Search results for: cold bituminous emulsion mixtures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1590

Search results for: cold bituminous emulsion mixtures

780 Simulation Study of the Microwave Heating of the Hematite and Coal Mixture

Authors: Prasenjit Singha, Sunil Yadav, Soumya Ranjan Mohantry, Ajay Kumar Shukla

Abstract:

Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results.

Keywords: hematite ore, coal, microwave processing, heat transfer, implicit method, temperature distribution

Procedia PDF Downloads 145
779 Theoretical Analysis of Performance Parameters of a Microchannel Heat Exchanger

Authors: Shreyas Kotian, Nishant Jainm, Nachiket Methekar

Abstract:

The increase in energy demands in various industrial sectors has called for devices small in size with high heat transfer rates. Microchannel heat exchangers (MCHX) have thus been studied and applied in various fields such as thermal engineering, aerospace engineering and nanoscale heat transfer. They have been a case of investigation due to their augmented thermal characteristics and low-pressure drop. The goal of the current investigation is to analyze the thermohydraulic performance of the heat exchanger analytically. Studies are done for various inlet conditions and flow conditions. At Thi of 90°C, the effectiveness increased by about 22% for an increase in Re from 1000 to 5000 of the cold fluid. It was also observed that at Re = 5000 for the hot fluid, the heat recovered by the hot fluid increases by about 69% for an increase in inlet temperature of the hot fluid from 50°C to 70°C.

Keywords: theoretical analysis, performance parameters, microchannel heat exchanger, Reynolds number

Procedia PDF Downloads 137
778 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 58
777 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint

Authors: Richard Colwell, Thomas Englert

Abstract:

In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.

Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface

Procedia PDF Downloads 197
776 Sumac Sprouts: From in Vitro Seed Germination to Chemical Characterization

Authors: Leto Leandra, Guaitini Caterina, Agosti Anna, Del Vecchio Lorenzo, Guarrasi Valeria, Cirlini Martina, Chiancone Benedetta

Abstract:

To the best of our knowledge, this study represents the first attempt to investigate the in vitro germination response of Rhus coriaria L., and its sprout chemical characterization. Rhus coriaria L., a species belonging to the Anacardiaceae family, is commonly called "sumac" and is cultivated, in different countries of the Mediterranean and the Middle East regions, to produce a spice with a sour taste, obtained from its dried and ground fruits. Moreover, since ancient times, many beneficial properties have been attributed to this plant that has been used, in the traditional medicine of several Asian countries, against various diseases, including liver and intestinal pathologies, ulcers and various inflammatory states. In the recent past, sumac was cultivated in the Southern regions of Italy to treat leather, but its cultivation was abandoned, and currently, sumac plants grow spontaneously in marginal areas. Recently, in Italy, the interest in this species has been growing again, thanks to its numerous properties; thus, it becomes imperative to deepen the knowledge of this plant. In this study, in order to set up an efficient in vitro seed germination protocol, sumac seeds collected from spontaneous plants grown in Sicily, an island in the South of Italy, were, firstly, subjected to different treatments, scarification (mechanical, physical and chemical), cold stratification and imbibition, to break their physical and physiological dormancy, then, treated seeds were in vitro cultured on media with different gibberellic acid (GA3) concentrations. Results showed that, without any treatment, only 5% of in vitro sown seeds germinated, while the germination percentage increased up to 19% after the mechanical scarification. A further significative improvement of germination percentages was recorded after the physical scarification, with (40.5%) or without (36.5%) 8 weeks of cold stratification, especially when seeds were sown on gibberellin enriched cultured media. Vitro-derived sumac sprouts, at different developmental stages, were chemically characterized, in terms of polyphenol and tannin content, as well as for their antioxidant activity, to evaluate this matrix as a potential novel food or as a source of bioactive compounds. Results evidenced how more developed sumac sprouts and, above all, their leaves are a wealthy source of polyphenols (78.4 GAE/g SS) and tannins (21.9 mg GAE/g SS), with marked antioxidant activity. The outcomes of this study will be of support the nursery sector and sumac growers in obtaining a higher number of plants in a shorter time; moreover, the sprout chemical characterization will contribute to the process of considering this matrix as a new source of bioactive compounds and tannins to be used in food and non-food sectors.

