Search results for: molecular imprinted polymers
1885 Ab Initio Approach to Generate a Binary Bulk Metallic Glass Foam
Authors: Jonathan Galvan-Colin, Ariel Valladares, Renela Valladares, Alexander Valladares
Abstract:
Both porous materials and bulk metallic glasses have been studied due to their potential applications and their exceptional physical and chemical properties. However, each material presents certain drawbacks which have been thought to be overcome by generating bulk metallic glass foams (BMGF). Although some experimental reports have been performed on multicomponent BMGF, still no ab initio works have been published, as far as we know. We present an approach based on the expanding lattice (EL) method to generate binary amorphous nanoporous Cu64Zr36. Starting from two different configurations: a 108-atom crystalline cubic supercell (cCu64Zr36) and a 108-atom amorphous supercell (aCu64Zr36), both with an initial density of 8.06 g/cm3, we applied EL method to halve the density and to get 50% of porosity. After the lattice expansion the supercells were subject to ab initio molecular dynamics for 500 steps at constant room temperature. Then, the samples were geometry-optimized and characterized with the pair and radial distribution functions, bond-angle distributions and a coordination number analysis. We found that pores appeared along specific spatial directions different from one to another and that they differed in size and form as well, which we think is related to the initial structure. Due to the lack of experimental counterparts our results should be considered predictive and further studies are needed in order to handle a larger number of atoms and its implication on pore topology.Keywords: ab initio molecular dynamics, bulk mettalic glass, porous alloy
Procedia PDF Downloads 2631884 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study
Authors: Richard Renou, Laurent Soulard
Abstract:
Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.Keywords: densification, molecular dynamics simulations, shock loading, silica glass
Procedia PDF Downloads 2221883 Detection and Dissemination of Putative Virulence Genes from Brucella Species Isolated from Livestock in Eastern Cape Province of South Africa
Authors: Rudzani Manafe, Ezekiel Green
Abstract:
Brucella, has many different virulence factors that act as a causative agent of brucellosis, depending on the environment and other factors, some factors may play a role more than others during infection and as a result, play a role in becoming a causative agent for pathogenesis. Brucella melitensis and Brucella abortus are considered to be pathogenic to humans. The genetic regularity of nine potential causes of virulence of two Brucella species in Eastern Cape livestock have been examined. A hundred and twenty isolates obtained from Molecular Pathogenesis and Molecular Epidemiology Research Group (MPMERG) were used for this study. All isolates were grown on Brucella agar medium. Nine primer pairs were used for the detection of virB2, virB5, vceC, btpA, btpB, prpA, betB, bpe275, and bspB virulence factors using Polymerase chain reaction (PCR). Approximately 100% was observed for genes BecC and BetB from B. arbotus. While the lowest gene observed was PrpA at 4.6% from B. arbotus. BetB was detected in 34.7%, while virB2 and prpA (0%) were not detected in B. melitensis. The results from this research suggest that most isolates of Brucella have virulence-related genes associated with disease pathogenesis. Finally, our findings showed that Brucella strains in the Eastern Cape Province are extremely virulent as virulence characteristics exist in most strains investigated.Keywords: putative virulence genes, brucella, polymerase chain reaction, milk
Procedia PDF Downloads 1391882 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems
Authors: Moustafa Osman Mohammed
Abstract:
This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing
Procedia PDF Downloads 941881 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia
Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla
Abstract:
Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus
Procedia PDF Downloads 1141880 Developing A Novel Fluorescent Sensor For Detecting Analytes In An Aqueous Medium
Authors: Varshith Kotagiri, Lei Li
Abstract:
Fluorescent sensors are organic fluorophores that detect specific analytes with quantitative fluorescence intensity changes. They have offered impressive benefits compared with instrumental techniques, such as low cost, high selectivity, and rapid responses. One issue that limits the fluorescent sensors for further application is their poor solubility in the aqueous medium, where most targeted analytes, including metal ions, inorganic anions, and neutral biomolecules, are readily soluble. When fluorescent sensors are utilized to detect these analytes, a heterogeneous phase is formed. In most cases, an extra water-miscible organic solvent is needed as an additive to facilitate the sensing process, which complicates the measurement operations and produces more organic waste. We aim to resolve this issue by skillful molecular design to introduce a hydrophilic side chain to the fluorescent sensor, increasing its water solubility and facilitating its sensing process to analytes, like various protons, fluoride ions, and copper ions, in an aqueous medium. Simultaneously, its sensitivity and selectivity will be retained. This work will simplify the sensing operations and reduce the amount of organic waste produced during the measurement. This strategy will additionally be of broad interest to the chemistry community, as it introduces the idea of modifying the molecular structure to apply an initial hydrophobic compound under hydrophilic conditions in a feasible way.Keywords: organic fluorescent sensor, analytes, sensing, aqueous medium, phenanthroimidazole, hydrophilic side chain
Procedia PDF Downloads 31879 Biflavonoids from Selaginellaceae as Epidermal Growth Factor Receptor Inhibitors and Their Anticancer Properties
Authors: Adebisi Adunola Demehin, Wanlaya Thamnarak, Jaruwan Chatwichien, Chatchakorn Eurtivong, Kiattawee Choowongkomon, Somsak Ruchirawat, Nopporn Thasana
Abstract:
The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein involved in cellular signalling processes and, its aberrant activity is crucial in the development of many cancers such as lung cancer. Selaginellaceae are fern allies that have long been used in Chinese traditional medicine to treat various cancer types, especially lung cancer. Biflavonoids, the major secondary metabolites in Selaginellaceae, have numerous pharmacological activities, including anti-cancer and anti-inflammatory. For instance, amentoflavone induces a cytotoxic effect in the human NSCLC cell line via the inhibition of PARP-1. However, to the best of our knowledge, there are no studies on biflavonoids as EGFR inhibitors. Thus, this study aims to investigate the EGFR inhibitory activities of biflavonoids isolated from Selaginella siamensis and Selaginella bryopteris. Amentoflavone, tetrahydroamentoflavone, sciadopitysin, robustaflavone, robustaflavone-4-methylether, delicaflavone, and chrysocauloflavone were isolated from the ethyl-acetate extract of the whole plants. The structures were determined using NMR spectroscopy and mass spectrometry. In vitro study was conducted to evaluate their cytotoxicity against A549, HEPG2, and T47D human cancer cell lines using the MTT assay. In addition, a target-based assay was performed to investigate their EGFR inhibitory activity using the kinase inhibition assay. Finally, a molecular docking study was conducted to predict the binding modes of the compounds. Robustaflavone-4-methylether and delicaflavone showed the best cytotoxic activity on all the cell lines with IC50 (µM) values of 18.9 ± 2.1 and 22.7 ± 3.3 on A549, respectively. Of these biflavonoids, delicaflavone showed the most potent EGFR inhibitory activity with an 84% relative inhibition at 0.02 nM using erlotinib as a positive control. Robustaflavone-4-methylether showed a 78% inhibition at 0.15 nM. The docking scores obtained from the molecular docking study correlated with the kinase inhibition assay. Robustaflavone-4-methylether and delicaflavone had a docking score of 72.0 and 86.5, respectively. The inhibitory activity of delicaflavone seemed to be linked with the C2”=C3” and 3-O-4”’ linkage pattern. Thus, this study suggests that the structural features of these compounds could serve as a basis for developing new EGFR-TK inhibitors.Keywords: anticancer, biflavonoids, EGFR, molecular docking, Selaginellaceae
Procedia PDF Downloads 1981878 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)
Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad
Abstract:
Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis
Procedia PDF Downloads 2631877 Molecular Epidemiology of Rotavirus in Post-Vaccination Era in Pediatric Patients with Acute Gastroenteritis in Thailand
Authors: Nutthawadee Jampanil, Kattareeya Kumthip, Niwat Maneekarn, Pattara Khamrin
Abstract:
Rotavirus A is one of the leading causes of acute gastroenteritis in children younger than five years of age, especially in low-income countries in Africa and South Asia. Two live-attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced into routine immunization programs in many countries and have proven highly effective in reducing the burden of rotavirus-associated morbidity and mortality. In Thailand, Rotarix and RotaTeq vaccines have been included in the national childhood immunization program since 2020. The objectives of this research are to conduct a molecular epidemiological study and to characterize rotavirus genotypes circulating in pediatric patients with acute diarrhea in Chiang Mai, Thailand, from 2020-2022 after the implementation of rotavirus vaccines. Out of 858 stool specimens, 26 (3.0%) were positive for rotavirus A. G3P[8] (23.0%) was detected as the most predominant genotype, followed