Search results for: renewable energy facility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9232

Search results for: renewable energy facility

8452 Assessing the Effectiveness of Warehousing Facility Management: The Case of Mantrac Ghana Limited

Authors: Kuhorfah Emmanuel Mawuli

Abstract:

Generally, for firms to enhance their operational efficiency of logistics, it is imperative to assess the logistics function. The cost of logistics conventionally represents a key consideration in the pricing decisions of firms, which suggests that cost efficiency in logistics can go a long way to improve margins. Warehousing, which is a key part of logistics operations, has the prospect of influencing operational efficiency in logistics management as well as customer value, but this potential has often not been recognized. It has been found that there is a paucity of research that evaluates the efficiency of warehouses. Indeed, limited research has been conducted to examine potential barriers to effective warehousing management. Due to this paucity of research, there is limited knowledge on how to address the obstacles associated with warehousing management. In order for warehousing management to become profitable, there is the need to integrate, balance, and manage the economic inputs and outputs of the entire warehouse operations, something that many firms tend to ignore. Management of warehousing is not solely related to storage functions. Instead, effective warehousing management requires such practices as maximum possible mechanization and automation of operations, optimal use of space and capacity of storage facilities, organization through "continuous flow" of goods, a planned system of storage operations, and safety of goods. For example, there is an important need for space utilization of the warehouse surface as it is a good way to evaluate the storing operation and pick items per hour. In the setting of Mantrac Ghana, not much knowledge regarding the management of the warehouses exists. The researcher has personally observed many gaps in the management of the warehouse facilities in the case organization Mantrac Ghana. It is important, therefore, to assess the warehouse facility management of the case company with the objective of identifying weaknesses for improvement. The study employs an in-depth qualitative research approach using interviews as a mode of data collection. Respondents in the study mainly comprised warehouse facility managers in the studied company. A total of 10 participants were selected for the study using a purposive sampling strategy. Results emanating from the study demonstrate limited warehousing effectiveness in the case company. Findings further reveal that the major barriers to effective warehousing facility management comprise poor layout, poor picking optimization, labour costs, and inaccurate orders; policy implications of the study findings are finally outlined.

Keywords: assessing, warehousing, facility, management

Procedia PDF Downloads 64
8451 Guadua Bamboo as Eco-Friendly Element in Interior Design and Architecture

Authors: Sarah Noaman

Abstract:

Utilizing renewable resources has become extensive solution for most problems in Egypt nowadays. It plays role in environmental issues such as energy crisis, lake of natural resources and climate change. This paper focuses on the importance of working with the key concepts of creating eco-friendly spaces in Egypt by using traditional perennial plants, such as Guadua bamboo as renewable resources in structures manufacture. Egypt is in critical need to search for alternative raw materials. Thus, this paper focuses on studying the usage of neglected yet affordable materials, such as Guadua bamboo in light weight structures and digital fabrication. Guadua bamboo has been cultivated throughout in tropical and subtropical areas. In Egypt, they exist in many rural areas where people try to control their growth by using pesticides as it serves no economic purpose. This paper aims to discuss the usage of Guadua bamboo either in its original state or after fabrication in the context of interior design and architecture. The results will show the applicability of using perennial plants as complementary materials in the manufacturing processes; also the conclusion will focus the lights on the importance of re-forming shallow water plants in interior design and architecture.

Keywords: digital fabrication, Guadua bamboo, zero-waste material, sustainable material, interior architecture

Procedia PDF Downloads 151
8450 Scheduling Residential Daily Energy Consumption Using Bi-criteria Optimization Methods

Authors: Li-hsing Shih, Tzu-hsun Yen

Abstract:

