Search results for: aerial imaging and detection
4091 Molluscicidal Activity of Some Aqueous and Organic Extract from Some Asteraceae
Authors: Lineda Rouissat-Dahane, Abdelkrim Cheriti, Abbderazak Marouf, Reddy Kandappa H., Govender Patrick
Abstract:
Natural phytochemicals extracted from folk herbal have drawn much attention in complementary and alternative medicine, and the plant kingdom is considered for developing new molluscicide. The aqueous and acetone extract of the aerial parts of some Asteraceae (Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis and Warionia saharae) were investigated for its molluscicidal activity against Lymnaea acuminata showed significant molluscicidal activity with a median lethal concentration (LC50) of aqueous extract (8,178mg/ml) and organic extract 0.002μg/mL, which was indicated higher potency than the positive control, (LC50=100mg /mL for aqueous extract ; LC50=11.6 μg/mL for organic extract). Among the extract and their fractions, those of aerial parts of Launaea nudicaulis and Warionia saharae were found to exhibit significant molluscicidal activities. Among different solvent fractions of the acetone extract of Warionia saharae, the dichloromethane (DCM) soluble fraction showed the most potent molluscicidal activity against Lymnaea acuminata. Plants in species Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis, and Warionia saharae produce a great variety of Flavonoids, Glucoside flavonoids, and Saponins that confer natural resistance against several pests. Most extracts were found to exhibit significant molluscicidal activity.Keywords: acetone extract, aqueous extract, Asteraceae, molluscicidal activity, Lymnaea acuminata
Procedia PDF Downloads 1284090 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 1494089 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 934088 Detection of Autism Spectrum Disorders in Children Aged 4-6 Years by Municipal Maternal and Child Health Physicians: An Educational Intervention Study
Authors: M. Van 'T Hof, R. V. Pasma, J. T. Bailly, H. W. Hoek, W. A. Ester
Abstract:
Background: The transition into primary school can be challenging for children with an autism spectrum disorder (ASD). Due to the new demands that are made to children in this period, their limitations in social functioning and school achievements may manifest and appear faster. Detection of possible ASD signals mainly takes place by parents, teachers and during obligatory municipal maternal and child health centre visits. Physicians of municipal maternal and child health centres have limited education and instruments to detect ASD. Further education on detecting ASD is needed to optimally equip these doctors for this task. Most research aims to increase the early detection of ASD in children aged 0-3 years and shows positive results. However, there is a lack of research on educational interventions to detect ASD in children aged 4-6 years by municipal maternal and child health physicians. Aim: The aim of this study is to explore the effect of the online educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health physicians. This educational intervention is developed within The Reach-Aut Academic Centre for Autism; Transitions in education, and will be available throughout The Netherlands. Methods: Ninety-two participants will follow the educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health centre physicians. The educational intervention consists of three, one and a half hour sessions, which are offered through an online interactive classroom. The focus and content of the course has been developed in collaboration with three groups of stakeholders; autism scientists, clinical practitioners (municipal maternal and child health doctors and ASD experts) and parents of children with ASD. The primary outcome measure is knowledge about ASD: signals, early detection, communication with parents and referrals. The secondary outcome measures are the number of ASD related referrals, the attitude towards the mentally ill (CAMI), perceived competency about ASD knowledge and detection skills, and satisfaction about the educational intervention. Results and Conclusion: The study started in January 2016 and data collection will end mid 2017.Keywords: ASD, child, detection, educational intervention, physicians
Procedia PDF Downloads 2934087 Clinical Manifestations, Pathogenesis and Medical Treatment of Stroke Caused by Basic Mitochondrial Abnormalities (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes, MELAS)
Authors: Wu Liching
Abstract:
Aim This case aims to discuss the pathogenesis, clinical manifestations and medical treatment of strokes caused by mitochondrial gene mutations. Methods Diagnosis of ischemic stroke caused by mitochondrial gene defect by means of "next-generation sequencing mitochondrial DNA gene variation detection", imaging examination, neurological examination, and medical history; this study took samples from the neurology ward of a medical center in northern Taiwan cases diagnosed with acute cerebral infarction as the research objects. Result This case is a 49-year-old married woman with a rare disease, mitochondrial gene mutation inducing ischemic stroke. She has severe hearing impairment and needs to use hearing aids, and has a history of diabetes. During the patient’s hospitalization, the blood test showed that serum Lactate: 7.72 mmol/L, Lactate (CSF) 5.9 mmol/L. Through the collection of relevant medical history, neurological evaluation showed changes in consciousness