by G1P[8] (19.2%), G8P[8] (19.2%), G9P[8] (15.3%), G2P[4] (7.7%), G1P[6] (3.9%), G9P[4] (3.9%), and G8P[X] (3.9%). In addition, the uncommon rotavirus strain G3P[23] (3.9%) was also detected in this study, and this G3P[23] strain displayed a genetic background similar to the porcine rotavirus. In conclusion, there was a dramatic change in the prevalence of rotavirus A infection and the diversity of rotavirus A genotypes in pediatric patients in Chiang Mai, Northern Thailand, in the rotavirus post-vaccination period. The finding obtained from this research contributes to a better understanding of rotavirus epidemiology after rotavirus vaccine introduction. Furthermore, the identification of unusual G and P genotype combination strains provides significant evidence for the potential interspecies transmission between human and animal rotaviruses.Keywords: rotavirus, infectious disease, gastroenteritis, Thailand
Procedia PDF Downloads 681876 Investigation of Ascochyta Blight Resistance in Registered Turkish Chickpea (Cicer arietinum L.) Varieties by Using Molecular Techniques
Authors: Ibrahim Ilker Ozyigit, Fatih Tabanli, Sezin Adinir
Abstract:
In this study, Ascochyta blight resistance was investigated in 34 registered chickpea varieties, which are widely planting in different regions of Turkey. For this aim, molecular marker techniques, such as STMS, RAPD and ISSR were used. Ta2, Ta146 and Ts54 primers were used for STMS, while UBC733 and UBC681 primers for RAPD, and UBC836 and UBC858 primers for ISSR. Ta2, Ts54 and Ta146 (STMS), and UBC733 (RAPD) primers demonstrated the distinctive feature for Ascochyta blight resistance. Ta2, Ts54 and Ta146 primers yielded the quite effective results in detection of resistant and sensitive varieties. Besides, UBC 733 primer distinguished all kinds of standard did not give any reliable results for other varieties since it demonstrated all as resistant. In addition, monomorphic bands were obtained from UBC681 (RAPD), and UBC836 and UBC858 (ISSR) primers, not demonstrating reliable results in detection of resistance against Ascochyta blight disease. Obtained results informed us about both disease resistance and genetic diversity in registered Turkish chickpea varieties. This project was funded through the Scientific Research Projects of Marmara University under Grant Number FEN-C-YLP-070617-0365 and The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 113O070.Keywords: plant genetics, ISSR, RAPD, STMS
Procedia PDF Downloads 1991875 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector
Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim
Abstract:
Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.Keywords: DNA, gene delivery, nanoinjector, nanowire
Procedia PDF Downloads 2751874 Electrical and Optical Properties of Polyaniline: Cadmium Sulphide Quantum Dots Nanocomposites
Authors: Akhtar Rasool, Tasneem Zahra Rizvi
Abstract:
In this study, a series of the cadmium sulphide quantum dots/polyaniline nanocomposites with varying compositions were prepared by in-situ polymerization technique and were characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology was studied by scanning electron microscopy. UV-Visible spectroscopy was used to find out the energy band gap of the nanoparticles and the nanocomposites. Temperature dependence of DC electrical conductivity and temperature and frequency dependence of AC conductivity were investigated to study the charge transport mechanism in the nanocomposites. DC conductivity was found to be a typical for a semiconducting behavior following Mott’s 1D variable range hoping model. The frequency dependent AC conductivity followed the universal power law.Keywords: conducting polymers, nanocomposites, polyaniline composites, quantum dots
Procedia PDF Downloads 2541873 Microscopic Insights into Water Transport Through a Biomimetic Artificial Water Nano-Channels-Polyamide Membrane
Authors: Aziz Ghoufi, Ayman Kanaan
Abstract:
Clean water is ubiquitous from drinking to agriculture and from energy supply to industrial manufacturing. Since the conventional water sources are becoming increasingly rare, the development of new technologies for water supply is crucial to address the world’s clean water needs in the 21st century. Desalination is in many regards the most promising approach to long-term water supply since it potentially delivers an unlimited source of fresh water. Seawater desalination using reverse osmosis (RO) membranes has become over the past decade a standard approach to produce fresh water. While this technology has proven to be efficient, it remains however relatively costly in terms of energy input due to the use of high-pressure pumps resulting of the low water permeation through polymeric RO membranes. Recently, water channels incorporated in lipidic and polymeric membranes were demonstrated to provide a selective water translocation that enables to break permeability- selectivity trade-off. Biomimetic Artificial Water channels (AWCs) are becoming highly attractive systems to achieve a selective transport of water. The first developed AWCs formed from imidazole quartet (I-quartet) embedded in lipidic membranes exhibited an ion selectivity higher than AQPs however associated with a lower water flow performance. Recently it has been conducted pioneer work in this field with the fabrication of the first AWC@Polyamide(PA) composite membrane with outstanding desalination performance. However, the microscopic desalination mechanism in play is still unknown and its understanding represents the shortest way for a long-term conception and design of AWC@PA composite membranes with better performance. In this work we gain an unprecedented fundamental understanding and rationalization of the nanostructuration of the AWC@PA membranes and the microscopic mechanism at the origin of their water transport performance from advanced molecular simulations. Using osmotic molecular dynamics simulations and a non-equilibrium method with water slab control, we demonstrate an increase in porosity near the AWC@PA interfaces, enhancing water transport without compromising the rejection rate. Indeed, the water transport pathways exhibit a single-file structure connected by hydrogen bonds. Finally, by comparing AWC@PA and PA membranes, we show that the difference in water flux aligns well with experimental results, validating the model used.Keywords: water desalination, biomimetic membranes, molecular simulation, nanochannels
Procedia PDF Downloads 181872 Transient Current Investigations in Liquid Crystalline Polyurethane
Authors: Jitendra Kumar Quamara, Sohan Lal, Pushkar Raj
Abstract:
Electrical conduction behavior of liquid crystalline polyurethane (LCPU) has been investigated under transient conditions in the operating temperature range 50-220°C at various electric fields of 4.35-43.45 kV/cm. The transient currents show the hyperbolic decay character and the decay exponent ∆t (one tenth decay time) dependent on field as well as on temperature. The increase in I0/Is values (where I0 represents the current observed immediately after applying the voltage and Is represents the steady state current) and the variation of mobility at high operating temperatures shows the appearance of mesophase. The origin of transient currents has been attributed to the dipolar nature of carbonyl (C=O) groups in the main chain of LCPU and the trapping charge carriers.Keywords: electrical conduction, transient current, liquid crystalline polymers, mesophase
Procedia PDF Downloads 2801871 Effect of Rapid Thermal Annealing on the Optical Properties of InAs Quantum Dots Grown on (100) and (311)B GaAs Substrates by Molecular Beam Epitaxy
Authors: Amjad Almunyif, Amra Alhassni, Sultan Alhassan, Maryam Al Huwayz, Saud Alotaibi, Abdulaziz Almalki, Mohamed Henini
Abstract:
The effect of rapid thermal annealing (RTA) on the optical properties of InAs quantum dots (QDs) grown at an As overpressure of 2x 10⁻⁶ Torr by molecular beam epitaxy (MBE) on (100) and (311)B GaAs substrates was investigated using photoluminescence (PL) technique. PL results showed that for the as-grown samples, the QDs grown on the high index plane (311)B have lower PL intensity and lower full width at half maximum (FWHM) than those grown on the conventional (100) plane. The latter demonstrates that the (311)B QDs have better size uniformity than (100) QDs. Compared with as-grown samples, a blue-shift was observed for all samples with increasing annealing temperature from 600°C to 700°C. For (100) samples, a narrowing of the FWHM was observed with increasing annealing temperature from 600°C to 700°C. However, in (311)B samples, the FWHM showed a different behaviour; it slightly increased when the samples were annealed at 600°C and then decreased when the annealing temperature increased to 700°C. As expected, the PL peak intensity for all samples increased when the laser excitation power increased. The PL peak energy temperature dependence showed a strong redshift when the temperature was increased from 10 K to 120 K. The PL peak energy exhibited an abnormal S-shape behaviour as a function of temperature for all samples. Most samples exhibited a significant enhancement in their activation energies when annealed at 600°C and 700°C, suggesting that annealing annihilated defects created during sample growth. Procedia PDF Downloads 1761870 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity
Authors: Emma K. Sales
Abstract:
Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments; 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit. Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.Keywords: DNA, SSR analysis, genotype, genetic diversity, cultivars
Procedia PDF Downloads 4541869 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications
Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara
Abstract:
Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.Keywords: electrical properties, optical gap, phthalocyanine, thin film.
