Search results for: thermochemical storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2047

Search results for: thermochemical storage

1267 Enhancing Postharvest Quality and Shelf-Life of Leaf Lettuce (Lactuca sativa L.) by Altering Growing Conditions

Authors: Jung-Soo Lee, Ujjal Kumar Nath, IllSup Nou, Dulal Chandra

Abstract:

Leaf lettuce is one of the most important leafy vegetables that is used as raw for salad and part of everyday dishes in many parts of the world including Asian countries. Since it is used as fresh, its quality maintenance is crucial which depends on several pre- and postharvest factors. In order to investigate the effects of pre-fix factors on the postharvest quality, the interaction of pre-fix factors such as growing conditions and fixed factor like cultivars were evaluated. Four Korean leaf lettuce cultivars ‘Cheongchima’, ‘Cheongchuckmyeon’, ‘Geockchima’ and ‘Geockchuckmyeon’ were grown under natural condition (as control) and altered growing condition (green house) with excess soil water and 50% shading to monitor their postharvest qualities. Several growth parameters like plant height, number of leaves, leaf thickness, fresh biomass yield as well as postharvest qualities like fresh weight loss, respiration rate, changes in color and shelf-life were measured in lettuce during storage up to 36 days at 5°C. Plant height and the number of leaves were affected by both pre-fix growing conditions as well as the cultivars. However, fresh biomass yield was affected by only growing condition, whereas leaf thickness was affected by cultivars. Additionally, the degrees of fresh weight loss and respiration rate of leaf lettuce at postharvest stages were influenced by pre-fix growing conditions and cultivars. However, changes in color of leaves during storage were less remarkable in samples harvested from of ‘Cheongchima’ and ‘Cheongchuckmyeon’ cultivars grown in excess watering with 50% shade than that grown in control condition. Consequently, these two cultivars also showed longer shelf-life when they were grown in excess watering with 50% shade than other cultivars or samples were grown in control condition. Based on the measured parameters, it can be concluded that postharvest quality of leaf lettuce might be accelerated by growing lettuce under excess soil water with 50% shading.

Keywords: cultivar, growing condition, leaf lettuce, postharvest quality, shelf-life

Procedia PDF Downloads 231
1266 Control of the Sustainability of Fresh Cheese in Order to Extend the Shelf-Life of the Product

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

The fresh cheese is in the group of perishable food which cannot be kept a long period of time. The study of sustainability have been done in order to extend the shelf-life of the product which was 15 days. According to the plan of sustainability it was defined that 35 samples had to be stored for 30 days at 2°C−6°C and analyzed every 7th day from the day of reception until 30th day. Shelf life of the cheese has expired during the study of sustainability in the period between 15th and 30th day of analyses. Cheese samples were subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp., Bacillus cereus, Staphylococcus aureus and total plate count) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579, Bacillus cereus ISO 7932, Staphylococcus aureus ISO 6888-1, and total plate count ISO 4833. Analyses showed that after fifteen days of storage at a temperature defined by the manufacturers and within the product's shelf life, the cheese did not have any noticeable changes in sensory characteristics. Smell and taste are unaffected there was no separation of whey and there was not presence of strange smell or taste. As far as microbiological analyses are concerned neither one pathogen was detected and total plate count was at level of 103 cfu/g. After expiry of shelf life in a period of 15th and 30th day of storage, the analysis showed that there was a separation of whey on the surface. Along the edge of the container was present a dried part of cheese and sour-milky smell and taste were very weakly expressed. Concerning the microbiological analyses there still were not positive results for pathogen microorganisms but the total plate count was at a level of 106cfu/g. Based on the obtained results it can be concluded that this product cannot have longer shelf life than shelf life which is already defined because there are a sensory changes that would certainly have influence on decision of customers when purchase of this product is concerned.

Keywords: sustainability, fresh cheese, shelf-life, product

Procedia PDF Downloads 358
1265 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling

Authors: Hadi Chahal, Irini Djeran-Maigre

Abstract:

This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.

Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials

Procedia PDF Downloads 101
1264 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 165
1263 Effects of Carbon Dioxide on the Organoleptic Properties of Hazelnut

Authors: Reza Sadeghi

Abstract:

Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches for postharvest. Hazelnut has a considerable share in the annual exports of Iran. In the present study, hazelnut was studied after being exposed to different CO2 pressures (0.1-0.5bar) within 24 hours. Changes in organoleptic properties (colour, firmness, aroma, crispness, and overall acceptability) during fumigation were studied. The results showed that the sensory evaluation showed that carbon dioxide had no effect on the qualitative characteristics of hazelnut.