and cognition, slow response in language expression, and brain magnetic resonance imaging examination showed subacute bilateral temporal lobe infarction, which was an atypical type of stroke. The lineage DNA gene has m.3243A>G known pathogenic mutation point, and its heteroplasmic level is 24.6%. This pathogenic point is located in MITOMAP and recorded as Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) , Leigh Syndrome and other disease-related pathogenic loci, this mutation is located in ClinVar and recorded as Pathogenic (dbSNP: rs199474657), so it is diagnosed as a case of stroke caused by a rare disease mitochondrial gene mutation. After medical treatment, there was no more seizure during hospitalization. After interventional rehabilitation, the patient's limb weakness, poor language function, and cognitive impairment have all improved significantly. Conclusion Mitochondrial disorders can also be associated with abnormalities in psychological, neurological, cerebral cortical function, and autonomic functions, as well as problems with internal medical diseases. Therefore, the differential diagnoses cover a wide range and are not easy to be diagnosed. After neurological evaluation, medical history collection, imaging and rare disease serological examination, atypical ischemic stroke caused by rare mitochondrial gene mutation was diagnosed. We hope that through this case, the diagnosis of rare disease mitochondrial gene variation leading to cerebral infarction will be more familiar to clinical medical staff, and this case report may help to improve the clinical diagnosis and treatment for patients with similar clinical symptoms in the future.Keywords: acute stroke, MELAS, lactic acidosis, mitochondrial disorders
Procedia PDF Downloads 704086 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems
Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs
Abstract:
The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation
Procedia PDF Downloads 604085 Pin Count Aware Volumetric Error Detection in Arbitrary Microfluidic Bio-Chip
Authors: Kunal Das, Priya Sengupta, Abhishek K. Singh
Abstract:
Pin assignment, scheduling, routing and error detection for arbitrary biochemical protocols in Digital Microfluidic Biochip have been reported in this paper. The research work is concentrating on pin assignment for 2 or 3 droplets routing in the arbitrary biochemical protocol, scheduling and routing in m × n biochip. The volumetric error arises due to droplet split in the biochip. The volumetric error detection is also addressed using biochip AND logic gate which is known as microfluidic AND or mAND gate. The algorithm for pin assignment for m × n biochip required m+n-1 numbers of pins. The basic principle of this algorithm is that no same pin will be allowed to be placed in the same column, same row and diagonal and adjacent cells. The same pin should be placed a distance apart such that interference becomes less. A case study also reported in this paper.Keywords: digital microfludic biochip, cross-contamination, pin assignment, microfluidic AND gate
Procedia PDF Downloads 2744084 Applying Wavelet Transform to Ferroresonance Detection and Protection
Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang
Abstract:
Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer
Procedia PDF Downloads 4964083 Fast Detection of Local Fiber Shifts by X-Ray Scattering
Authors: Peter Modregger, Özgül Öztürk
Abstract:
Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination
Procedia PDF Downloads 634082 Signal Amplification Using Graphene Oxide in Label Free Biosensor for Pathogen Detection
Authors: Agampodi Promoda Perera, Yong Shin, Mi Kyoung Park
Abstract:
The successful detection of pathogenic bacteria in blood provides important information for early detection, diagnosis and the prevention and treatment of infectious diseases. Silicon microring resonators are refractive-index-based optical biosensors that provide highly sensitive, label-free, real-time multiplexed detection of biomolecules. We demonstrate the technique of using GO (graphene oxide) to enhance the signal output of the silicon microring optical sensor. The activated carboxylic groups in GO molecules bind directly to single stranded DNA with an amino modified 5’ end. This conjugation amplifies the shift in resonant wavelength in a real-time manner. We designed a capture probe for strain Staphylococcus aureus of 21 bp and a longer complementary target sequence of 70 bp. The mismatched target sequence we used was of Streptococcus agalactiae of 70 bp. GO is added after the complementary binding of the probe and target. GO conjugates to the unbound single stranded segment of the target and increase the wavelength shift on the silicon microring resonator. Furthermore, our results show that GO could successfully differentiate between the mismatched DNA sequences from the complementary DNA sequence. Therefore, the proposed concept could effectively enhance sensitivity of pathogen detection sensors.Keywords: label free biosensor, pathogenic bacteria, graphene oxide, diagnosis
Procedia PDF Downloads 4684081 A Unique Immunization Card for Early Detection of Retinoblastoma
Authors: Hiranmoyee Das
Abstract:
Aim. Due to late presentation and delayed diagnosis mortality rate of retinoblastoma is more than 50% in developing counties. So to facilitate the diagnosis, to decrease the disease and treatment burden and to increase the disease survival rate, an attempt was made for early diagnosis of Retinoblastoma by including fundus examination in routine immunization programs. Methods- A unique immunization card is followed in a tertiary health care center where examination of pupillary reflex is made mandatory in each visit of the child for routine immunization. In case of any abnormality, the child is referred to the ophthalmology department. Conclusion- Early detection is the key in the management of retinoblastoma. Every child is brought to the health care system at least five times before the age of 2 years for routine immunization. We should not miss this golden opportunity for early detection of retinoblastoma.Keywords: retinoblastoma, immunization, unique, early
Procedia PDF Downloads 1974080 Characteristic Matrix Faults for Flight Control System
Authors: Thanh Nga Thai
Abstract:
A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.Keywords: fault detection and identification, sensor faults, actuator faults, flight control system
Procedia PDF Downloads 4224079 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1064078 Assessment of Breast, Lung and Liver Effective Doses in Heart Imaging by CT-Scan 128 Dual Sources with Use of TLD-100 in RANDO Phantom
Authors: Seyedeh Sepideh Amini, Navideh Aghaei Amirkhizi, Seyedeh Paniz Amini, Seyed Soheil Sayyahi, Mohammad Reza Davar Panah
Abstract:
CT-Scan is one of the lateral and sectional imaging methods that produce 3D-images with use of rotational x-ray tube around central axis. This study is about evaluation and calculation of effective doses around heart organs such as breast, lung and liver with CT-Scan 128 dual sources with TLD_100 and RANDO Phantom by spiral, flash and conventional protocols. In results, it is showed that in spiral protocol organs have maximum effective dose and minimum in flash protocol. Thus flash protocol advised for children and risk persons.Keywords: X-ray computed tomography, dosimetry, TLD-100, RANDO, phantom
Procedia PDF Downloads 4754077 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology
Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad
Abstract:
This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts
Procedia PDF Downloads 1384076 Quantification and Evaluation of Tumors Heterogeneity Utilizing Multimodality Imaging
Authors: Ramin Ghasemi Shayan, Morteza Janebifam
Abstract:
Tumors are regularly inhomogeneous. Provincial varieties in death, metabolic action, multiplication and body part are watched. There’s expanding proof that strong tumors may contain subpopulations of cells with various genotypes and phenotypes. These unmistakable populaces of malignancy cells can connect during a serious way and may contrast in affectability to medications. Most tumors show organic heterogeneity1–3 remembering heterogeneity for genomic subtypes, varieties inside the statement of development variables and genius, and hostile to angiogenic factors4–9 and varieties inside the tumoural microenvironment. These can present as contrasts between tumors in a few people. for instance, O6-methylguanine-DNA methyltransferase, a DNA fix compound, is hushed by methylation of the quality advertiser in half of glioblastoma (GBM), adding to chemosensitivity, and improved endurance. From the outset, there includes been specific enthusiasm inside the usage of dissemination weighted imaging (DWI) and dynamic complexity upgraded MRI (DCE-MRI). DWI sharpens MRI to water dispersion inside the extravascular extracellular space (EES) and is wiped out with the size and setup of the cell populace. Additionally, DCE-MRI utilizes dynamic obtaining of pictures during and after the infusion of intravenous complexity operator. Signal changes are additionally changed to outright grouping of differentiation permitting examination utilizing pharmacokinetic models. PET scan modality gives one of a kind natural particularity, permitting dynamic or static imaging of organic atoms marked with positron emanating isotopes (for example, 15O, 18F, 11C). The strategy is explained to a colossal radiation portion, which points of confinement rehashed estimations, particularly when utilized together with PC tomography (CT). At long last, it's of incredible enthusiasm to quantify territorial hemoglobin state, which could be joined with DCE-CT vascular physiology estimation to create significant experiences for understanding tumor hypoxia.Keywords: heterogeneity, computerized tomography scan, magnetic resonance imaging, PET
Procedia PDF Downloads 1464075 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 2544074 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite
Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher
Abstract:
In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection
Procedia PDF Downloads 1644073 Standard Protocol Selection for Acquisition of Breast Thermogram in Perspective of Early Breast Cancer Detection
Authors: Mrinal Kanti Bhowmik, Usha Rani Gogoi Jr., Anjan Kumar Ghosh, Debotosh Bhattacharjee
Abstract:
In the last few decades, breast thermography has achieved an average sensitivity and specificity of 90% for breast tumor detection. Breast thermography is a non-invasive, cost-effective, painless and radiation-free breast imaging modality which makes a significant contribution to the evaluation and diagnosis of patients, suspected of having breast cancer. An abnormal breast thermogram may indicate significant biological risk for the existence or the development of breast tumors. Breast thermography can detect a breast tumor, when the tumor is in its early stage or when the tumor is in a dense breast. The infrared breast thermography is very sensitive to environmental changes for which acquisition of breast thermography should be performed under strictly controlled conditions by undergoing some standard protocols. Several factors like air, temperature, humidity, etc. are there to be considered for characterizing thermal images as an imperative tool for detecting breast cancer. A detailed study of various breast thermogram acquisition protocols adopted by different researchers in their research work is provided here in this paper. After going through a rigorous study of different breast thermogram acquisition protocols, a new standard breast thermography acquisition setup is proposed here in this paper for proper and accurate capturing of the breast thermograms. The proposed breast thermogram acquisition setup is being built in the Radiology Department, Agartala Government Medical College (AGMC), Govt. of Tripura, Tripura, India. The breast thermograms are captured using FLIR T650sc thermal camera with the thermal sensitivity of 20 mK at 30 degree C. The paper is an attempt to highlight the importance of different critical parameters of breast thermography like different thermography views, patient preparation protocols, acquisition room requirements, acquisition system requirements, etc. This paper makes an important contribution by providing a detailed survey and a new efficient approach on breast thermogram capturing.Keywords: acquisition protocol, breast cancer, breast thermography, infrared thermography
Procedia PDF Downloads 3974072 Characteristics and Flight Test Analysis of a Fixed-Wing UAV with Hover Capability
Authors: Ferit Çakıcı, M. Kemal Leblebicioğlu
Abstract:
In this study, characteristics and flight test analysis of a fixed-wing unmanned aerial vehicle (UAV) with hover capability is analyzed. The base platform is chosen as a conventional airplane with throttle, ailerons, elevator and rudder control surfaces, that inherently allows level flight. Then this aircraft is mechanically modified by the integration of vertical propellers as in multi rotors in order to provide hover capability. The aircraft is modeled using basic aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. Flight characteristics are analyzed by benefiting from linear control theory’s state space approach. Distinctive features of the aircraft are discussed based on analysis results with comparison to conventional aircraft platform types. A hybrid control system is proposed in order to reveal unique flight characteristics. The main approach includes design of different controllers for different modes of operation and a hand-over logic that makes flight in an enlarged flight envelope viable. Simulation tests are performed on mathematical models that verify asserted algorithms. Flight tests conducted in real world revealed the applicability of the proposed methods in exploiting fixed-wing and rotary wing characteristics of the aircraft, which provide agility, survivability and functionality.Keywords: flight test, flight characteristics, hybrid aircraft, unmanned aerial vehicle
Procedia PDF Downloads 3294071 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy
Authors: Grishma D. Solanki, Karshan Kandoriya
Abstract:
In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.Keywords: copy-move image forgery, digital forensics, image forensics, image forgery
Procedia PDF Downloads 2884070 Integrated Geophysical Approach for Subsurface Delineation in Srinagar, Uttarakhand, India
Authors: Pradeep Kumar Singh Chauhan, Gayatri Devi, Zamir Ahmad, Komal Chauhan, Abha Mittal
Abstract:
The application of geophysical methods to study the subsurface profile for site investigation is becoming popular globally. These methods are non-destructive and provide the image of subsurface at shallow depths. Seismic refraction method is one of the most common and efficient method being used for civil engineering site investigations particularly for knowing the seismic velocity of the subsurface layers. Resistivity imaging technique is a geo-electrical method used to image the subsurface, water bearing zone, bedrock and layer thickness. Integrated approach combining seismic refraction and 2-D resistivity imaging will provide a better and reliable picture of the subsurface. These are economical and less time-consuming field survey which provide high resolution image of the subsurface. Geophysical surveys carried out in this study include seismic refraction and 2D resistivity imaging method for delineation of sub-surface strata in different parts of Srinagar, Garhwal Himalaya, India. The aim of this survey was to map the shallow subsurface in terms of geological and geophysical properties mainly P-wave velocity, resistivity, layer thickness, and lithology of the area. Both sides of the river, Alaknanda which flows through the centre of the city, have been covered by taking two profiles on each side using both methods. Seismic and electrical surveys were carried out at the same locations to complement the results of each other. The seismic refraction survey was carried out using ABEM TeraLoc 24 channel Seismograph and 2D resistivity imaging was performed using ABEM Terrameter LS equipment. The results show three distinct layers on both sides of the river up to the depth of 20 m. The subsurface is divided into three distinct layers namely, alluvium extending up to, 3 m depth, conglomerate zone lying between the depth of 3 m to 15 m, and compacted pebbles and cobbles beyond 15 m. P-wave velocity in top layer is found in the range of 400 – 600 m/s, in second layer it varies from 700 – 1100 m/s and in the third layer it is 1500 – 3300 m/s. The resistivity results also show similar pattern and were in good agreement with seismic refraction results. The results obtained in this study were validated with an available exposed river scar at one site. The study established the efficacy of geophysical methods for subsurface investigations.Keywords: 2D resistivity imaging, P-wave velocity, seismic refraction survey, subsurface