Procedia PDF Downloads 2491868 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations
Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat
Abstract:
Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative
Procedia PDF Downloads 4711867 Anonymous Gel-Fluid Transition of Solid Supported Lipids
Authors: Asma Poursoroush
Abstract:
Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate.Keywords: membrane, substrate, molecular dynamics, simulation
Procedia PDF Downloads 1951866 Preparation and Characterization of Poly(L-Lactic Acid)/Oligo(D-Lactic Acid) Grafted Cellulose Composites
Authors: Md. Hafezur Rahaman, Mohd. Maniruzzaman, Md. Shadiqul Islam, Md. Masud Rana
Abstract:
With the growth of environmental awareness, enormous researches are running to develop the next generation materials based on sustainability, eco-competence, and green chemistry to preserve and protect the environment. Due to biodegradability and biocompatibility, poly (L-lactic acid) (PLLA) has a great interest in ecological and medical applications. Also, cellulose is one of the most abundant biodegradable, renewable polymers found in nature. It has several advantages such as low cost, high mechanical strength, biodegradability and so on. Recently, an immense deal of attention has been paid for the scientific and technological development of α-cellulose based composite material. PLLA could be used for grafting of cellulose to improve the compatibility prior to the composite preparation. Here it is quite difficult to form a bond between lower hydrophilic molecules like PLLA and α-cellulose. Dimmers and oligomers can easily be grafted onto the surface of the cellulose by ring opening or polycondensation method due to their low molecular weight. In this research, α-cellulose extracted from jute fiber is grafted with oligo(D-lactic acid) (ODLA) via graft polycondensation reaction in presence of para-toluene sulphonic acid and potassium persulphate in toluene at 130°C for 9 hours under 380 mmHg. Here ODLA is synthesized by ring opening polymerization of D-lactides in the presence of stannous octoate (0.03 wt% of lactide) and D-lactic acids at 140°C for 10 hours. Composites of PLLA with ODLA grafted α-cellulose are prepared by solution mixing and film casting method. Confirmation of grafting was carried out through FTIR spectroscopy and SEM analysis. A strongest carbonyl peak of FTIR spectroscopy at 1728 cm⁻¹ of ODLA grafted α-cellulose confirms the grafting of ODLA onto α-cellulose which is absent in α-cellulose. It is also observed from SEM photographs that there are some white areas (spot) on ODLA grafted α-cellulose as compared to α-cellulose may indicate the grafting of ODLA and consistent with FTIR results. Analysis of the composites is carried out by FTIR, SEM, WAXD and thermal gravimetric analyzer. Most of the FTIR characteristic absorption peak of the composites shifted to higher wave number with increasing peak area may provide a confirmation that PLLA and grafted cellulose have better compatibility in composites via intermolecular hydrogen bonding and this supports previously published results. Grafted α-cellulose distributions in composites are uniform which is observed by SEM analysis. WAXD studied show that only homo-crystalline structures of PLLA present in the composites. Thermal stability of the composites is enhanced with increasing the percentages of ODLA grafted α-cellulose in composites. As a consequence, the resultant composites have a resistance toward the thermal degradation. The effects of length of the grafted chain and biodegradability of the composites will be studied in further research.Keywords: α-cellulose, composite, graft polycondensation, oligo(D-lactic acid), poly(L-lactic acid)
Procedia PDF Downloads 1171865 Uncovering Anti-Hypertensive Obesity Targets and Mechanisms of Metformin, an Anti-Diabetic Medication
Authors: Lu Yang, Keng Po Lai
Abstract:
Metformin, a well-known clinical drug against diabetes, is found with potential anti-diabetic and anti-obese benefits, as reported in increasing evidences. However, the current clinical and experimental investigations are not to reveal the detailed mechanisms of metformin-anti-obesity/hypertension. We have used the bioinformatics strategy, including network pharmacology and molecular docking methodology, to uncover the key targets and pathways of bioactive compounds against clinical disorders, such as cancers, coronavirus disease. Thus, in this report, the in-silico approach was utilized to identify the hug targets, pharmacological function, and mechanism of metformin against obesity and hypertension. The networking analysis identified 154 differentially expressed genes of obesity and hypertension, 21 interaction genes, and 6 hug genes of metformin treating hypertensive obesity. As a result, the molecular docking