Keywords: carbon dioxide, hazelnut, qualitative characteristics, organoleptic

Procedia PDF Downloads 61
1262 A New Paradigm to Make Cloud Computing Greener

Authors: Apurva Saxena, Sunita Gond

Abstract:

Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.

Keywords: virtualization, cloud computing, green computing, data center

Procedia PDF Downloads 533
1261 A Holistic Approach for Technical Product Optimization

Authors: Harald Lang, Michael Bader, A. Buchroithner

Abstract:

Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications.

Keywords: design, product development, product optimization, systems engineering

Procedia PDF Downloads 609
1260 New Environmentally Friendly Material for the Purification of the Fresh Water from Oil Pollution

Authors: M. A. Ashour

Abstract:

As it is known Egypt is one of the countries having oldest sugarcane industry, which goes back to the year 710 AD. Cane plantations are the main agricultural product in five governorates in Upper Egypt (El-Menia, Sohag, Qena, Luxor, and Aswan), producing not less than 16 million tons a year. Eight factories (Abou-korkas, Gena, Nagaa-Hamadi, Deshna, Kous, Armant, Edfuo, and Komombo), located in such upper Egypt governorates generates huge amount of wastes during the manufacturing stage, the so called bagasse which is the fibrous, and cellulosic materials remaining after the era of the sugarcane and the juice extraction, presents about 30% of such wastes. The amount of bagasse generated yearly through the manufacturing stage of the above mentioned 8 factories is approximately about 2.8 million tons, getting red safely of such huge amount, presents a serious environmental problem. Storage of that material openly in the so hot climate in upper Egypt, may cause its self-ignition under air temperature reaches 50 degrees centigrade in summer, due to the remained residual content of sugar. At the same time preparing places for safely storage for such amount is very expensive with respect to the valueless of it. So the best way for getting rid of bagasse is converting it into an added value environmentally friendly material, especially till now the utilization of it is so limited. Since oil pollution became a serious concern, the issue of environmental cleaning arises. With the structure of sugarcane bagasse, which contains fiber and high content of carbon, it can be an adsorbent to adsorb the oil contamination from the water. The present study is a trail to introduce a new material for the purification of water systems to score two goals at once, the first is getting rid of that harmful waste safely, the second is converting it to a commercial valuable material for cleaning, and purifying the water from oil spills, and petroleum pollution. Introduced the new material proved very good performance, and higher efficiency than other similar materials available in the local market, in both closed and open systems. The introduced modified material can absorb 10 times its weight of oil, while don't absorb any water.

Keywords: environment, water resources, agricultural wastes, oil pollution control, sugarcane

Procedia PDF Downloads 170
1259 Pre-harvest Application of Nutrients on Quality and Storability of Litchi CV Bombai

Authors: Nazmin Akter, Tariqul Islam, Abu Sayed

Abstract:

Food loss and waste have become critical global issues, with approximately one-third of the world's food production being wasted. Among the various food products, horticultural fruits and vegetables are especially susceptible to loss due to their relatively short shelf lives. Litchi (Litchi chinensis) is one of Bangladesh's most important horticultural fruits. But the problem with this fruit is its short shelf life by losing weight faster after harvest. The experiment was carried out at Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200 Bangladesh during 2020-2021. The objective of this experiment was to see the impact of nutrients viz., urea (1%), calcium chloride (1%), borax (1%), and their combinations on fruit quality and shelf life of litchi cv. Bombai. The experiment was laid out in a randomized block design with 7 treatments and 3 replications. Two sprays of each treatment were applied from the last week of May to June (at 20-day intervals). The results indicated that all the treatments significantly improved the quality parameters of litchi fruits as compared to the control. In terms of physicochemical characteristics fruit weight (20.30g), fruit volume (20m ml), and pulp percent (17.14) were found maximum with minimum stone percent (11.09) with the application of urea 1% + borax 1%+ calcium chloride 1%. Maximum TSS (19.62oBrix), TSS/acidity ratio (24.57), maximum ascorbic acid (45.19 mg/100 g pulp), and minimum acidity (0.80%) were reported with the application of T6 (Urea 1% + borax 1%+ calcium chloride 1%) treatments whereas fruits treated with urea 1% + borax 1% gave maximum total sugars (26.64%) and reducing sugars (19.19%) as compared to control. In the case of storage characters, application of Urea 1% + borax 1%+ calcium chloride 1% resulted in a minimum physiological loss in weight (6.11%), (8.41%), and (10.65%) for 2 days, 4 days, and 6 days respectively. In conclusion, to obtain better quality and increased storage period of litchi fruits, two sprays of urea, borax, and calcium chloride (1%) could be used during the fruit growth and development period at fortnightly intervals.