Keywords: bioactive compounds, germination pre-treatments, rhus coriaria l., tissue culture

Procedia PDF Downloads 76
775 Sumac Sprouts: From in Vitro Seed Germination to Chemical Characterization

Authors: Leto Leandra, Guaitini Caterina, Agosti Anna, Del Vecchio Lorenzo, Guarrasi Valeria, Cirlini Martina, Chiancone Benedetta

Abstract:

To the best of our knowledge, this study represents the first attempt to investigate the in vitro germination response of Rhus coriaria L. and its sprout chemical characterization. Rhus coriaria L., a species belonging to the Anacardiaceae family, is commonly called "sumac” and is cultivated, in different countries of the Mediterranean and the Middle East regions, to produce a spice with a sour taste, obtained from its dried and ground fruits. Moreover, since ancient times, many beneficial properties have been attributed to this plant that has been used, in the traditional medicine of several Asian countries, against various diseases, including liver and intestinal pathologies, ulcers, and various inflammatory states. In the recent past, sumac was cultivated in the Southern regions of Italy to treat leather, but its cultivation was abandoned, and currently, sumac plants grow spontaneously in marginal areas. Recently, in Italy, the interest in this species has been growing again, thanks to its numerous properties; thus, it becomes imperative to deepen the knowledge of this plant. In this study, in order to set up an efficient in vitro seed germination protocol, sumac seeds collected from spontaneous plants grown in Sicily, an island in the South of Italy, were, firstly, subjected to different treatments, scarification (mechanical, physical and chemical), cold stratification and imbibition, to break their physical and physiological dormancy, then, treated seeds were in vitro cultured on media with different gibberellic acid (GA3) concentrations. Results showed that, without any treatment, only 5% of in vitro sown seeds germinated, while the germination percentage increased up to 19% after the mechanical scarification. A further significative improvement of germination percentages was recorded after the physical scarification, with (40.5%) or without (36.5%) 8 weeks of cold stratification, especially when seeds were sown on gibberellin enriched cultured media. Vitro-derived sumac sprouts, at different developmental stages, were chemically characterized, in terms of polyphenol and tannin content, as well as for their antioxidant activity, to evaluate this matrix as a potential novel food or as a source of bioactive compounds. Results evidenced how more developed sumac sprouts and, above all, their leaves are a wealthy source of polyphenols (78.4 GAE/g SS) and tannins (21.9 mg GAE/g SS), with marked antioxidant activity. The outcomes of this study will be of support the nursery sector and sumac growers in obtaining a higher number of plants in a shorter time; moreover, the sprout chemical characterization will contribute to the process of considering this matrix as a new source of bioactive compounds and tannins to be used in food and non-food sectors.

Keywords: bioactive compounds, germination pre-treatments, rhus coriaria l., tissue culture

Procedia PDF Downloads 79
774 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol

Abstract:

In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.

Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.

Procedia PDF Downloads 159
773 From Problem Space to Executional Architecture: The Development of a Simulator to Examine the Effect of Autonomy on Mainline Rail Capacity

Authors: Emily J. Morey, Kevin Galvin, Thomas Riley, R. Eddie Wilson

Abstract:

The key challenges faced by integrating autonomous rail operations into the existing mainline railway environment have been identified through the understanding and framing of the problem space and stakeholder analysis. This was achieved through the completion of the first four steps of Soft Systems Methodology, where the problem space has been expressed via conceptual models. Having identified these challenges, we investigated one of them, namely capacity, via the use of models and simulation. This paper examines the approach used to move from the conceptual models to a simulation which can determine whether the integration of autonomous trains can plausibly increase capacity. Within this approach, we developed an architecture and converted logical models into physical resource models and associated design features which were used to build a simulator. From this simulator, we are able to analyse mixtures of legacy-autonomous operations and produce fundamental diagrams and trajectory plots to describe the dynamic behaviour of mixed mainline railway operations.

