow arrangement, heat exchanger, hot stream

Procedia PDF Downloads 323