Because of the long-term commitment to net zero carbon emission, utility companies include more renewable energy supply, which generates electricity with time and weather restrictions. This leads to time-of-use electricity pricing to reflect the actual cost of energy supply. From an end-user point of view, better residential energy management is needed to incorporate the time-of-use prices and assist end users in scheduling their daily use of electricity. This study uses bi-criteria optimization methods to schedule daily energy consumption by minimizing the electricity cost and maximizing the comfort of end users. Different from most previous research, this study schedules users’ activities rather than household appliances to have better measures of users’ comfort/satisfaction. The relation between each activity and the use of different appliances could be defined by users. The comfort level is at the highest when the time and duration of an activity completely meet the user’s expectation, and the comfort level decreases when the time and duration do not meet expectations. A questionnaire survey was conducted to collect data for establishing regression models that describe users’ comfort levels when the execution time and duration of activities are different from user expectations. Six regression models representing the comfort levels for six types of activities were established using the responses to the questionnaire survey. A computer program is developed to evaluate electricity cost and the comfort level for each feasible schedule and then find the non-dominated schedules. The Epsilon constraint method is used to find the optimal schedule out of the non-dominated schedules. A hypothetical case is presented to demonstrate the effectiveness of the proposed approach and the computer program. Using the program, users can obtain the optimal schedule of daily energy consumption by inputting the intended time and duration of activities and the given time-of-use electricity prices.

Keywords: bi-criteria optimization, energy consumption, time-of-use price, scheduling

Procedia PDF Downloads 58
8449 Training 'Green Ambassadors' in the Community-Action Learning Course

Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia

Abstract:

The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.

Keywords: air pollution, green ambassador, recycling, renewable energy

Procedia PDF Downloads 242
8448 The Importance of Fire Safety in Egypt

Authors: Omar Shakra

Abstract:

This paper contains a huge number of benefits that we can use it in several places and times in fire safety protection in the Middle East especially in Egypt . People here in Egypt did not consider the safety and fire protection as important as it is. But on the other hand, its very important for them to contain the fire systems and safety in every facility, the companies , hospitals , police stations , and even the super markets must use the fire system. It makes the facility safe to the visitors while they are using it.From my point of view as the owner Fire Safety Company called Deluge Egypt , i can say that not all of the companies use the fire system protection according to the high cost they prefer to build their company without the protection, and this is make the building totally unsafe to be used from the visitors or client.So, i am looking for new methods and technology to invest in Egypt, and this is through attending this Conference and let the audiences know more about the services i provide and [to let them know about the importance of the Fire Safety in Egypt. The Objectives of my research 1- The system that i used in my Company. 2- The benefits of the Fire System Protection. 3-The importance of the Fire System and safety. 4-The use of the new Technologies. 5-The hardships that i found while having new deals with new clients.

Keywords: fire, system, protection, fire hydrants, security, alarms

Procedia PDF Downloads 105
8447 An Electromechanical Device to Use in Road Pavements to Convert Vehicles Mechanical Energy into Electrical Energy

Authors: Francisco Duarte, Adelino Ferreira, Paulo Fael

Abstract:

With the growing need for alternative energy sources, research into energy harvesting technologies has increased considerably in recent years. The particular case of energy harvesting on road pavements is a very recent area of research, with different technologies having been developed in recent years. However, none of them have presented high conversion efficiencies nor technical or economic viability. This paper deals with the development of a mechanical system to implement on a road pavement energy harvesting electromechanical device, to transmit energy from the device surface to an electrical generator. The main goal is to quantify the energy harvesting, transmission and conversion efficiency of the proposed system and compare it with existing systems. Conclusions about the system’s efficiency are presented.

Keywords: road pavement, energy harvesting, energy conversion, system modelling

Procedia PDF Downloads 323
8446 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility

Authors: Etienne Provencal, David L. St-Pierre

Abstract:

A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.

Keywords: EGM, linear regression, model prediction, slot operations

Procedia PDF Downloads 253
8445 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries

Authors: Moustafa M. S. Sanad

Abstract:

The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.

Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries

Procedia PDF Downloads 57
8444 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 467
8443 Feasibility Analysis of Active and Passive Technical Integration of Rural Buildings

Authors: Chanchan Liu

Abstract:

In the process of urbanization in China, the rapid development of urban construction has been achieved, but a large number of rural buildings still continue the construction mode many years ago. This paper mainly analyzes the rural residential buildings in the hot summer and cold winter regions analyze the active and passive technologies of the buildings. It explored the feasibility of realizing the sustainable development of rural buildings in an economically reasonable range, using mainly passive technologies, innovative building design methods, reducing the buildings’ demand for conventional energy, and supplementing them with renewable energy sources. On this basis, appropriate technology and regional characteristics are proposed to keep the rural architecture retain its characteristics in the development process. It is hoped that this exploration can provide reference and help for the development of rural buildings in the hot summer and cold winter regions.

Keywords: the rural building, active technology, passive technology, sustainable development

Procedia PDF Downloads 215
8442 Technological Measures to Reduce the Environmental Impact of Swimming Pools

Authors: Fátima Farinha, Miguel J. Oliveira, Gina Matias, Armando Inverno, Jânio Monteiro, Cristiano Cabrita

Abstract:

In the last decades, the construction of swimming pools for recreational activities has grown exponentially in southern Europe. Swimming pools are used both for private use in villas and for collective use in hotels or condominiums. However, they have a high environmental impact, mainly in terms of water and energy consumption, being used for a short period of time, depending significantly on favorable atmospheric conditions. Contrary to what would be expected, not enough research has been conducted to reduce the negative impact of this equipment. In this context, this work proposes and analyses technological measures to reduce the environmental impacts of swimming pools, such as thermal insulation of the tank, water balance in order to detect leaks and optimize the backwash process, integration of renewable energy generation, and a smart control system that meets the requirements of the user. The work was developed within the scope of the Ecopool+++ project, which aims to create innovative heated pools with reduced thermal losses and integration of SMART energy plus water management systems. The project is in the final phase of its development, with very encouraging results.

Keywords: swimming pools, sustainability, thermal losses, water management system

Procedia PDF Downloads 103
8441 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 121
8440 Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy

Authors: Yuichi Miyamoto

Abstract:

In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The paper proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption.

Keywords: natural energy, modal shift, personal transportation, battery

Procedia PDF Downloads 405
8439 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 388
8438 Scenarios for the Energy Transition in Residential Buildings for the European Regions

Authors: Domenico Carmelo Mongelli, Laura Carnieletto, Michele De Carli, Filippo Busato

Abstract:

Starting from the current context in which the Russian invasion in Ukraine has highlighted Europe's dependence on natural gas imports for heating buildings, this study proposes solutions to resolve this dependency and evaluates related scenarios in the near future. In the first part of this work the methodologies and results of the economic impact are indicated by simulating a massive replacement of boilers powered by fossil fuels with electrically powered hightemperature air-water heat pumps for heating residential buildings in different European climates, without changing the current energy mix. For each individual European region, the costs for the purchase and installation of heat pumps for all residential buildings have been determined. Again for each individual European region, the economic savings during the operation phase that would be obtained in this future scenario of energy transition from fossil fuels to the electrification of domestic heating were calculated. For the European regions for which the economic savings were identified as positive, the payback times of the economic investments were analysed. In the second part of the work, hypothesizing different scenarios for a possible greater use of renewable energy sources and therefore with different possible future scenarios of the energy mix, the methodologies and results of the simulations on the economic analysis and on the environmental analysis are reported which have allowed us to evaluate the future effects of the energy transition from boilers to heat pumps for each European region. In the third part, assuming a rapid short-term diffusion of cooling for European residential buildings, the penetration shares in the cooling market and future projections of energy needs for cooling for each European region have been identified. A database was created where the results of this research relating to 38 European Nations divided into 179 regions were reported. Other previous works on the topics covered were limited to analyzing individual European nations, without ever going into detail about the individual regions within each nation, while the original contribution of the present work lies in the fact that the results achieved allow a specific numerical analysis and punctual for every single European region.