Keywords: autonomy, executable architecture, modelling and simulation, railway capacity

Procedia PDF Downloads 62
772 Cold Metal Transfer Welding of Dissimilar Thickness 6061-T6 to 5182-O Aluminum Alloys

Authors: A. Elrefaei

Abstract:

The possibility of having sheets with different thicknesses and materials in one assembly facilitates the optimal material distribution within the final product and reduces the weight of the structure. Ability of joining process to assembly these different material combinations is always a challenge to the designer. In this study, 0.6 mm thick 6061-T6 and 2 mm thick 5182-O were robot CMT welded using ER5356 and ER4043 filler metals. The thermal effect of welding resulted in a loss of hardness in the 6061 HAZ. Joints welded by ER5356 filler metal were much higher in fracture load than joints welded by ER4043 and the elongation of joints welded by ER5356 was almost double its corresponding joints welded by ER4043 filler. Owing to the big difference in formability and thickness of base metals, the fracture in forming test occurred in the softened 6061 HAZ out from the weld centerline.

Keywords: aluminum, CMT, mechanical, welding

Procedia PDF Downloads 215
771 Preliminary Studies on the Potentials of Bambara nut (Voandzeia substerranea) and Pigeon pea (Cajanus cajan) as Imitation Milk

Authors: Onuoha Gideon

Abstract:

The preliminary studies on the potentials of Bambara nut and pigeon pea as imitation milk were investigated. Bambara nut and Pigeon pea milk were produced from two separate unit operations; Bambara nut seed was cooked, dehulled, milled and strained to milk (BCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (BTM). Pigeon pea seed was cooked, dehulled, milled and strained to milk (PCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (PTM). The result of the proximate analysis on the milk samples on wet basis showed that the protein content ranged from 28.56 – 26.77, the crude fibre ranged from 6.28 – 1.85, the ash content ranged from 5.22 – 1.17, the fat content ranged from 2.71 – 1.12, the moisture content ranged from 95.93 – 93.83, the carbohydrate content ranged from 67.62 – 58.83. The functional analysis on the milk samples showed that emulsification capacity ranged from 43.21 – 38.66, emulsion stability ranged from 34.10 – 25.00, the specific gravity ranged from 997.50 – 945.00, the foaming capacity ranged from 3,500 to 2,250, the measurement of viscosity ranged from 0.017 – 0.007, the pH range from 5.55 – 5.25, the measurement of dispersibility range from 11.00 – 7.00, the total soluble solid ranged from 4.00 to 1.75, the total titratable acidity ranged from 0.314 – 0.328. The sensory evaluation report showed that in terms of flavor, sample BCM and PCM value were significantly different from sample BTM and PTM. In terms of colour, sample BCM showed a significant difference from samples BTM, PCM and PTM. In term of texture, sample BCM was significantly different from samples BTM, PCM and PTM. The general acceptability shows that sample BCM was significantly different from other the samples and was the most accepted. The microbial analysis indicated that the microbial load increases with time. Bacterial count ranged from 1.3 x 105 – 1.20 x 106 to 1.6 x 105 – 1.06 x 106, fungal count ranged from 4.0 x 105 – 8.0 x 105 to 4.0 x 105 – 7.0 x 105. The studies showed that BCM was the most preferred.

Keywords: imitation milk, Bambara nut, Pigeon pea, proximate composition

Procedia PDF Downloads 331
770 Polymeric Microspheres for Bone Tissue Engineering

Authors: Yamina Boukari, Nashiru Billa, Andrew Morris, Stephen Doughty, Kevin Shakesheff

Abstract:

Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds.

Keywords: bone, microspheres, PLGA, tissue engineering

Procedia PDF Downloads 417
769 Topological Analysis of Hydrogen Bonds in Pyruvic Acid-Water Mixtures

Authors: Ferid Hammami

Abstract:

The molecular geometries of the possible conformations of pyruvic acid-water complexes (PA-(H₂O)ₙ = 1- 4) have been fully optimized at DFT/B3LYP/6-311G ++ (d, p) levels of calculation. Among several optimized molecular clusters, the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule are presented in this paper. Apposite topological and geometrical parameters are considered as primary indicators of H-bond strength. Atoms in molecules (AIM) analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O-H...O and C-H...O hydrogen bonds. In large clusters, classical O-H...O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid. The electrostatic potential energy map (MEP) and the HOMO-LUMO molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital) analysis has been performed for all considered complexes.