Procedia PDF Downloads 2584069 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample
Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos
Abstract:
Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD
Procedia PDF Downloads 1584068 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 3764067 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer
Authors: Rishav Shrestha, Yong Zhang
Abstract:
The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles
Procedia PDF Downloads 4224066 Precise Spatially Selective Photothermolysis Skin Treatment by Multiphoton Absorption
Authors: Yimei Huang, Harvey Lui, Jianhua Zhao, Zhenguo Wu, Haishan Zeng
Abstract:
Conventional laser treatment of skin diseases and cosmetic surgery is based on the principle of one-photon absorption selective photothermolysis which relies strongly on the difference in the light absorption between the therapeutic target and its surrounding tissue. However, when the difference in one-photon absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To overcome this problem, we developed a spatially selective photothermolysis method based on multiphoton absorption in which the heat generation is restricted to the focal point of a tightly focused near-infrared femtosecond laser beam aligned with the target of interest. A multimodal optical microscope with co-registered reflectance confocal imaging (RCM), two-photon fluorescence imaging (TPF), and second harmonic generation imaging (SHG) capabilities was used to perform and monitor the spatially selective photothermolysis. Skin samples excised from the shaved backs of euthanized NODSCID mice were used in this study. Treatments were performed by focusing and scaning the laser beam in the dermis with a 50µm×50µm target area. Treatment power levels of 200 mW to 400 mW and modulated pulse trains of different duration and period were experimented. Different treatment parameters achieved different degrees of spatial confinement of tissue alterations as visualized by 3-D RCM/TPF/SHG imaging. At 200 mW power level, 0.1 s pulse train duration, 4.1 s pulse train period, the tissue damage was found to be restricted precisely to the 50µm×50µm×10µm volume, where the laser focus spot had scanned through. The overlying epidermis/dermis tissue and the underneath dermis tissue were intact although there was light passing through these regions.Keywords: multiphoton absorption photothermolysis, reflectance confocal microscopy, second harmonic generation microscopy, spatially selective photothermolysis, two-photon fluorescence microscopy
Procedia PDF Downloads 5154065 Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding
Authors: A. Seddiki, M. Djebbouri, D. Guerchi
Abstract:
Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.Keywords: global thresholding transform, huffman coding, region of interest, SPIHT coding, scintigraphic images
Procedia PDF Downloads 3684064 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging
Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott
Abstract:
The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging
Procedia PDF Downloads 1354063 Following the Modulation of Transcriptional Activity of Genes by Chromatin Modifications during the Cell Cycle in Living Cells
Authors: Sharon Yunger, Liat Altman, Yuval Garini, Yaron Shav-Tal
Abstract:
Understanding the dynamics of transcription in living cells has improved since the development of quantitative fluorescence-based imaging techniques. We established a method for following transcription from a single copy gene in living cells. A gene tagged with MS2 repeats, used for mRNA tagging, in its 3' UTR was integrated into a single genomic locus. The actively transcribing gene was detected and analyzed by fluorescence in situ hybridization (FISH) and live-cell imaging. Several cell clones were created that differed in the promoter regulating the gene. Thus, comparative analysis could be obtained without the risk of different position effects at each integration site. Cells in S/G2 phases could be detected exhibiting two adjacent transcription sites on sister chromatids. A sharp reduction in the transcription levels was observed as cells progressed along the cell cycle. We hypothesized that a change in chromatin structure acts as a general mechanism during the cell cycle leading to down-regulation in the activity of some genes. We addressed this question by treating the cells with chromatin decondensing agents. Quantifying and imaging the treated cells suggests that chromatin structure plays a role both in regulating transcriptional levels along the cell cycle, as well as in limiting an active gene from reaching its maximum transcription potential at any given time. These results contribute to understanding the role of chromatin as a regulator of gene expression.Keywords: cell cycle, living cells, nucleus, transcription
Procedia PDF Downloads 3114062 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 259