Keywords: buildings, energy, Europe, future

Procedia PDF Downloads 88
8437 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 99
8436 Harvesting Value-added Products Through Anodic Electrocatalytic Upgrading Intermediate Compounds Utilizing Biomass to Accelerating Hydrogen Evolution

Authors: Mehran Nozari-Asbemarz, Italo Pisano, Simin Arshi, Edmond Magner, James J. Leahy

Abstract:

Integrating electrolytic synthesis with renewable energy makes it feasible to address urgent environmental and energy challenges. Conventional water electrolyzers concurrently produce H₂ and O₂, demanding additional procedures in gas separation to prevent contamination of H₂ with O₂. Moreover, the oxygen evolution reaction (OER), which is sluggish and has a low overall energy conversion efficiency, does not deliver a significant value product on the electrode surface. Compared to conventional water electrolysis, integrating electrolytic hydrogen generation from water with thermodynamically more advantageous aqueous organic oxidation processes can increase energy conversion efficiency and create value-added compounds instead of oxygen at the anode. One strategy is to use renewable and sustainable carbon sources from biomass, which has a large annual production capacity and presents a significant opportunity to supplement carbon sourced from fossil fuels. Numerous catalytic techniques have been researched in order to utilize biomass economically. Because of its safe operating conditions, excellent energy efficiency, and reasonable control over production rate and selectivity using electrochemical parameters, electrocatalytic upgrading stands out as an appealing choice among the numerous biomass refinery technologies. Therefore, we propose a broad framework for coupling H2 generation from water splitting with oxidative biomass upgrading processes. Four representative biomass targets were considered for oxidative upgrading that used a hierarchically porous CoFe-MOF/LDH @ Graphite Paper bifunctional electrocatalyst, including glucose, ethanol, benzyl, furfural, and 5-hydroxymethylfurfural (HMF). The potential required to support 50 mA cm-2 is considerably lower than (~ 380 mV) the potential for OER. All four compounds can be oxidized to yield liquid byproducts with economic benefit. The electrocatalytic oxidation of glucose to the value-added products, gluconic acid, glucuronic acid, and glucaric acid, was examined in detail. The cell potential for combined H₂ production and glucose oxidation was substantially lower than for water splitting (1.44 V(RHE) vs. 1.82 V(RHE) for 50 mA cm-2). In contrast, the oxidation byproduct at the anode was significantly more valuable than O₂, taking advantage of the more favorable glucose oxidation in comparison to the OER. Overall, such a combination of HER and oxidative biomass valorization using electrocatalysts prevents the production of potentially explosive H₂/O₂mixtures and produces high-value products at both electrodes with lower voltage input, thereby increasing the efficiency and activity of electrocatalytic conversion.

Keywords: biomass, electrocatalytic, glucose oxidation, hydrogen evolution

Procedia PDF Downloads 93
8435 Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept

Authors: M. Rafiur Rahman, M. Mezbah Uddin, Mohammad Irfan Uddin, M. Moinul Islam

Abstract:

With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief.

Keywords: coupled integrated dynamic analysis, SFC, time domain analysis, wave energy converters

Procedia PDF Downloads 219
8434 Social Medical Club: A Social Business Policy to Ensure Quality Health Services to the Underprivileged Areas of Underdeveloped Countries

Authors: Hasan Al Banna, Nazmus Sakib, Anjan Roy

Abstract:

From the perspective of the underdeveloped countries such as Bangladesh, health issue can readily be pointed out as the most demanding but the least promoted concern due to lack of initiatives from both government and NGOs. Furthermore an worldwide scenario is that most death and suffering from various pathogenic and non-pathogenic diseases occur due to delay diagnosis, and this happen for the lacking of regular health check-up facility or tradition. In this epistle, an innovative proposal on social business can be introduced to ensure the one-stop medical facility to the door-step of the rural society and create jobs for the educated rural youths to serve their own people. To illustrate the policy, this newly proposed organization will work as a health club which will offer a life-time membership to villagers within a very affordable fee of 250 BDT (2.63 Euro) per month. In this package the members will get the facility of tri-monthly full health check-up by specialist doctors, a health record book and computerized health database for each member and anytime medical consultancy for the members only. We will also organize free medical campaign and workshops on nutrition, sanitation, adulteration, pregnancy-care, child-health etc with the assistance of different sponsors. Among other services that will be provided on payment include emergency ambulance facility in low rents, quality diagnostic lab and 24-hour dispensary facility. Likewise, this policy will involve local educated people by recruiting them after providing intensive courses on nursing and other medical instrumental skills. Henceforth, the engagement of local youth will make the program more acceptable to the rural community. In the later part of this paper, a survey report on Daragram union of Manikganj district, Bangladesh, having population above 25000, will be presented to delineate the scenario how this policy can repay the initial capital expense of BDT 7 million (around 73381 Euro) within 5 years and how I can realistically earn handsome revenue from the first month of business. To recapitulate, this policy is very promising to enlighten the underprivileged community by providing health assurance, and alleviating unemployment besides the investor’s financial profit.