Keywords: pyruvic acid, PA-water complex, hydrogen bonding, DFT, AIM, MEP, HOMO-LUMO

Procedia PDF Downloads 196
768 Mixed Natural Adsorbents and Oxides for Oil Remediation

Authors: Cesar Maximo Oliva González, Javier Acevedo Cortez, Boris Kharisov, Thelma Serrano Quezada

Abstract:

The importance of the crude oil refining process is due to the demand for petroleum products such as gasoline, kerosene, asphalt, etc., which are used in daily activities and have a high impact on the global economy. In the processes of oil obtaining and refining, it is common to find problems such as spills on seabed and high energy consumption in processing. In order to quickly and efficiently attack these problems, the use of adsorbents has taken on great importance due to its ease of implementation, as well as the possibility of their regeneration to be reused. In this work, the use of two types of adsorbents is proposed: the first is a natural adsorbent such as aloe vera or nopal, which were lyophilized and hydrophobized to achieve a selectivity in oil adsorption in oil / water mixtures. The second is a mixed iron/nickel oxide, which is specially designed to adsorb the asphaltenes in the heavy fractions of the oil; in addition, this type of adsorbents presents catalytic properties that manage to decompose the heavier fractions of the petroleum in light hydrocarbons, descending thus the energy required for the oil refining process.

Keywords: nanomaterials, oil spills, remediation, natural adsorbents, mixed oxides

Procedia PDF Downloads 220
767 Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing

Authors: Rajni Kant Panik

Abstract:

The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound.

Keywords: hydrogel, nanoparticle, PLGA, wound healing

Procedia PDF Downloads 297
766 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine

Procedia PDF Downloads 230
765 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature

Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah

Abstract:

The continuous increase in vehicle uptake escalates the number of rubber tyre waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of rubber crumbs in clay roof tiles. The properties of roof tiles composed of clay, rubber crumbs, NaOH, and Na₂SiO₃ with a 10% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50°C for 72 hours, followed by a higher heating temperature of 200°C for 24 hours. The effect of rubber crumbs aggregates as a substitution for the raw clay materials was investigated by varying their concentration from 0% to 2.5%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5% and 1%, while cracks and larger porosity were found at higher crumbs concentrations. Water absorption and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.

Keywords: rubber crumbs, clay, roof tiles, alkaline activators

Procedia PDF Downloads 88
764 Influence of the Mixer on the Rheological Properties of the Fresh Concrete

Authors: Alexander Nitsche, Piotr-Robert Lazik, Harald Garrecht

Abstract:

The viscosity of the concrete has a great influence on the properties of the fresh concrete. Fresh concretes with low viscosity have a good flowability, whereas high viscosity has a lower flowability. Clearly, viscosity is directly linked to other parameters such as consistency, compaction, and workability of the concrete. The above parameters also depend very much on the energy induced during the mixing process and, of course, on the installation of the mixer itself. The University of Stuttgart has decided to investigate the influence of different mixing systems on the viscosity of various types of concrete, such as road concrete, self-compacting concrete, and lightweight concrete, using a rheometer and other testing methods. Each type is tested with three different mixers, and the rheological properties, namely consistency, and viscosity are determined. The aim of the study is to show that different types of concrete mixed with different types of mixers reach completely different yield points. Therefore, a 3 step procedure will be introduced. At first, various types of concrete mixtures and their differences are introduced. Then, the chosen suspension mixer and conventional mixers, which are going to be used in this paper, will be discussed. Lastly, the influence of the mixing system on the rheological properties of each of the select mix designs, as well as on fresh concrete, in general, will be presented.

Keywords: rheological properties, flowability, suspension mixer, viscosity

Procedia PDF Downloads 130
763 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW

Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha

Abstract:

L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.