findings indicated the potent binding capability of metformin with the key proteins, including interleukin 6 (IL-6) and chemokine (C-C motif) Ligand 2 (CCL2), in hypertensive obesity. The metformin-exerted anti-hypertensive obesity action involved in metabolic regulation, inflammatory reaction. And the anti-hypertensive obesity mechanisms of metformin were revealed, including regulation of inflammatory and immunological signaling pathways for metabolic homeostasis in tissue and microenvironmental melioration in blood pressure. In conclusion, our identified findings with bioinformatics analysis have demonstrated the detailed hug and pharmacological targets, biological functions, and signaling pathways of metformin treating hypertensive obesity.Keywords: metformin, obesity, hypertension, bioinformatics findings
Procedia PDF Downloads 1221864 Revealing Potential Drug Targets against Proto-Oncogene Wnt10B by Comparative Molecular Docking
Authors: Shazia Mannan, Zunera Khalid, Hammad-Ul-Mubeen
Abstract:
Wingless type Mouse mammary tumor virus (MMTV) Integration site-10B (Wnt10B) is an important member of the Wnt protein family that functions as cellular messenger in paracrine manner. Aberrant Wnt10B activity is the cause of several abnormalities including cancers of breast, cervix, liver, gastric tract, esophagus, pancreas as well as physiological problems like obesity, and osteoporosis. The objective of this study was to determine the possible inhibitors against aberrant expression of Wnt10B in order to prevent and treat the physiological disorders associated with it. Wnt10B3D structure was predicted by using comparative modeling and then analyzed by PROCHECK, Verify3D, and Errat. The model having 84.54% quality value was selected and acylated to satisfy the hydrophobic nature of Wnt10B. For search of inhibitors, virtual screening was performed on Natural Products (NP) database. The compounds were filtered and ligand-based screening was performed using the antagonist for mouse Wnt-3A. This resulted in a library of 272 unique compounds having most potent drug like activities for Wnt-4. Out of the 271 molecules analyzed three small molecules ZINC35442871, ZINC85876388, and ZINC00754234 having activity against Wnt4 abbarent expression were found common through docking experiment of Wnt10B. It is concluded that the three molecules ZINC35442871, ZINC85876388, and ZINC00754234 can be considered as lead compounds for performing further drug designing experiments against aberrant Wnt expressions.Keywords: Wnt10B inhibitors, comparative computational studies, proto-oncogene, molecular docking
Procedia PDF Downloads 1561863 Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands
Authors: Ayla Roberta Galaco, Juliana Fonseca De Lima, Osvaldo Antonio Serra
Abstract:
Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS.Keywords: isostructural, lanthanoids, lanthanoids organic frameworks (LOFs), metal organic frameworks (MOFs), thermogravimetry, X-Ray diffraction
Procedia PDF Downloads 2601862 Bending Test Characteristics for Splicing of Thermoplastic Polymer Using Hot Gas Welding
Authors: Prantasi Harmi Tjahjanti, Iswanto Iswanto, Edi Widodo, Sholeh Pamuji
Abstract:
Materials of the thermoplastic polymer when they break is usually thrown away, or is recycled which requires a long process. The purpose of this study is to splice the broken thermoplastic polymer using hot gas welding with different variations of welding wire/electrodes. Materials of thermoplastic polymer used are Polyethylene (PE), Polypropylene (PP), and Polyvinyl chloride (PVC) by using welding wire like the three materials. The method is carried out by using hot gas welding; there are two materials that cannot be connected, namely PE with PVC welding wire, and PP with PVC welding wire. The permeable liquid penetrant test is PP with PE welding wire, and PVC with PE welding wire. The best bending test result with the longest elongation is PE with PE welding wire with a bending test value of 179.03 kgf/mm². The microstructure was all described in Scanning Electron Microscopy (SEM) observations.Keywords: thermoplastic polymers, bending test, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), hot gas welding, bending test
Procedia PDF Downloads 2021861 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports
Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani
Abstract:
In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method
Procedia PDF Downloads 2941860 Morphological and Molecular Abnormalities of the Skeletal Muscle Tissue from Pediatric Patient Affected by a Rare Genetic Chaperonopathy Associated with Motor Neuropathy
Authors: Leila Noori, Rosario Barone, Francesca Rappa, Antonella Marino Gammazza, Alessandra Maria Vitale, Giuseppe Donato Mangano, Giusy Sentiero, Filippo Macaluso, Kathryn H. Myburgh, Francesco Cappello, Federica Scalia