Keywords: litchi chinensis, preharvest, quality, shelf life, postharvest

Procedia PDF Downloads 52
1258 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability

Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher

Abstract:

Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectively

Keywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge

Procedia PDF Downloads 58
1257 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 282
1256 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 585
1255 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 299
1254 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications

Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley

Abstract:

Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.

Keywords: batteries, energy, iron, nickel, storage

Procedia PDF Downloads 425
1253 The Study of Cost Accounting in S Company Based on TDABC

Authors: Heng Ma

Abstract:

Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost. Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost. The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.

Keywords: third-party logistics enterprises, TDABC, cost management, S company

Procedia PDF Downloads 339
1252 Applications and Development of a Plug Load Management System That Automatically Identifies the Type and Location of Connected Devices

Authors: Amy Lebar, Kim L. Trenbath, Bennett Doherty, William Livingood

Abstract:

Plug and process loads (PPLs) account for 47% of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering and data storage. A laboratory proof of concept (PoC) demonstrated all but the data storage capabilities and these capabilities were validated using an office building scenario. The PoC can identify when a device is plugged into an outlet and the location of the device in the building. When a device is moved, the PoC’s dashboard and database are automatically updated with the new location. The PoC implements controls to devices from the system dashboard so that devices maintain correct schedules regardless of where they are plugged in within a building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. A system like ATLIS could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.

Keywords: commercial buildings, grid-interactive efficient buildings (GEB), miscellaneous electric loads (MELs), plug loads, plug load management (PLM)

Procedia PDF Downloads 114
1251 Monitoring of Sustainability of Extruded Soya Product TRADKON SPC-TEX in Order to Define Expiration Date

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

New attitudes about nutrition impose new styles, and therefore a neNew attitudes about nutrition impose new styles, and therefore a new kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducing clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according to: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.w kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducin clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.

Keywords: extruded soya product, food safety analyses, GMO analyses, shelf life

Procedia PDF Downloads 277
1250 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery

Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang

Abstract:

As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.

Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping

Procedia PDF Downloads 70
1249 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 96
1248 Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism

Authors: Arish Iqbal, Santosh Kumar Singh

Abstract:

Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed.

Keywords: CBM (coal bed methane), CCS (carbon capture and storage), CCT (clean coal technology), CMM (coal mining methane)

Procedia PDF Downloads 221
1247 Medication Errors in Neonatal Intensive Care Unit

Authors: Ramzi Shawahna

Abstract:

Background: Neonatal intensive care units are high-risk settings where medication errors can occur and cause harm to this fragile segment of patients. This multicenter qualitative study was conducted to describe medication errors that occurred in neonatal intensive care units in Palestine from the perspectives of healthcare providers. Methods: This exploratory multicenter qualitative study was conducted and reported in adherence to the consolidated criteria for reporting qualitative research checklist. Semi-structured in-depth interviews were conducted with healthcare professionals (4 pediatricians/neonatologists and 11 intensive care unit nurses) who provided care services for patients admitted to neonatal intensive care units in Palestine. An interview schedule guided the semi-structured in-depth interviews. The qualitative interpretive description approach was used to thematically analyze the data. Results: The total duration of the interviews was 282 min. The healthcare providers described their experiences with 41 different medication errors. These medication errors were categorized under 3 categories and 10 subcategories. Errors that occurred while preparing/diluting/storing medications were related to calculations, using a wrong solvent/diluent, dilution errors, failure to adhere to guidelines while preparing the medication, failure to adhere to storage/packaging guidelines, and failure to adhere to labeling guidelines. Errors that occurred while prescribing/administering medications were related to inappropriate medication for the neonate, using a different administration technique from the one that was intended and administering a different dose from the one that was intended. Errors that occurred after administering the medications were related to failure to adhere to monitoring guidelines. Conclusion: In this multicenter study, pediatricians/neonatologists and neonatal intensive care unit nurses described medication errors occurring in intensive care units in Palestine. Medication errors occur in different stages of the medication process: preparation/dilution/storage, prescription/administration, and monitoring. Further studies are still needed to quantify medication errors occurring in neonatal intensive care units and investigate if the designed strategies could be effective in minimizing medication errors.