Keywords: L multifidi, phenolic content, optimization, time, temperature

Procedia PDF Downloads 402
762 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 335
761 Fundamentals of Theorizing Power in International Relations

Authors: Djehich Mohamed Yousri

Abstract:

The field of political science is one of the sciences in which there is much controversy, in terms of the multiplicity of schools, trends, and goals. This overlap and complexity in the interpretation of the political phenomenon in political science has been linked to other disciplines associated with it, and the science of international relations and the huge amount of theories that have found a wide range and a decisive position after the national tide in the history of Western political thought, especially after the Westphalia Conference 1648, and as a result was approved The new foundations of international politics, the most important of which is respect for state sovereignty. Historical events continued and coincided with scientific, intellectual, and economic developments following the emergence of the industrial revolution, followed by the technological revolutions in all their contents, which led to the rooting and establishment of a comprehensive political system that is more complex and overlapping than it was in the past during the First and Second World Wars. The international situation has become dependent on the digital revolution and its aspirations in The comprehensive transformation witnessed by international political relations after the Cold War.

Keywords: theorizing, international relations, approaches to international relations, political science, the political system

Procedia PDF Downloads 87
760 Spontaneous Generation of Wrinkled Patterns on pH-Sensitive Smart-Hydrogel Films

Authors: Carmen M. Gonzalez-Henriquez, Mauricio A. Sarabia-Vallejos, Juan Rodriguez-Hernandez

Abstract:

DMAEMA, as a monomer, has been widely studied and used in several application fields due to their pH-sensitive capacity (tertiary amine protonation), being relevant in the biomedical area as a potential carrier for drugs focused on the treatment of genetic or acquired diseases (efficient gene transfection), among others. Additionally, the inhibition of bacterial growth and, therefore, their antimicrobial activity, can be used as dual-functional antifogging/antimicrobial polymer coatings. According to their interesting physicochemical characteristics and biocompatible properties, DMAEMA was used as a monomer to synthesize a smart pH-sensitive hydrogel, namely poly(HEMA-co-PEGDA575-co-DMAEMA). Thus, different mole ratios (ranging from 5:1:0 to 0:1:5, according to the mole ratio between HEMA, PEGDA, and DEAEMA, respectively) were used in this research. The surface patterns formed via a two-step polymerization (redox- and photo-polymerization) were first chemically studied via 1H-NMR and elemental analysis. Secondly, the samples were morphologically analyzed by using Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Then, a particular relation between HEMA, PEGDA, and DEAEMA (0:1:5) was also characterized at three different pH (5.4, 7.4 and 8.3). The hydrodynamic radius and zeta potential of the micro-hydrogel particles (emulsion) were carried out as a possible control for morphology, exploring the effect that produces hydrogel micelle dimensions in the wavelength, height, and roughness of the wrinkled patterns. Finally, contact angle and cross-hatch adhesion test was carried out for the hydrogels supported on glass using TSM-silanized surfaces in order to measure their mechanical properties.

Keywords: wrinkled patterns, smart pH-sensitive hydrogels, hydrogel micelle diameter, adhesion tests

Procedia PDF Downloads 191
759 Trends in Use of Millings in Pavement Maintenance

Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain

Abstract:

While milling materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8" to 1" and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.

Keywords: chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings

Procedia PDF Downloads 327
758 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Hesham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: durability, glass waste, freeze-thaw cycles, non-destructive test

Procedia PDF Downloads 359
757 Study of the Antimicrobial Potential Of a Rich Polyphenolic Extract Obtained from Cytisus scoparius

Authors: Lorena G. Calvo, Marta Lores, Trinidad de Miguel

Abstract:

Natural extracts containing high polyphenolic concentration possess antibacterial and antifungal activity. The present research characterizes a hydro-organic extract with a high polyphenolic content as an antimicrobial candidate. As a result of this composition, the extract showed pronounced bioactivities with potential uses in agricultural, veterinary, pharmaceutical, and cosmetic industries. Polyphenol compounds were extracted by using hydro-organic solvent mixtures from the shrub Cytisus scoparius. The in vitro antimicrobial activity of this extract was evaluated on Gram-positive and Gram-negative bacteria and the fungus Candida albicans. Microbial species investigated, Bacillus cereus, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, are causing agents of several human and animal diseases. The extract showed activity against all tested species. So, it could be used for the development of biocides to control a wide range of pathogenic agents and contribute to the creation of economic and eco-friendly alternatives to antibiotics.

