Search results for: integration features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6147

Search results for: integration features

5337 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation

Authors: Bubai Maji, Monorama Swain

Abstract:

Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.

Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition

Procedia PDF Downloads 107
5336 The Perspective of Smart Thermoregulation in Personal Protective Equipment

Authors: Alireza Saidi

Abstract:

Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.

Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain

Procedia PDF Downloads 102
5335 Regulatory and Economic Challenges of AI Integration in Cyber Insurance

Authors: Shreyas Kumar, Mili Shangari

Abstract:

Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.

Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware

Procedia PDF Downloads 18
5334 The Secret Ingredient of Student Involvement: Applied Science Case Studies to Enhance Sustainability

Authors: Elizelle Juanee Cilliers

Abstract:

Recent planning thinking has laid the foundations for a general sense of best practice that aims to enhance the quality of life, suggesting an open and participatory process. It is accepted that integration of top-down and bottom-up approaches may lead to efficient action in environments and sustainable planning and development, although it is also accepted that such an integrated approach has various challenges of implementation. A flexible framework in which the strengths of both the top-down and bottom-up approaches were explored in this research, based on the EU Interreg VALUE Added project and five case studies where student education and student involvement played a crucial role within the participation process of the redesign of the urban environment. It was found that international student workshops were an effective tool to integrate bottom-up and top-down structures, as it acted as catalyst for communication, interaction, creative design, quick transformation from planning to implementation, building social cohesion, finding mutual ground between stakeholders and thus enhancing overall quality of life and quality of environments. It offered a good alternative to traditional participation modes and created a platform for an integrative planning approach. The role and importance of education and integration within the urban environment were emphasized.

Keywords: top-down, bottom-up, flexible, student involvement

Procedia PDF Downloads 204
5333 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 472
5332 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.

Keywords: EEG, epilepsy, phase correlation, seizure

Procedia PDF Downloads 300
5331 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 131
5330 Stress Reduction Techniques for First Responders: Scientifically Proven Methods

Authors: Esther Ranero Carrazana, Maria Karla Ramirez Valdes

Abstract:

First responders, including firefighters, police officers, and emergency medical personnel, are frequently exposed to high-stress scenarios that significantly increase their risk of mental health issues such as depression, anxiety, and post-traumatic stress disorder (PTSD). Their work involves life-threatening situations, witnessing suffering, and making critical decisions under pressure, all contributing to psychological strain. The objectives of this research on "Stress Reduction Techniques for First Responders: Scientifically Proven Methods" are as follows. One of them is to evaluate the effectiveness of stress reduction techniques. The primary objective is to assess the efficacy of various scientifically proven stress reduction techniques explicitly tailored for first responders. Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness are scrutinized for their ability to mitigate stress-related symptoms. Furthermore, we evaluate and enhance the understanding of stress mechanisms in first responders by exploring how different techniques influence the physiological and psychological responses to stress. The study aims to deepen the understanding of stress mechanisms in high-risk professions. Additionally, the study promotes psychological resilience by seeking to identify and recommend methods that can significantly enhance the psychological resilience of first responders, thereby supporting their mental health and operational efficiency in high-stress environments. Guide training and policy development is an additional objective to provide evidence-based recommendations that can be used to guide training programs and policy development aimed at improving the mental health and well-being of first responders. Lastly, the study aims to contribute valuable insights to the existing body of knowledge in stress management, specifically tailored to the unique needs of first responders. This study involved a comprehensive literature review assessing the effectiveness of various stress reduction techniques tailored for first responders. Techniques evaluated include Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness, focusing on their ability to alleviate stress-related symptoms. The review indicates promising results for several stress reduction methods. HRV Training demonstrates the potential to reflect stress vulnerability and enhance physiological and behavioral flexibility. Interoception and Exteroception help modulate the stress response by enhancing awareness of the body's internal state and its interaction with the environment. Sensory integration plays a crucial role in adaptive responses to stress by focusing on individual senses and their integration. Therefore, body perception awareness addresses stress and anxiety through enhanced body perception and mindfulness. The evaluated techniques show significant potential in reducing stress and improving the mental health of first responders. Implementing these scientifically supported methods into routine training could significantly enhance their psychological resilience and operational effectiveness in high-stress environments.

Keywords: first responders, HRV training, mental health, sensory integration, stress reduction

Procedia PDF Downloads 18
5329 Addressing Challenging Behaviours of Individuals with Positive Behaviour Support

Authors: Divi Sharma

Abstract:

The emergence of positive behaviour support (PBS) is directly linked to applied behaviour analysis that incorporates evidence-based approaches to addressing ethical challenges and improving autonomy, participation, and the overall quality of life of people living and learning in complex social environments. Its features include lifestyle improvement, collaboration with general caregivers, tracking progress with sound steps, comprehensive performance-based interventions, striving for contextual equality, and ensuring entry and implementation. This document aims to summarize its features with the support of case examples such as involving caregivers to play an active role in behavioural interventions, creating effective interventions within natural practices. Additionally, dealing with lifestyle changes, as well as a wide variety of behavioural changes, develop strong strategies which reduce professional dependence.