Abstract:
The neuromuscular system controls, directs, and allows movement of the body through the action of neural circuits, which include motor neurons, sensory neurons, and skeletal muscle fibers. Protein homeostasis of the involved cytotypes appears crucial to maintain the correct and prolonged functions of the neuromuscular system, and both neuronal cells and skeletal muscle fibers express significant quantities of protein chaperones, the molecular machinery responsible to maintain the protein turnover. Genetic mutations or defective post-translational modifications of molecular chaperones (i.e., genetic or acquired chaperonopathies) may lead to neuromuscular disorders called as neurochaperonopathies. The limited knowledge of the effects of the defective chaperones on skeletal muscle fibers and neurons impedes the progression of therapeutic approaches. A distinct genetic variation of CCT5 gene encoding for the subunit 5 of the chaperonin CCT (Chaperonin Containing TCP1; also known as TRiC, TCP1 Ring Complex) was recently described associated with severe distal motor neuropathy by our team. In this study, we investigated the histopathological abnormalities of the skeletal muscle biopsy of the pediatric patient affected by the mutation Leu224Val in the CCT5 subunit. We provide molecular and structural features of the diseased skeletal muscle tissue that we believe may be useful to identify undiagnosed cases of this rare genetic disorder. We investigated the histological abnormalities of the affected tissue via hematoxylin and eosin staining. Then we used immunofluorescence and qPCR techniques to explore the expression and distribution of CCT5 in diseased and healthy skeletal muscle tissue. Immunofluorescence and immunohistochemistry assays were performed to study the sarcomeric and structural proteins of skeletal muscle, including actin, myosin, tubulin, troponin-T, telethonin, and titin. We performed Western blot to examine the protein expression of CCT5 and some heat shock proteins, Hsp90, Hsp60, Hsp27, and α-B crystallin, along with the main client proteins of the CCT5, actin, and tubulin. Our findings revealed muscular atrophy, abnormal morphology, and different sizes of muscle fibers in affected tissue. The swollen nuclei and wide interfiber spaces were seen. Expression of CCT5 had been decreased and showed a different distribution pattern in the affected tissue. Altered expression, distribution, and bandage pattern were detected by confocal microscopy for the interested muscular proteins in tissue from the patient compared to the healthy control. Protein levels of the studied Hsps normally located at the Z-disk were reduced. Western blot results showed increased levels of the actin and tubulin proteins in the diseased skeletal muscle biopsy compared to healthy tissue. Chaperones must be expressed at high levels in skeletal muscle to counteract various stressors such as mechanical, oxidative, and thermal crises; therefore, it seems relevant that defects of molecular chaperones may result in damaged skeletal muscle fibers. So far, several chaperones or cochaperones involved in neuromuscular disorders have been defined. Our study shows that alteration of the CCT5 subunit is associated with the damaged structure of skeletal muscle fibers and alterations of chaperone system components and paves the way to explore possible alternative substrates of chaperonin CCT. However, further studies are underway to investigate the CCT mechanisms of action to design applicable therapeutic strategies.Keywords: molecular chaperones, neurochaperonopathy, neuromuscular system, protein homeostasis
Procedia PDF Downloads 711859 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads
Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li
Abstract:
Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability
Procedia PDF Downloads 2251858 Strength and Permeability of the Granular Pavement Materials Treated with Polyacrylamide Based Additive
Authors: Romel N. Georgees, Rayya A Hassan, Robert P. Evans, Piratheepan Jegatheesan
Abstract:
Among other traditional and non-traditional additives, polymers have shown an efficient performance in the field and improved sustainability. Polyacrylamide (PAM) is one such additive that has demonstrated many advantages including a reduction in permeability, an increase in durability and the provision of strength characteristics. However, information about its effect on the improved geotechnical characteristics is very limited to the field performance monitoring. Therefore, a laboratory investigation was carried out to examine the basic and engineering behaviors of three types of soils treated with a PAM additive. The results showed an increase in dry density and unconfined compressive strength for all the soils. The results further demonstrated an increase in unsoaked CBR and a reduction in permeability for all stabilized samples.Keywords: CBR, hydraulic conductivity, PAM, unconfined compressive strength