Keywords: medication errors, pharmacist, pharmacology, neonates

Procedia PDF Downloads 59
1246 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 211
1245 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries

Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi

Abstract:

Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.

Keywords: critical raw materials, energy storage, sodium metal halide, battery

Procedia PDF Downloads 83
1244 A Low-Cost Disposable PDMS Microfluidic Cartridge with Reagent Storage Silicone Blisters for Isothermal DNA Amplification

Authors: L. Ereku, R. E. Mackay, A. Naveenathayalan, K. Ajayi, W. Balachandran

Abstract:

Over the past decade the increase of sexually transmitted infections (STIs) especially in the developing world due to high cost and lack of sufficient medical testing have given rise to the need for a rapid, low cost point of care medical diagnostic that is disposable and most significantly reproduces equivocal results achieved within centralised laboratories. This paper present the development of a disposable PDMS microfluidic cartridge incorporating blisters filled with reagents required for isothermal DNA amplification in clinical diagnostics and point-of-care testing. In view of circumventing the necessity for external complex microfluidic pumps, designing on-chip pressurised fluid reservoirs is embraced using finger actuation and blister storage. The fabrication of the blisters takes into consideration three proponents that include: material characteristics, fluid volume and structural design. Silicone rubber is the chosen material due to its good chemical stability, considerable tear resistance and moderate tension/compression strength. The case of fluid capacity and structural form go hand in hand as the reagent need for the experimental analysis determines the volume size of the blisters, whereas the structural form has to be designed to provide low compression stress when deformed for fluid expulsion. Furthermore, the top and bottom section of the blisters are embedded with miniature polar opposite magnets at a defined parallel distance. These magnets are needed to lock or restrain the blisters when fully compressed so as to prevent unneeded backflow as a result of elasticity. The integrated chip is bonded onto a large microscope glass slide (50mm x 75mm). Each part is manufactured using a 3D printed mould designed using Solidworks software. Die-casting is employed, using 3D printed moulds, to form the deformable blisters by forcing a proprietary liquid silicone rubber through the positive mould cavity. The set silicone rubber is removed from the cast and prefilled with liquid reagent and then sealed with a thin (0.3mm) burstable layer of recast silicone rubber. The main microfluidic cartridge is fabricated using classical soft lithographic techniques. The cartridge incorporates microchannel circuitry, mixing chamber, inlet port, outlet port, reaction chamber and waste chamber. Polydimethylsiloxane (PDMS, QSil 216) is mixed and degassed using a centrifuge (ratio 10:1) is then poured after the prefilled blisters are correctly positioned on the negative mould. Heat treatment of about 50C to 60C in the oven for about 3hours is needed to achieve curing. The latter chip production stage involves bonding the cured PDMS to the glass slide. A plasma coroner treater device BD20-AC (Electro-Technic Products Inc., US) is used to activate the PDMS and glass slide before they are both joined and adequately compressed together, then left in the oven over the night to ensure bonding. There are two blisters in total needed for experimentation; the first will be used as a wash buffer to remove any remaining cell debris and unbound DNA while the second will contain 100uL amplification reagents. This paper will present results of chemical cell lysis, extraction using a biopolymer paper membrane and isothermal amplification on a low-cost platform using the finger actuated blisters for reagent storage. The platform has been shown to detect 1x105 copies of Chlamydia trachomatis using Recombinase Polymerase Amplification (RPA).

