Search results for: social networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11796

Search results for: social networks

11016 Envy and Schadenfreude Domains in a Model of Neurodegeneration

Authors: Hernando Santamaría-García, Sandra Báez, Pablo Reyes, José Santamaría-García, Diana Matallana, Adolfo García, Agustín Ibañez

Abstract:

The study of moral emotions (i.e., Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as monolithic domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested 20 patients with behavioral variant frontotemporal dementia (bvFTD), 24 patients with Alzheimer’s disease (AD), as a contrastive neurodegeneration model, and 20 healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the AD and control groups, bvFTD patients obtained significantly higher scores on all dimensions for both emotions. Interestingly, the legal dimension for both envy and Schadenfreude elicited higher emotional scores than the deservingness and moral dimensions. Furthermore, correlational analyses in bvFTD showed that higher envy and Schadenfreude scores were associated with greater deficits in social cognition, inhibitory control, and behavior. Brain anatomy findings (restricted to bvFTD and controls) confirmed differences in how these groups process each dimension. Schadenfreude was associated with the ventral striatum in all subjects. Also, in bvFTD patients, increased Schadenfreude across dimensions was negatively correlated with regions supporting social-value rewards, mentalizing, and social cognition (frontal pole, temporal pole, angular gyrus and precuneus). In all subjects, all dimensions of envy positively correlated with the volume of the anterior cingulate cortex, a region involved in processing unfair social comparisons. By contrast, in bvFTD patients, the intensified experience of envy across all dimensions was negatively correlated with a set of areas subserving social cognition, including the prefrontal cortex, the parahippocampus, and the amygdala. Together, the present results provide the first lesion-based evidence for the multidimensional nature of the emotional experiences of envy and Schadenfreude. Moreover, this is the first demonstration of a selective exacerbation of envy and Schadenfreude in bvFTD patients, probably triggered by atrophy to social cognition networks. Our results offer new insights into the mechanisms subserving complex emotions and moral cognition in neurodegeneration, paving the way for groundbreaking research on their interaction with other cognitive, social, and emotional processes.

Keywords: social cognition, moral emotions, neuroimaging, frontotemporal dementia

Procedia PDF Downloads 292
11015 A Study of Social Media Users’ Switching Behavior

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.

Keywords: social media, switching, social media fatigue, alternative attractiveness

Procedia PDF Downloads 142
11014 The Idea of Making of Corporate Social Responsibility Compulsory in India

Authors: Jagannath Mohanty, Shiv Nath Sinha

Abstract:

India is the first country in the world, where spending on Corporate Social Responsibily (CSR) has been made mandatory. Predominantly Indian enterprises have been philanthrophic for hundreds of years, where giving back to the society is the religious duty of the rich. Therefore Indian businesses have been voluntarily spending on CSR activities, while several businesses kept spending on non business activities a significant number of entrepreneurs abstained from social spending, leading Government of India to take the lesgislative route by mandating 2% spend of net profit on CSR activities failing which companeis will be dealt legally. While the legislation on suface appers progressive and pro social, yet the consequences of making a rather volutary action a legally binding act is yet to be seen. This paper examines the possible social impact of the legislation and potential response of the corporate to a legislation of this kind.

Keywords: corporate social responsibility (CSR), companies act 2013, corporate citizenship, social spending

Procedia PDF Downloads 381
11013 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 347
11012 The Use of Facebook as a Social Media by Political Parties in the June 7 Election in Konya

Authors: Yasemin Gülşen Yılmaz, Süleyman Hakan Yılmaz, Muhammet Erbay

Abstract:

Social media is among the most important means of communication. Social media offers individuals and groups with an opportunity for participatory socialization over the internet, which is free of any time and place restrictions. Social media is a kind of interactive communication and bilateral social network. Various communication contents can be shared and put into mass circulation easily and quickly through social media. These sharings are not only limited to individuals but also happen to groups, institutions, and different constitutions. Their contents consist of any type of written message, audio and video files. We are living in the social media era now. It is not surprising that social media which has extensive communication facilities and massive prevalence is used in politics. Therefore, the use of social media (Facebook) by political parties during the Turkish general elections held on June 7, 2015, has been chosen as our research subject. Four parties namely, AKP, CHP, MHP and HDP who have the majority of votes in Turkey and participate in elections in Konya have been selected for our study. Their provincial centers’ and parliamentary candidates` use of social media (Facebook) on the last three days prior to the election have been examined and subjected to a qualitative analysis by means of content analysis.