Procedia PDF Downloads 3741857 The Development of an Automated Computational Workflow to Prioritize Potential Resistance Variants in HIV Integrase Subtype C
Authors: Keaghan Brown
Abstract:
The prioritization of drug resistance mutations impacting protein folding or protein-drug and protein-DNA interactions within macromolecular systems is critical to the success of treatment regimens. With a continual increase in computational tools to assess these impacts, the need for scalability and reproducibility became an essential component of computational analysis and experimental research. Here it introduce a bioinformatics pipeline that combines several structural analysis tools in a simplified workflow, by optimizing the present computational hardware and software to automatically ease the flow of data transformations. Utilizing preestablished software tools, it was possible to develop a pipeline with a set of pre-defined functions that will automate mutation introduction into the HIV-1 Integrase protein structure, calculate the gain and loss of polar interactions and calculate the change in energy of protein fold. Additionally, an automated molecular dynamics analysis was implemented which reduces the constant need for user input and output management. The resulting pipeline, Automated Mutation Introduction and Analysis (AMIA) is an open source set of scripts designed to introduce and analyse the effects of mutations on the static protein structure as well as the results of the multi-conformational states from molecular dynamic simulations. The workflow allows the user to visualize all outputs in a user friendly manner thereby successfully enabling the prioritization of variant systems for experimental validation.Keywords: automated workflow, variant prioritization, drug resistance, HIV Integrase
Procedia PDF Downloads 771856 Molecular Characterization of Two Thermoplastic Biopolymer-Degrading Fungi Utilizing rRNA-Based Technology
Authors: Nuha Mansour Alhazmi, Magda Mohamed Aly, Fardus M. Bokhari, Ahmed Bahieldin, Sherif Edris
Abstract:
Out of 30 fungal isolates, 2 new isolates were proven to degrade poly-β-hydroxybutyrate (PHB). Enzyme assay for these isolates indicated the optimal environmental conditions required for depolymerase enzyme to induce the highest level of biopolymer degradation. The two isolates were basically characterized at the morphological level as Trichoderma asperellum (isolate S1), and Aspergillus fumigates (isolate S2) using standard approaches. The aim of the present study was to characterize these two isolates at the molecular level based on the highly diverged rRNA gene(s). Within this gene, two domains of the ribosome large subunit (LSU) namely internal transcribed spacer (ITS) and 26S were utilized in the analysis. The first domain comprises the ITS1/5.8S/ITS2 regions ( > 500 bp), while the second domain comprises the D1/D2/D3 regions ( > 1200 bp). Sanger sequencing was conducted at Macrogen (Inc.) for the two isolates using primers ITS1/ITS4 for the first domain, while primers LROR/LR7 for the second domain. Sizes of the first domain ranged between 594-602 bp for S1 isolate and 581-594 bp for S2 isolate, while those of the second domain ranged between 1228-1238 bp for S1 isolate and 1156-1291 for S2 isolate. BLAST analysis indicated 99% identities of the first domain of S1 isolate with T. asperellum isolates XP22 (ID: KX664456.1), CTCCSJ-G-HB40564 (ID: KY750349.1), CTCCSJ-F-ZY40590 (ID: KY750362.1) and TV (ID: KU341015.1). BLAST of the first domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other T. asperellum and A. fumigatus isolates and strains showed high level of identities with S1 and S2 isolates, respectively, based on the diversity of the first domain. BLAST of the second domain of S1 isolate indicated 99 and 100% identities with only two strains of T. asperellum namely TR 3 (ID: HM466685.1) and G (ID: KF723005.1), respectively. However, other T. species (ex., atroviride, hamatum, deliquescens, harzianum, etc.) also showed high level of identities. BLAST of the second domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other A. fumigatus isolates and strains showed high level of identities with S2 isolate. Overall, the results of molecular characterization based on rRNA diversity for the two isolates of T. asperellum and A. fumigatus matched those obtained by morphological characterization. In addition, ITS domain proved to be more sensitive than 26S domain in diversity profiling of fungi at the species level.Keywords: Aspergillus fumigates, Trichoderma asperellum, PHB, degradation, BLAST, ITS, 26S, rRNA
Procedia PDF Downloads 159