Keywords: positive behaviour support, quality of life, performance-based interventions, behavioural changes, participation

Procedia PDF Downloads 163
5328 The Integration of Apps for Communicative Competence in English Teaching

Authors: L. J. de Jager

Abstract:

In the South African English school curriculum, one of the aims is to achieve communicative competence, the knowledge of using language competently and appropriately in a speech community. Communicatively competent speakers should not only produce grammatically correct sentences but also produce contextually appropriate sentences for various purposes and in different situations. As most speakers of English are non-native speakers, achieving communicative competence remains a complex challenge. Moreover, the changing needs of society necessitate not merely language proficiency, but also technological proficiency. One of the burning issues in the South African educational landscape is the replacement of the standardised literacy model by the pedagogy of multiliteracies that incorporate, by default, the exploration of technological text forms that are part of learners’ everyday lives. It foresees learners as decoders, encoders, and manufacturers of their own futures by exploiting technological possibilities to constantly create and recreate meaning. As such, 21st century learners will feel comfortable working with multimodal texts that are intrinsically part of their lives and by doing so, become authors of their own learning experiences while teachers may become agents supporting learners to discover their capacity to acquire new digital skills for the century of multiliteracies. The aim is transformed practice where learners use their skills, ideas, and knowledge in new contexts. This paper reports on a research project on the integration of technology for language learning, based on the technological pedagogical content knowledge framework, conceptually founded in the theory of multiliteracies, and which aims to achieve communicative competence. The qualitative study uses the community of inquiry framework to answer the research question: How does the integration of technology transform language teaching of preservice teachers? Pre-service teachers in the Postgraduate Certificate of Education Programme with English as methodology were purposively selected to source and evaluate apps for teaching and learning English. The participants collaborated online in a dedicated Blackboard module, using discussion threads to sift through applicable apps and develop interactive lessons using the Apps. The selected apps were entered on to a predesigned Qualtrics form. Data from the online discussions, focus group interviews, and reflective journals were thematically and inductively analysed to determine the participants’ perceptions and experiences when integrating technology in lesson design and the extent to which communicative competence was achieved when using these apps. Findings indicate transformed practice among participants and research team members alike with a better than average technology acceptance and integration. Participants found value in online collaboration to develop and improve their own teaching practice by experiencing directly the benefits of integrating e-learning into the teaching of languages. It could not, however, be clearly determined whether communicative competence was improved. The findings of the project may potentially inform future e-learning activities, thus supporting student learning and development in follow-up cycles of the project.

Keywords: apps, communicative competence, English teaching, technology integration, technological pedagogical content knowledge

Procedia PDF Downloads 151
5327 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 318
5326 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 596
5325 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration

Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.

Abstract:

Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.

Keywords: artificial intelligence, space exploration, space missions, deep learning

Procedia PDF Downloads 15
5324 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features

Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed

Abstract:

Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.

Keywords: 3D printing, fluorescent, packaging, security

Procedia PDF Downloads 91
5323 Stream Extraction from 1m-DTM Using ArcGIS

Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo

Abstract:

Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.

Keywords: digital terrain models, hydrology tools, strahler method, stream classification

Procedia PDF Downloads 260
5322 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed

Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan

Abstract:

Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.

Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling

Procedia PDF Downloads 373
5321 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 305
5320 Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

Authors: L. L. Ivy-Yap, H. A. Bekhet

Abstract:

As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 periods. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationary of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modeled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.

Keywords: co-integration, elasticity, granger causality, Malaysia, residential electricity consumption

Procedia PDF Downloads 255
5319 Direct Integration of 3D Ultrasound Scans with Patient Educational Mobile Application

Authors: Zafar Iqbal, Eugene Chan, Fareed Ahmed, Mohamed Jama, Avez Rizvi

Abstract:

Advancements in Ultrasound Technology have enabled machines to capture 3D and 4D images with intricate features of the growing fetus. Sonographers can now capture clear 3D images and 4D videos of the fetus, especially of the face. Fetal faces are often seen on the ultrasound scan of the third trimester where anatomical features become more defined. Parents often want 3D/4D images and videos of their ultrasounds, and particularly image that capture the child’s face. Sidra Medicine developed a patient education mobile app called 10 Moons to improve care and provide useful information during the length of their pregnancy. In addition to general information, we built the ability to send ultrasound images directly from the modality to the mobile application, allowing expectant mothers to easily store and share images of their baby. 10 Moons represent the length of the pregnancy on a lunar calendar, which has both cultural and religious significance in the Middle East. During the third trimester scan, sonographers can capture 3D pictures of the fetus. Ultrasound machines are connected with a local 10 Moons Server with a Digital Imaging and Communications in Medicine (DICOM) application running on it. Sonographers are able to send images directly to the DICOM server by a preprogrammed button on the ultrasound modality. Mothers can also request which pictures they would like to be available on the app. An internally built DICOM application receives the image and saves the patient information from DICOM header (for verification purpose). The application also anonymizes the image by removing all the DICOM header information and subsequently converts it into a lossless JPEG. Finally, and the application passes the image to the mobile application server. On the 10 Moons mobile app – patients enter their Medical Record Number (MRN) and Date of Birth (DOB) to receive a One Time Password (OTP) for security reasons to view the images. Patients can also share the images anonymized images with friends and family. Furthermore, patients can also request 3D printed mementos of their child through 10 Moons. 10 Moons is unique patient education and information application where expected mothers can also see 3D ultrasound images of their children. Sidra Medicine staff has the added benefit of a full content management administrative backend where updates to content can be made. The app is available on secure infrastructure with both local and public interfaces. The application is also available in both English and Arabic languages to facilitate most of the patients in the region. Innovation is at the heart of modern healthcare management. With Innovation being one of Sidra Medicine’s core values, our 10 Moons application provides expectant mothers with unique educational content as well as the ability to store and share images of their child and purchase 3D printed mementos.

Keywords: patient educational mobile application, ultrasound images, digital imaging and communications in medicine (DICOM), imaging informatics

Procedia PDF Downloads 121
5318 Influence of BaTiO₃ on the Biological Behaviour of Hydroxyapatite: Collagen Composites

Authors: Cristina Busuioc, Georgeta Voicu, Sorin-Ion Jinga

Abstract:

The human bone presents in its dry form piezoelectric properties, which means that a mechanical stress results in electric polarization and an applied electric field causes strain. The immediate consequence was the revealing of piezoelectricity role in bone remodelling, as well as the integration of ceramic materials with piezoelectric behaviour in the composition of unitary or composite biomaterials. Thus, we prepared hydroxyapatite - collagen hybrid materials with barium titanate addition in order to achieve a better osseointegration. Barium titanate powder synthesized by a combined sol-gel-hydrothermal method, commercial hydroxyapatite and laboratory extracted collagen gel were employed as starting materials. Before the composites, fabrication, the powder with piezoelectric features was characterized in detail from the compositional, structural, morphological and electrical point of view. The next step was to elucidate the influence of barium titanate presence especially on the biological properties of the final materials. The biocompatibility of the hybrid supports without or with piezoelectric addition was investigated on mouse osteoblast cells through LDH cytotoxicity assay, LIVE/DEAD cell viability assay, and MTT cell proliferation assay. All results indicated that the analysed materials do not exert cytotoxic effects and present the ability to sustain cell survival and to promote their proliferation. In conclusion, barium titanate nanoparticles exhibit a good biocompatibility and osteoinductive properties, while the derived composite materials based on hydroxyapatite as oxide phase and collagen as polymeric phase can be successfully used for tissue engineering applications.

Keywords: barium titanate, hybrid composites, piezoelectricity, tissue engineering

Procedia PDF Downloads 313
5317 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer

Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu

Abstract:

Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.

Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature

Procedia PDF Downloads 205
5316 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst

Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha

Abstract:

Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.

Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst

Procedia PDF Downloads 165
5315 A Conceptual Framework for Assessing the Development of Health Information Systems Enterprise Architecture Interoperability

Authors: Prosper Tafadzwa Denhere, Ephias Ruhode, Munyaradzi Zhou

Abstract:

Health Information Systems (HISs) interoperability is emerging to be the future of modern healthcare systems Enterprise Architecture (EA), where healthcare entities are seamlessly interconnected to share healthcare data. The reality that the healthcare industry has been characterised by an influx of fragmented stand-alone e-Health systems, which present challenges of healthcare information sharing across platforms, desires much attention for systems integration efforts. The lack of an EA conceptual framework resultantly crates the need for investigating an ideal solution to the objective of Health Information Systems interoperability development assessment. The study takes a qualitative exploratory approach through a design science research context. The research aims to study the various themes withdrawn from the literature that can help in the assessment of interoperable HISs development through a literature study. Themes derived from the study include HIS needs, HIS readiness, HIS constraints, and HIS technology integration elements and standards tied to the EA development architectural layers of The Open Group Architecture Framework (TOGAF) as an EA development methodology. Eventually, the themes were conceptualised into a framework reviewed by two experts. The essence of the study was to provide a framework within which interoperable EA of HISs should be developed.

