Search results for: disaster relief networks
2833 ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks
Authors: Jamaludin Sallim, Rozlina Mohamed, Roslina Abdul Hamid
Abstract:
In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns.Keywords: ant colony optimization algorithm, searching algorithm, protein functional module, protein interaction network
Procedia PDF Downloads 6122832 Social Economical Aspect of the City of Kigali Road Network Functionality
Authors: David Nkurunziza, Rahman Tafahomi
Abstract:
The population growth rate of the city of Kigali is increasing annually. In 1960 the population was six thousand, in 1990 it became two hundred thousand and is supposed to be 4 to 5 million incoming twenty years. With the increase in the residents living in the city of Kigali, there is also a need for an increase in social and economic infrastructures connected by the road networks to serve the residents effectively. A road network is a route that connects people to their needs and has to facilitate people to reach the social and economic facilities easily. This research analyzed the social and economic aspects of three selected roads networks passing through all three districts of the city of Kigali, whose center is the city center roundabout, thorough evaluation of the proximity of the social and economic facilities to the road network. These road networks are the city center to nyabugogo to karuruma, city center to kanogo to Rwanda to kicukiro center to Nyanza taxi park, and city center to Yamaha to kinamba to gakinjiro to kagugu health center road network. This research used a methodology of identifying and quantifying the social and economic facilities within a limited distance of 300 meters along each side of the road networks. Social facilities evaluated are the health facilities, education facilities, institution facilities, and worship facilities, while the economic facilities accessed are the commercial zones, industries, banks, and hotels. These facilities were evaluated and graded based on their distance from the road and their value. The total scores of each road network per kilometer were calculated and finally, the road networks were ranked based on their percentage score per one kilometer—this research was based on field surveys and interviews to collect data with forms and questionnaires. The analysis of the data collected declared that the road network from the city center to Yamaha to kinamba to gakinjiro to the kagugu health center is the best performer, the second is the road network from the city center to nyabugogo to karuruma, while the third is the road network from the city center to kanogo to rwandex to kicukiro center to nyaza taxi park.Keywords: social economical aspect, road network functionality, urban road network, economic and social facilities
Procedia PDF Downloads 1602831 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks
Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit
Abstract:
Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN
Procedia PDF Downloads 5262830 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks
Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla
Abstract:
A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.Keywords: clustering coefficient, criminology, generalized, regular network d-dimensional
Procedia PDF Downloads 4112829 Awareness on Department of Education’s Disaster Risk Reduction Management Program at Oriental Mindoro National High School: Basis for Support School DRRM Program
Authors: Nimrod Bantigue
Abstract:
The Department of Education is continuously providing safe teaching-learning facilities and hazard-free environments to the learners. To achieve this goal, teachers’ awareness of DepEd’s DRRM programs and activities is extremely important; thus, this descriptive correlational quantitative study was conceptualized. This research answered four questions on the profile and level of awareness of the 153 teacher respondents of Oriental Mindoro National High School for the academic year 2018-2019. Stratified proportional sampling was employed, and both descriptive and inferential statistics were utilized to treat data. The findings revealed that the majority of the teachers at OMNHS are female and are in the age bracket of 20-40. Most are married and pursue graduate studies. They have moderate awareness of the Department of Education’s DRRM programs and activities in terms of assessment of risks activities, planning activities, implementation activities during disaster and evaluation and monitoring activities with 3.32, 3.12, 3.40 and 3.31 as computed means, respectively. Further, the result showed a significant relationship between the profile of the respondents such as age, civil status and educational attainment and the level of awareness. On the contrary, sex does not have a significant relationship with the level of awareness. The Support School DRRM program with Utilization Guide on School DRRM Manual was proposed to increase, improve and strengthen the weakest areas of awareness rated in each DRRM activity, such as assessment of risks, planning, and implementation during disasters and monitoring and evaluation.Keywords: awareness, management, monitoring, risk reduction
Procedia PDF Downloads 2192828 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks
Authors: Siddhartha Chauhan, Nitin Kumar Kotania
Abstract:
Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks
Procedia PDF Downloads 3912827 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 1342826 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant
Procedia PDF Downloads 3522825 Time Pressure and Its Effect at Tactical Level of Disaster Management
Authors: Agoston Restas
Abstract:
Introduction: In case of managing disasters decision makers can face many times such a special situation where any pre-sign of the drastically change is missing therefore the improvised decision making can be required. The complexity, ambiguity, uncertainty or the volatility of the situation can require many times the improvisation as decision making. It can be taken at any level of the management (strategic, operational and tactical) but at tactical level the main reason of the improvisation is surely time pressure. It is certainly the biggest problem during the management. Methods: The author used different tools and methods to achieve his goals; one of them was the study of the relevant literature, the other one was his own experience as a firefighting manager. Other results come from two surveys that are referred to; one of them was an essay analysis, the second one was a word association test, specially created for the research. Results and discussion: This article proves that, in certain situations, the multi-criteria, evaluating decision-making processes simply cannot be used or only in a limited manner. However, it can be seen that managers, directors or commanders are many times in situations that simply cannot be ignored when making decisions which should be made in a short time. The functional background of decisions made in a short time, their mechanism, which is different from the conventional, was studied lately and this special decision procedure was given the name recognition-primed decision. In the article, author illustrates the limits of the possibilities of analytical decision-making, presents the general operating mechanism of recognition-primed decision-making, elaborates on its special model relevant to managers at tactical level, as well as explore and systemize the factors that facilitate (catalyze) the processes with an example with fire managers.Keywords: decision making, disaster managers, recognition primed decision, model for making decisions in emergencies
Procedia PDF Downloads 2592824 The Effect of Technology and Artifical Intelligence on Legal Securities and Privacy Issues
Authors: Kerolis Samoul Zaghloul Noaman
Abstract:
area law is the brand new access in the basket of worldwide law in the latter half of the 20 th Century. inside the last hundred and fifty years, courts and pupils advanced a consensus that, the custom is an vital supply of global law. Article 38(1) (b) of the statute of the international court of Justice identified global custom as a supply of global law. country practices and usages have a more role to play in formulating commonplace international regulation. This paper examines those country practices which may be certified to emerge as global standard law. due to the fact that, 1979 (after Moon Treaty) no hard law had been developed within the vicinity of space exploration. It attempts to link among country practices and custom in area exploration and development of standard global regulation in area activities. The paper makes use of doctrinal approach of felony research for inspecting the current questions of worldwide regulation. The paper explores exceptional worldwide prison files which include general meeting Resolutions, Treaty standards, working papers of UN, cases relating to commonplace global law and writing of jurists regarding area law and standard international law. it's far argued that, ideas such as common background of mankind, non-navy region, sovereign equality, nuclear weapon unfastened area and protection of outer area environment, etc. evolved nation practices a number of the worldwide community which can be certified to turn out to be international customary regulation.Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures
Procedia PDF Downloads 202823 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe
Authors: Zeta Dooly, Aidan Duane
Abstract:
The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.Keywords: research networks, competency building, network theory, case study
Procedia PDF Downloads 1262822 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3452821 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage
Authors: P. Jayashree, S. Rajkumar
Abstract:
With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding
Procedia PDF Downloads 2942820 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks
Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi
Abstract:
Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks
Procedia PDF Downloads 5292819 Decision Support System for the Management and Maintenance of Sewer Networks
Authors: A. Bouamrane, M. T. Bouziane, K. Boutebba, Y. Djebbar
Abstract:
This paper aims to develop a decision support tool to provide solutions to the problems of sewer networks management/maintenance in order to assist the manager to sort sections upon priority of intervention by taking account of the technical, economic, social and environmental standards as well as the managers’ strategy. This solution uses the Analytic Network Process (ANP) developed by Thomas Saaty, coupled with a set of tools for modelling and collecting integrated data from a geographic information system (GIS). It provides to the decision maker a tool adapted to the reality on the ground and effective in usage compared to the means and objectives of the manager.Keywords: multi-criteria decision support, maintenance, Geographic Information System, modelling
Procedia PDF Downloads 6372818 Factorial Design Analysis for Quality of Video on MANET
Authors: Hyoup-Sang Yoon
Abstract:
The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2
Procedia PDF Downloads 4132817 Artificial Neurons Based on Memristors for Spiking Neural Networks
Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi
Abstract:
Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity
Procedia PDF Downloads 1342816 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid
Procedia PDF Downloads 4452815 Tracheal Stenting to Relieve Respiratory Distress in Patient with Advanced Esophageal Malignancy and Its Anaesthetic Management
Authors: Aarti Agarwal, Ajmal Khan
Abstract:
Background and Objective: Breathing difficulty is most distressing symptom for the patient and their caregivers providing palliative care to individuals with advanced malignancy. It needs to be tackled effectively and sometimes preemptively to provide relief from respiratory obstruction. Interventional procedures like tracheal stenting are becoming increasingly popular as a part of palliation for respiratory symptoms. We present a case of esophageal tumor earlier stented by Gastroenterologist to maintain esophageal patency, but the tumor outgrew to produce tracheal infiltration and thereby causing airway obstruction. Method and Result: 62-year-old man presented with unresectable Carcinoma oesophagus with inability to swallow. A metallic stent was placed by the gastroenterologist, to maintain esophageal patency and enable patient to swallow. Two months later, the patient returned to hospital in emergency with respiratory distress. CT neck and thorax revealed tumor infiltration through posterior tracheal wall. Lower extent of the tumor was till 1 cm above the carina. Airway stenting with Tracheo bronchial stent with Y configuration was planned under general anaesthesia with airway blocks. Superior Laryngeal Nerve Block, Glossopharyngeal block and Trans tracheal infiltration of local anaesthetics were performed. The patient was sedated with Fentanyl, Midazolam and propofol infusion but was breathing spontaneously. Once the rigid bronchoscope was placed inside trachea, breathing was supported with oxygen and sevoflurane. Initially, the trachea was cleared of tumor by coring. After creating space, tracheal stent was positioned and deployed. After stent placement patient was awakened, suctioned and nebulized. His respiratory stridor relieved instantaneously and was shifted to recovery. Conclusion: Airway blocks help in decreasing the incidence and severity of coughing during airway instrumentation thereby help in proper stent placement. They also reduce the requirement of general anaesthetics and hasten the post stenting recovery. Airway stent provided immediate relief to patient from symptoms of respiratory difficulty. Decision for early tracheal stenting may be taken for a select group of patients with high propensity for local spread, thereby avoiding respiratory complications and providing better quality of life in patients with inoperable malignancy.Keywords: tracheal stent, respiratory difficulty, esophageal tumor, anaesthetic management
Procedia PDF Downloads 2272814 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription
Authors: Michael Fundator
Abstract:
Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription
Procedia PDF Downloads 4062813 Experimental Evaluation of UDP in Wireless LAN
Authors: Omar Imhemed Alramli
Abstract:
As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.Keywords: TCP, UDP, IPERF, wireless LAN
Procedia PDF Downloads 3542812 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 672811 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 1112810 Evaluating Climate Risks to Enhance Resilience in Durban, South Africa
Authors: Cabangile Ncengeni Ngwane, Gerald Mills
Abstract:
Anthropogenic climate change is exacerbating natural hazards such as droughts, heat waves and sea-level rise. The associated risks are the greatest in places where socio-ecological systems are exposed to these changes and the populations and infrastructure are vulnerable. Identifying the communities at risk and enhancing local resilience are key issues in responding to the current and project climate changes. This paper explores the types of risks associated with multiple overlapping hazards in Durban, South Africa where the social, cultural and economic dimensions that contribute to exposure and vulnerability are compounded by its history of apartheid. As a result, climate change risks are highly concentrated in marginalized communities that have the least adaptive capacity. In this research, a Geographic Information System is to explore the spatial correspondence among geographic layers representing hazards, exposure and vulnerability across Durban. This quantitative analysis will allow authors to identify communities at high risk and focus our study on the nature of the current human-environment relationships that result in risk inequalities. This work will employ qualitative methods to critically examine policies (including educational practices and financial support systems) and on-the-ground actions that are designed to improve the adaptive capacity of these communities and meet UN Sustainable Development Goals. This work will contribute to a growing body of literature on disaster risk management, especially as it relates to developing economies where socio-economic inequalities are correlated with ethnicity and race.Keywords: adaptive capacity, disaster risk reduction, exposure, resilience, South Africa
Procedia PDF Downloads 1502809 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 1282808 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1502807 Cyber-Social Networks in Preventing Terrorism: Topological Scope
Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito
Abstract:
It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.Keywords: complex network platform, counterterrorism, information sharing topology, social bots
Procedia PDF Downloads 1642806 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression
Authors: J. S. Saini, P. P. K. Sandhu
Abstract:
The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control
Procedia PDF Downloads 3382805 Chairussyuhur Arman, Totti Tjiptosumirat, Muhammad Gunawan, Mastur, Joko Priyono, Baiq Tri Ratna Erawati
Authors: Maria M. Giannakou, Athanasios K. Ziliaskopoulos
Abstract:
Transmission pipelines carrying natural gas are often routed through populated cities, industrial and environmentally sensitive areas. While the need for these networks is unquestionable, there are serious concerns about the risk these lifeline networks pose to the people, to their habitat and to the critical infrastructures, especially in view of natural disasters such as earthquakes. This work presents an Integrated Pipeline Risk Management methodology (IPRM) for assessing the hazard associated with a natural gas pipeline failure due to natural or manmade disasters. IPRM aims to optimize the allocation of the available resources to countermeasures in order to minimize the impacts of pipeline failure to humans, the environment, the infrastructure and the economic activity. A proposed knapsack mathematical programming formulation is introduced that optimally selects the proper mitigation policies based on the estimated cost – benefit ratios. The proposed model is demonstrated with a small numerical example. The vulnerability analysis of these pipelines and the quantification of consequences from such failures can be useful for natural gas industries on deciding which mitigation measures to implement on the existing pipeline networks with the minimum cost in an acceptable level of hazard.Keywords: cost benefit analysis, knapsack problem, natural gas distribution network, risk management, risk mitigation
Procedia PDF Downloads 2952804 A Linearly Scalable Family of Swapped Networks
Authors: Richard Draper
Abstract:
A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology
Procedia PDF Downloads 121