Keywords: antimicrobial properties, antioxidant properties, Cytisus scoparius, polyphenolic extract

Procedia PDF Downloads 129
756 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method

Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu

Abstract:

In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.

Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization

Procedia PDF Downloads 174
755 The Professionalisation of British Intelligence Analysts

Authors: Michael S. Goodman

Abstract:

The Joint Intelligence Committee (JIC) has been the senior most analytical body in the UK since its creation in 1936. At various points in its history, most notably and recently in 2004, in the wake of the Iraq war, questions have been asked about its analytical process. In 1968 the British intelligence community saw one of its biggest transformations: the creation of an independent, central cadre of analysts. The ‘Assessments Staff’ was a novel attempt to improve the quality of analysis by fostering independence from departmental biases that had long plagued British intelligence. Seconded into the Cabinet Office, staff were allocated a ‘desk,’ and their role was to produce high level assessments for the most senior readers in the land. At the same time, efforts were made to ‘professionalise’ the analysts. This paper is based on a detailed archival examination of the JIC’s documentary files. It will recount the reasons behind this organisational reform, what the changes entailed, and whether they were a success. The changes were immediately brought to bear with the intelligence assessments prior to the Soviet invasion of Czechoslovakia, something that the JIC failed to appreciate.

Keywords: intelligence, cold war history, analysis, united kingdom

Procedia PDF Downloads 63
754 Effects of Smoking on the Indoor Air Quality and COVID-19

Authors: Sonam Sandal, Susan Verghese P.

Abstract:

The phrase "environmental tobacco smoke" (ETS) refers to exposure to tobacco smoke that isn't from your own smoking but instead is caused by being in close proximity to someone else's cigar, cigarette, or pipe smoke. Environmental cigarette smoke is one of the main contributors to indoor air pollution (IAP), which is exceedingly harmful to human health and results in millions of deaths each year, according to the World Health Organization. Sidestream smoke (SS), which is discharged from a cigarette's burning end in between puffs, is the primary cause of ETS. The bulk of the ETS residue is composed of gases that are produced while smoking through the cigarette paper, mainstream smoke (MS) ingested, and side stream smoke emitted while inhaling a puff from the burning end. Each of these mixtures—SS, ETS, and MS—is an aerosol composed of an IAP-causing vapor phase and a particle phase. Therefore, indoor air-cleaning equipment designed to remove particles will not significantly alter nicotine exposure but will alter the concentrations of other dangerous substances, including particulate matter (PM), PM 2.5, and PM 10. In conclusion, indoor airborne contaminants pose serious risks to human health. ETS degrades the air quality, and when someone breathes this bad air, it weakens their lungs and makes them more susceptible to COVID-19.

Keywords: pm 10, covid-19, indoor air pollution, cigarette smoke., pm 2.5

Procedia PDF Downloads 54
753 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports

Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi

Abstract:

Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.

Keywords: power, aerobic, absolute power, normalized power

Procedia PDF Downloads 343
752 Magnetic (Ethylene-Octene) Polymer Composites Reinforced With Carbon Black

Authors: Marcin Maslowski, Marian Zaborski

Abstract:

The aim of the study was to receive magnetorheological elastomer composites (MRE) with the best mechanical characteristics. MRE based on different magnetoactive fillers in ethylene-octene rubber are reported and studied. To improve mechanical properties of polymer mixtures, also carbon black (N550) was added during the composites preparation process. Micro and nan-sized magnetites (Fe3O4), as well as gamma iron oxide (gamma-Fe2O3) and carbonyl iron powder (CIP) are added together with carbon black (N550) were found to be an active fillers systems improving both static and dynamic mechanical properties of elastomers. They also changed magnetic properties of composites. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Reinforcing character of applied different fillers systems results in an increased stress at 100% elongation, tensile strength and cross-linking density of the vulcanizates. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.