Keywords: finger actuation, point of care, reagent storage, silicone blisters

Procedia PDF Downloads 352
1243 Preservation and Packaging Techniques for Extending the Shelf Life of Cucumbers: A Review of Methods and Factors Affecting Quality

Authors: Abdul Umaro Tholley

Abstract:

The preservation and packaging of cucumbers are essential to maintain their shelf life and quality. Cucumbers are a perishable food item that is highly susceptible to spoilage due to their high-water content and delicate nature. Therefore, proper preservation and packaging techniques are crucial to extend their shelf life and prevent economic loss. There are several methods of preserving cucumbers, including refrigeration, canning, pickling, and dehydration. Refrigeration is the most used preservation method, as it slows down the rate of deterioration and maintains the freshness and quality of the cucumbers. Canning and pickling are also popular preservation methods that use heat treatment and acidic solutions, respectively, to prevent microbial growth and increase shelf life. Dehydration involves removing the water content from cucumbers to increase their shelf life, but it may affect their texture and taste. Packaging also plays a vital role in preserving cucumbers. The packaging materials should be selected based on their ability to maintain the quality and freshness of the cucumbers. The most used packaging materials for cucumbers are polyethylene bags, which prevent moisture loss and protect the cucumbers from physical damage. Other packaging materials, such as corrugated boxes and wooden crates, may also be used, but they offer less protection against moisture loss and damage. The quality of cucumbers is affected by several factors, including storage temperature, humidity, and exposure to light. Cucumbers should be stored at temperatures between 7 and 10 °C, with a relative humidity of 90-95%, to maintain their freshness and quality. Exposure to light should also be minimized to prevent the formation of yellowing and decay. In conclusion, the preservation and packaging of cucumbers are essential to maintain their quality and extend their shelf life. Refrigeration, canning, pickling, and dehydration are common preservation methods that can be used to preserve cucumbers. The packaging materials used should be carefully selected to prevent moisture loss and physical damage. Proper storage conditions, such as temperature, humidity, and light exposure, should also be maintained to ensure the quality and freshness of cucumbers. Overall, proper preservation and packaging techniques can help reduce economic loss and provide consumers with high-quality cucumbers.

Keywords: cucumbers, preservation, packaging, shelf life

Procedia PDF Downloads 66
1242 Evaluating the Process of Biofuel Generation from Grass

Authors: Karan Bhandari

Abstract:

Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel.

Keywords: biomethane potential values, bio digester specifications, continuously stirred tank reactor, upflow anaerobic sludge blanket

Procedia PDF Downloads 228
1241 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties

Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm

Abstract:

Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.

Keywords: phase change material, microencapsulation, adhesive bonding, thermal management

Procedia PDF Downloads 51
1240 Eco-Friendly Cultivation

Authors: Shah Rucksana Akhter Urme

Abstract:

Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.

Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming

Procedia PDF Downloads 40
1239 Economic Analysis of Post-Harvest Losses in Plantain (and Banana): A Case Study of South Western Nigeria

Authors: O. R. Adeniyi, A. Ayandiji

Abstract:

Losses are common in most vegetables because the fruit ripens rapidly and most plantain products can only be stored for a few days thereby limiting their utilization. Plantain (and banana) is highly perishable at the ambient temperature prevalent in the tropics. The specific objective of this study is to identify the socioeconomic characteristics of banana/plantain dealers and determine the perceived effect of the losses incurred in the process of marketing banana/plantain. The study was carried out in Ondo and Lagos states of south-western Nigeria. Purposive sampling technique was used to collect information from “Kolawole plantain depot”, the point of purchase in Ondo State and “Alamutu plantain market” in Mushin the point of sales in Lagos state. Preliminary study was conducted with the use of primary data collected through well-structured questionnaires administered on 60 respondents and 55 fully completed ones analysed. Budgeting, gross margin and multiple linear regression were used for analyses. Most merchants were found to be in the middle age class (30-50 years), majority of whom were female and completed their secondary school education, with eighty percent having more than 5 years’ experience of in banana/plantain marketing. The highest losses were incurred during transportation and these losses constitute about 5.62 percent of the potential total revenue. On the average, loss in gross margin is about ₦6,000.00 per merchant. The impacts of these losses are reflected in the continuously reducing level of their income. Age of the respondents played a major role in determining the level of care in the handling of the fruits. The middle age class tends to be more favoured. In conclusion, the merchants need adequate and sustainable transportation and storage facilities as a matter of utmost urgency. There is the need for government to encourage producers of the product (farmers) by giving them motivating incentives and ensuring that the environment is made conducive also for dealers by providing adequate storage facilities and ready markets locally and possibly for export.

Keywords: post-harvest, losses, plantain, banana, simple regression

Procedia PDF Downloads 293
1238 A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system.

Keywords: solar system, agricultural greenhouse, heating, storage, drying

Procedia PDF Downloads 67