Keywords: create job for the rural people, handsome financial profit, quality health services, underprivileged areas of underdeveloped countries

Procedia PDF Downloads 426
8433 Evaluation of Methodologies for Measuring Harmonics and Inter-Harmonics in Photovoltaic Facilities

Authors: Anésio de Leles Ferreira Filho, Wesley Rodrigues de Oliveira, Jéssica Santoro Gonçalves, Jorge Andrés Cormane Angarita

Abstract:

The increase in electric power demand in face of environmental issues has intensified the participation of renewable energy sources such as photovoltaics, in the energy matrix of various countries. Due to their operational characteristics, they can generate time-varying harmonic and inter-harmonic distortions. For this reason, the application of methods of measurement based on traditional Fourier analysis, as proposed by IEC 61000-4-7, can provide inaccurate results. Considering the aspects mentioned herein, came the idea of the development of this work which aims to present the results of a comparative evaluation between a methodology arising from the combination of the Prony method with the Kalman filter and another method based on the IEC 61000-4-30 and IEC 61000-4-7 standards. Employed in this study were synthetic signals and data acquired through measurements in a 50kWp photovoltaic installation.

Keywords: harmonics, inter-harmonics, iec61000-4-7, parametric estimators, photovoltaic generation

Procedia PDF Downloads 485
8432 Energy Consumption in China’s Urban Water Supply System

Authors: Kate Smith, Shuming Liu, Yi Liu, Dragan Savic, Gustaf Olsson, Tian Chang, Xue Wu

Abstract:

In a water supply system, a great deal of care goes into sourcing, treating and delivering water to consumers, but less thought is given to the energy consumed during these processes. This study uses 2011 data to quantify energy use for urban water supply in China and investigates population density as a possible influencing factor. The objective is to provide information that can be used to develop energy-conscious water infrastructure policy, calculate the energy co-benefits of water conservation and compare energy use between China and other countries. The average electrical energy intensity and per capita electrical energy consumption for urban water supply in China in 2011 were 0.29 kWh/m3 and 33.2 kWh/cap•yr, respectively. Comparison between provinces revealed a direct correlation between energy intensity of urban water supply and population served per unit length of pipe. This could imply energy intensity is lower when more densely populated areas are supplied by relatively dense networks of pipes. This study also found that whereas the percentage of energy used for urban water supply tends to increase with the percentage of population served this increase is slower where water supply is more energy efficient and where a larger percentage of population is already supplied.

Keywords: china, electrical energy use, water-energy nexus, water supply

Procedia PDF Downloads 494
8431 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment

Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao

Abstract:

The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.

Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity

Procedia PDF Downloads 178
8430 A System Dynamics Model for Assessment of Alternative Energy Policy Measures: A Case of Energy Management System as an Energy Efficiency Policy Tool

Authors: Andra Blumberga, Uldis Bariss, Anna Kubule, Dagnija Blumberga

Abstract:

European Union Energy Efficiency Directive provides a set of binding energy efficiency measures to reach. Each of the member states can use either energy efficiency obligation scheme or alternative policy measures or combination of both. Latvian government has decided to divide savings among obligation scheme (65%) and alternative measures (35%). This decision might lead to significant energy tariff increase hence impact on the national economy. To assess impact of alternative policy measures focusing on energy management scheme based on ISO 50001 and ability to decrease share of obligation scheme a System Dynamics modeling was used. Simulation results show that energy efficiency goal can be met with alternative policy measure to large energy consumers in industrial, tertiary and public sectors by applying the energy tax exemption for implementers of energy management system. A delay in applying alternative policy measures plays very important role in reaching the energy efficiency goal. One year delay in implementation of this policy measure reduces cumulative energy savings from 2016 to 2017 from 5200 GWh to 3000 GWh in 2020.