Keywords: carbon black, mechanical properties, magnetorheological composites, magnetic fillers

Procedia PDF Downloads 328
751 Advantages of Matrix Solid Phase Dispersive (MSPD) Extraction Associated to MIPS versus MAE Liquid Extraction for the Simultaneous Analysis of PAHs, PCBs and Some Hydroxylated PAHs in Sediments

Authors: F. Portet-Koltalo, Y. Tian, I. Berger, C. Boulanger-Lecomte, A. Benamar, N. Machour

Abstract:

Sediments are complex environments which can accumulate a great variety of persistent toxic contaminants such as polychlorobiphenyles (PCBs), polycyclic aromatic hydrocarbons (PAHs) and some of their more toxic degradation metabolites such as hydroxylated PAHs (OH-PAHs). Owing to their composition, fine clayey sediments can be more difficult to extract than soils using conventional solvent extraction processes. So this study aimed to compare the potential of MSPD (matrix solid phase dispersive extraction) to extract PCBs, PAHs and OH-PAHs, in comparison with microwave assisted extraction (MAE). Methodologies: MAE extraction with various solvent mixtures was used to extract PCBs, PAHs and OH-PAHs from sediments in two runs, followed by two GC-MS analyses. MSPD consisted in crushing the dried sediment with dispersive agents, introducing the mixture in cartridges and eluting the target compounds with an appropriate volume of selected solvents. So MSPD combined with cartridges containing MIPs (molecularly imprinted polymers) designed for OH-PAHs was used to extract the three families of target compounds in only one run, followed by parallel analyses in GC-MS for PAHs/PCBs and HPLC-FLD for OH-PAHs. Results: MAE extraction was optimized to extract from clayey sediments, in two runs, PAHs/PCBs in one hand and OH-PAHs in the other hand. Indeed, the best conditions of extractions (mixtures of extracting solvents, temperature) were different if we consider the polarity and the thermodegradability of the different families of target contaminants: PAHs/PCBs were better extracted using an acetone/toluene 50/50 mixture at 130°C whereas OH-PAHs were better extracted using an acetonitrile/toluene 90/10 mixture at 100°C. Moreover, the two consecutive GC-MS analyses contributed to double the total analysis time. A matrix solid phase dispersive (MSPD) extraction procedure was also optimized, with the first objective of increasing the extraction recovery yields of PAHs and PCBs from fine-grained sediment. The crushing time (2-10 min), the nature of the dispersing agents added for purifying and increasing the extraction yields (Florisil, octadecylsilane, 3-chloropropyle, 4-benzylchloride), the nature and the volume of eluting solvents (methylene chloride, hexane, hexane/acetone…) were studied. It appeared that in the best conditions, MSPD was a better extraction method than MAE for PAHs and PCBs, with respectively, mean increases of 8.2% and 71%. This method was also faster, easier and less expensive. But the other advantage of MSPD was that it allowed to introduce easily, just after the first elution process of PAHs/PCBs, a step permitting the selective recovery of OH-PAHs. A cartridge containing MIPs designed for phenols was coupled to the cartridge containing the dispersed sediment, and various eluting solvents, different from those used for PAHs and PCBs, were tested to selectively concentrate and extract OH-PAHs. Thereafter OH-PAHs could be analyzed at the same time than PAHs and PCBs: the OH-PAH extract could be analyzed with HPLC-FLD, whereas the PAHs/PCBs extract was analyzed with GC-MS, adding only few minutes more to the total duration of the analytical process. Conclusion: MSPD associated to MIPs appeared to be an easy, fast and low expensive method, able to extract in one run a complex mixture of toxic apolar and more polar contaminants present in clayey fine-grained sediments, an environmental matrix which is generally difficult to analyze.

Keywords: contaminated fine-grained sediments, matrix solid phase dispersive extraction, microwave assisted extraction, molecularly imprinted polymers, multi-pollutant analysis

Procedia PDF Downloads 334