Keywords: enterprise architecture, eHealth, health information systems, interoperability

Procedia PDF Downloads 93
5314 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing

Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis

Abstract:

The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.

Keywords: additive manufacture, new designs, orthoses, finite elements

Procedia PDF Downloads 201
5313 Feature Selection for Production Schedule Optimization in Transition Mines

Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li

Abstract:

The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.

Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule

Procedia PDF Downloads 158
5312 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 516
5311 Time-Frequency Modelling and Analysis of Faulty Rotor

Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen

Abstract:

In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.

Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub

Procedia PDF Downloads 339
5310 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulations

Keywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow

Procedia PDF Downloads 488
5309 Urban Neighborhood Center Location Evaluating Method Based On UNA the GIS Spatial Analysis Tools: Kerman's Neighborhood in Tehran Case

Authors: Sepideh Jabbari Behnam, Shadabeh Gashtasbi Iraei, Elnaz Mohsenin, MohammadAli Aghajani

Abstract:

Urban neighborhoods, as important urban forming cells, play a key role in creating urban texture and integrated form. Nowadays, most of neighborhood divisions are based on urban management systems but without considering social issues and the other aspects of urban life. This can cause problems such as providing inappropriate services for city dwellers, the loss of local identity and etc. In this regard for regenerating of such neighborhoods, it is essential to locate neighborhood centers with appropriate access and services for all residents. The main objective of this article is reaching to the location of neighborhood centers in a way that, most of issues relating to the physical features (such as the form of access network and texture permeability and etc.) and other qualities such as land uses, densities and social and economic features can be done simultaneously. This paper attempts to use methods of spatial analysis in order to surveying spatial structure and space syntax of urban textures and Urban Network Analysis Systems. This can be done by one of GIS toolbars which is named UNA (Urban Network Analysis) with the use of its five functions (include: Reach, Betweenness, Gravity, Closeness, Straightness).These functions were written according to space syntax theory and offer its relating output. This paper tries to locate and evaluate the optimal location of neighborhood centers in order to create local centers. This is done through weighing of each of these functions and taking into account of spatial features.

Keywords: evaluate optimal location, Local centers, location of neighborhood centers, Spatial analysis, Urban network

Procedia PDF Downloads 456
5308 Statistical Analysis to Compare between Smart City and Traditional Housing

Authors: Taha Anjamrooz, Sareh Rajabi, Ayman Alzaatreh

Abstract:

Smart cities are playing important roles in real life. Integration and automation between different features of modern cities and information technologies improve smart city efficiency, energy management, human and equipment resource management, life quality and better utilization of resources for the customers. One of difficulties in this path, is use, interface and link between software, hardware, and other IT technologies to develop and optimize processes in various business fields such as construction, supply chain management and transportation in parallel to cost-effective and resource reduction impacts. Also, Smart cities are certainly intended to demonstrate a vital role in offering a sustainable and efficient model for smart houses while mitigating environmental and ecological matters. Energy management is one of the most important matters within smart houses in the smart cities and communities, because of the sensitivity of energy systems, reduction in energy wastage and maximization in utilizing the required energy. Specially, the consumption of energy in the smart houses is important and considerable in the economic balance and energy management in smart city as it causes significant increment in energy-saving and energy-wastage reduction. This research paper develops features and concept of smart city in term of overall efficiency through various effective variables. The selected variables and observations are analyzed through data analysis processes to demonstrate the efficiency of smart city and compare the effectiveness of each variable. There are ten chosen variables in this study to improve overall efficiency of smart city through increasing effectiveness of smart houses using an automated solar photovoltaic system, RFID System, smart meter and other major elements by interfacing between software and hardware devices as well as IT technologies. Secondly to enhance aspect of energy management by energy-saving within smart house through efficient variables. The main objective of smart city and smart houses is to reproduce energy and increase its efficiency through selected variables with a comfortable and harmless atmosphere for the customers within a smart city in combination of control over the energy consumption in smart house using developed IT technologies. Initially the comparison between traditional housing and smart city samples is conducted to indicate more efficient system. Moreover, the main variables involved in measuring overall efficiency of system are analyzed through various processes to identify and prioritize the variables in accordance to their influence over the model. The result analysis of this model can be used as comparison and benchmarking with traditional life style to demonstrate the privileges of smart cities. Furthermore, due to expensive and expected shortage of natural resources in near future, insufficient and developed research study in the region, and available potential due to climate and governmental vision, the result and analysis of this study can be used as key indicator to select most effective variables or devices during construction phase and design

Keywords: smart city, traditional housing, RFID, photovoltaic system, energy efficiency, energy saving

Procedia PDF Downloads 104