Keywords: social media, June 7 general elections, politics, Facebook

Procedia PDF Downloads 404
11011 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process

Authors: A. Assad, T. Zayed

Abstract:

Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.

Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process

Procedia PDF Downloads 148
11010 Towards a Goal-Question-Metric Based Approach to Assess Social Sustainability of Software Systems

Authors: Rahma Amri, Narjès Bellamine Ben Saoud

Abstract:

Sustainable development or sustainability is one of the most urgent issues in actual debate in almost domains. Particularly the significant way the software pervades our live should make it in the center of sustainability concerns. The social aspects of sustainability haven’t been well studied in the context of software systems and still immature research field that needs more interest among researchers’ community. This paper presents a Goal-Question-Metric based approach to assess social sustainability of software systems. The approach is based on a generic social sustainability model taken from Social sciences.

Keywords: software assessment approach, social sustainability, goal-question-metric paradigm, software project metrics

Procedia PDF Downloads 396
11009 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks

Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi

Abstract:

Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.

Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks

Procedia PDF Downloads 530
11008 Effects of Social Stories toward Social Interaction of Students with Autism Spectrum Disorder

Authors: Sawitree Wongkittirungrueang

Abstract:

The objectives of this research were: 1) to study the effect of social stories on social interaction of students with autism. The sample was Pratomsuksa level 5 student with autism, Khon Kaen University Demonstration School, who was diagnosed by the Physician as High Functioning Autism since he was able to read, write, calculate and was studying in inclusive classroom. However, he still had disability in social interaction to participate in social activity group and communication. He could not learn how to develop friendship or create relationship. He had inappropriate behavior in social context. He did not understand complex social situations. In addition, he did seemed not know time and place. He was not able to understand feeling of oneself as well as the others. Consequently, he could not express his emotion appropriately. He did not understand or express his non-verbal language for communicating with friends. He lacked of common interest or emotion with nearby persons. He greeted inappropriately or was not interested in greeting. In addition, he did not have eye contact. He used inadequate language etc. He was elected by Purposive Sampling. His parents were willing to allow them to participate in this study. The research instruments were the lesson plan of social stories, and the picture book of social stories. The instruments used for data collection, were the social interaction evaluation of autistic students. This research was Quasi Experimental Research as One Group Pre-test, Post-test Design. For the Pre-test, the experiment was conducted by social stories. Then, the Post-test was implemented. The statistic used for data analysis, included the Mean, and Standard Deviation. The research findings were shown by Graph. The findings revealed hat the autistic students taught by social stories indicated better social interaction after being taught by social stories.

Keywords: social story, autism spectrum disorder (ASD), autism, social interaction

Procedia PDF Downloads 246
11007 Social Perspectives on Population of People Living Postively; An Indian Scenario, Evidence from Tiruchirappalli

Authors: Uwonkunda Jeanne, J. Godwin Prem Singh, Anjaneyalu Subbiah

Abstract:

HIV/AIDS is known to affect an individual not only physically but also mentally, socially, and financially. It is a syndrome that builds a vacuum in a person affecting his/her life as a whole.

Keywords: People living with HIV, social dysfunction, stigma, and Social support.

Procedia PDF Downloads 510
11006 Social Innovation Rediscovered: An Analysis of Empirical Research

Authors: Imen Douzi, Karim Ben Kahla

Abstract:

In spite of the growing attention for social innovation, it is still considered to be in a stage of infancy with minimal progress in theory development. Upon examining the field of study, one would have to conclude that, over the past two decades, academic research has focused primarily on establishing a conceptual foundation. This has resulted in a considerable stream of conceptual papers which have outnumbered empirical articles. Nevertheless, despite its growing popularity, scholars and practitioners are far from reaching a consensus as to what social innovation actually means which resulted in competing definitions and approaches within the field of social innovation and lack of unifying conceptual framework. This paper reviews empirical research studies on social innovation, classifies them along three dimensions and summarizes research findings for each of these dimensions. Preliminary to the analysis of empirical researches, an overview of different perspectives of social innovation is presented.

Keywords: analysis of empirical research, definition, empirical research, social innovation perspectives

Procedia PDF Downloads 384
11005 Factorial Design Analysis for Quality of Video on MANET

Authors: Hyoup-Sang Yoon

Abstract:

The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.

Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2

Procedia PDF Downloads 415
11004 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 177
11003 Issues and Challenges in Social Work Field Education: The Field Coordinator's Perspective

Authors: Tracy B.E. Omorogiuwa

Abstract:

Understanding the role of social work in improving societal well-being cannot be separated from the place of field education, which is an integral aspect of social work education. Field learning provides students with knowledge and opportunities to experience solving issues in the field and giving them a clue of the practice situation. Despite being a crucial component in social work curriculum, field education occupies a large space in learning outcome, given the issues and challenges pertaining to its purpose and significance in the society. The drive of this paper is to provide insight on the specific ways in which field education has been conceived, realized and valued in the society. Emphasis is on the significance of field instruction; the link with classroom learning; and the structure of field experience in social work education. Given documented analysis and experience, this study intends to contribute to the development of social work curriculum, by analyzing the pattern, issues and challenges fronting the social work field education in the University of Benin, Nigeria.

Keywords: challenges, curriculum, field education, social work education

Procedia PDF Downloads 300
11002 The Anatomy and Characteristics of Online Romance Scams

Authors: Danuvasin Charoen

Abstract:

Online romance scams are conducted by criminals using social networks and dating sites. These criminals use love to deceive the victims to send them money. The victims not only lose money to the criminals, but they are also heartbroken. This study investigates how online romance scams work and why people become victims to them. The researcher also identifies the characteristics of the perpetrators and victims. The data were collected from in-depth interviews with former victims and police officers responsible for the cases. By studying the methods and characteristics of the online romance scam, we can develop effective methods and policies to reduce the rates of such crimes.

Keywords: romance scam, online scam, phishing, cybercrime

Procedia PDF Downloads 159
11001 Impact of Corporate Social Responsibility on the Organisational Performance

Authors: Jagbir Singh Kadyan, C. A. Suman Kadyan

Abstract:

The researchers attempts to establish whether a relationship exists between the social activities undertaken & the funds that has been spent by the selected corporate organisations. Corporate listed on the (NSE) National Stock Exchange of India, under different categories shall be selected as a sample for the purpose of this study. The researches shall also study the dynamics of corporate social responsibility funding, financing & management of corporate social responsibility funds by the above selected organisations in the Indian context. The rationale behind selecting & undertaking specific corporate social responsibility activities shall be analysed & interpreted to discover the real drivers of corporate social responsibility. Besides above, an attempt shall further make an effort to understand & analyse the nature of impact on the selected corporate organisations on its overall performances due to the activities undertaken under their specific corporate social responsibility programs.

Keywords: corporate social responsibility, organisational performance, national stock exchange, sustainability, society, health, education, sanitation, environment

Procedia PDF Downloads 597
11000 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 135
10999 Education for Social Justice: University Teachers’ Conceptions and Practice: A Comparative Study

Authors: Digby Warren, Jiri Kropac

Abstract:

While aspirations of social justice are often articulated by universities as a “feel good” mantra, what is meant by education for social justice deserves deeper consideration. Based on in-depth interviews with academics (voluntary participants in this research) in different disciplines and institutions in the UK, Czech Republic, and other EU countries, this comparative study presents thematic findings regarding lecturers’ conceptions of education for social justice -what it is, why it is important, why they are personally committed to it, how it connects with their own values- and their practice of it- how it is implemented through curriculum content, teaching and learning activities, and assessment tasks. It concludes by presenting an analysis of the challenges, constraints, and enabling factors in practising social justice education in different subject, institutional and national contexts.

Keywords: higher education, social justice, inclusivity, diversity

Procedia PDF Downloads 127
10998 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid

Procedia PDF Downloads 447
10997 The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts

Authors: Xin-Hua Zhao

Abstract:

In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market.

Keywords: analysts' earnings forecasts, corporate social responsibility disclosure, economic effect, information asymmetry

Procedia PDF Downloads 157
10996 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription

Authors: Michael Fundator

Abstract:

Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.

Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription

Procedia PDF Downloads 407
10995 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 356
10994 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 112
10993 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 129
10992 The Role of Social Influences and Cultural Beliefs on Perceptions of Postpartum Depression among Mexican Origin Mothers in San Diego

Authors: Mireya Mateo Gomez

Abstract:

The purpose of this study was to examine the perceptions first-generation Mexican origin mothers living in San Diego have on postpartum depression (PPD), with a special focus on social influences and cultural beliefs towards those meanings. This study also aimed to examine possible PPD help-seeking behaviors that first-generation Mexican origin mothers can perform. The Health Belief Model (HBM) and Social Ecological Model (SEM) were the guiding theoretical frameworks for this study. Data for this study were collected from three focus groups, four in-depth interviews, and the distribution of an acculturation survey (ARSMA II). There were a total of 15 participants, in which participant’s mean age was 45, and the mean age migrated to the United States being 22. Most participants identified as being married, born in Southern or Western Mexico, and with a strong Mexican identity in relation to the ARSMA survey. Participants identified four salient PPD perceptions corresponding to the interpersonal level of SEM. These four main perceptions were: 1) PPD affecting the identity of motherhood; 2) PPD being a natural part of a mother’s experience but mitigated by networks; 3) PPD being a U.S. phenomenon due to family and community breakdown; and 4) natural remedies as a preferred PPD treatment. In regard to themes relating to help seeking behaviors, participants identified seven being: 1) seeking help from immediate family members; 2) practicing home remedies; 3) seeking help from a medical professional; 4) obtaining help from a clinic or organization; 5) seeking help from God; 6) participating in PPD support groups; and 7) talking to a friend. It was evident in this study that postpartum depression is not a well discussed topic within the Mexican immigrant population. In relation to the role culture and social influences have on PPD perceptions, most participants shared hearing or learning about PPD from their family members or friends. Participants also stated seeking help from family members if diagnosed with PPD and seeking out home remedies. This study as well provides suggestions to increase the awareness of PPD among the Mexican immigrant community.

Keywords: cultural beliefs, health belief model, Mexican origin mothers, perceptions, postpartum depression social ecological model

Procedia PDF Downloads 153
10991 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 151
10990 The Impact of Socioeconomic Status on Citizens’ Perceptions of Social Justice in China

Authors: Yan Liu

Abstract:

The Gini coefficient indicates that the inequality of income distribution is rising in China. How individuals viewing the equality of current society is an important predicator of social turbulence. Perceptions of social justice may vary according to the social stratification. People usually use socioeconomic status to identify divisions between social stratifications. The objective of this study is to explore the potential influence of socioeconomic status on citizens’ perceptions of social justice in China. Socioeconomic status (SES) is usually reflected by either an SES indicator or a composite of three core dimensions: education, income and occupation. With data collected in the 2010 Chinese General Social Survey (CGSS), this study uses OLS regression analyses to examine the relationship between socioeconomic status (SES) and citizens’ perceptions of social justice. This study finds that most Chinese citizens believe that the current society is fair or more than fair. Socioeconomic status (SES) has a positive impact on citizens’ perceptions of social justice, which means individuals with higher indicator of socioeconomic status prefer to believe current society is fair. However, the three core dimensions which are used to measure socioeconomic status (SES) have different influences on perceptions of social justice: First, income helps enhance citizens’ sense of social justice. Second, education weakens citizens’ sense of social justice. Third, compared to the middle occupational status, people of both higher occupational status and lower occupational status have higher levels of perceptions of social justice. Though education creates a negative influence on perceptions of social justice, its effect is much weaker than that of income, which indicates income is a determining factor for enhancing people’s perceptions of social justice in China’s market society. Policy implications are discussed.

Keywords: education, income, occupation, perceptions of social justice, social stratification, socioeconomic status

Procedia PDF Downloads 313
10989 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression

Authors: J. S. Saini, P. P. K. Sandhu

Abstract:

The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.

Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control

Procedia PDF Downloads 340
10988 Chairussyuhur Arman, Totti Tjiptosumirat, Muhammad Gunawan, Mastur, Joko Priyono, Baiq Tri Ratna Erawati

Authors: Maria M. Giannakou, Athanasios K. Ziliaskopoulos

Abstract:

Transmission pipelines carrying natural gas are often routed through populated cities, industrial and environmentally sensitive areas. While the need for these networks is unquestionable, there are serious concerns about the risk these lifeline networks pose to the people, to their habitat and to the critical infrastructures, especially in view of natural disasters such as earthquakes. This work presents an Integrated Pipeline Risk Management methodology (IPRM) for assessing the hazard associated with a natural gas pipeline failure due to natural or manmade disasters. IPRM aims to optimize the allocation of the available resources to countermeasures in order to minimize the impacts of pipeline failure to humans, the environment, the infrastructure and the economic activity. A proposed knapsack mathematical programming formulation is introduced that optimally selects the proper mitigation policies based on the estimated cost – benefit ratios. The proposed model is demonstrated with a small numerical example. The vulnerability analysis of these pipelines and the quantification of consequences from such failures can be useful for natural gas industries on deciding which mitigation measures to implement on the existing pipeline networks with the minimum cost in an acceptable level of hazard.

Keywords: cost benefit analysis, knapsack problem, natural gas distribution network, risk management, risk mitigation

Procedia PDF Downloads 296
10987 A Linearly Scalable Family of Swapped Networks

Authors: Richard Draper

Abstract:

A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.

Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology

Procedia PDF Downloads 125