Keywords: system dynamics, energy efficiency, policy measure, energy management system, obligation scheme

Procedia PDF Downloads 281
8429 Avoiding Medication Errors in Juvenile Facilities

Authors: Tanja Salary

Abstract:

This study uncovers a gap in the research and adds to the body of knowledge regarding medication errors in a juvenile justice facility. The study includes an introduction to data collected about medication errors in a juvenile justice facility and explores contributing factors that relate to those errors. The data represent electronic incident records of the medication errors that were documented from the years 2011 through 2019. In addition, this study reviews both current and historical research of empirical data about patient safety standards and quality care comparing traditional healthcare facilities to juvenile justice residential facilities. The theoretical/conceptual framework for the research study pertains to Bandura and Adams’s (1977) framework of self-efficacy theory of behavioral change and Mark Friedman’s results-based accountability theory (2005). Despite the lack of evidence in previous studies about addressing medication errors in juvenile justice facilities, this presenter will relay information that adds to the body of knowledge to note the importance of how assessing the potential relationship between medication errors. Implications for more research include recommendations for more education and training regarding increased communication among juvenile justice staff, including nurses, who administer medications to juveniles to ensure adherence to patient safety standards. There are several opportunities for future research concerning other characteristics about factors that may affect medication administration errors within the residential juvenile justice facility.

Keywords: juvenile justice, medication errors, psychotropic medications, behavioral health, juveniles, incarcerated youth, recidivism, patient safety

Procedia PDF Downloads 78
8428 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods

Authors: Amir Sattari

Abstract:

For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.

Keywords: energy calculation, energy consumption, energy simulation, IDA ICE, TMF energi

Procedia PDF Downloads 113
8427 Renewable Energy Utilization for Future Sustainability: An Approach to Roof-Mounted Photovoltaic Array Systems and Domestic Rooftop Rainwater Harvesting System Implementation in a Himachal Pradesh, India

Authors: Rajkumar Ghosh, Ananya Mukhopadhyay

Abstract:

This scientific paper presents a thorough investigation into the integration of roof-mounted photovoltaic (PV) array systems and home rooftop rainwater collection systems in a remote community in Himachal Pradesh, India, with the goal of optimum utilization of natural resources for attaining sustainable living conditions by 2030. The study looks into the technical feasibility, environmental benefits, and socioeconomic impacts of this integrated method, emphasizing its ability to handle energy and water concerns in remote rural regions. This comprehensive method not only provides a sustainable source of electricity but also ensures a steady supply of clean water, promoting resilience and improving the quality of life for the village's residents. This research highlights the potential of such integrated systems in supporting sustainable conditions in rural areas through a combination of technical feasibility studies, economic analysis, and community interaction. There would be 20690 villages and 1.48 million homes (23.79% annual growth rate) in Himachal Pradesh if all residential buildings in the state had roof-mounted photovoltaic arrays to capture solar energy for power generation. The energy produced is utilized to power homes, lessening dependency on traditional fossil fuels. The same residential buildings housed domestic rooftop rainwater collection systems. Rainwater runoff from rooftops is collected and stored in tanks for use in a number of residential purposes, such as drinking, cooking, and irrigation. The gathered rainfall enhances the region's limited groundwater resources, easing the strain on local wells and aquifers. Although Himachal Pradesh of India is a Power state, the PV arrays have reduced the reliance of village on grid power and diesel generators by providing a steady source of electricity. Rooftop rainwater gathering has not only increased residential water supply but it has also lessened the burden on local groundwater resources. This helps to replenish groundwater and offers a more sustainable water supply for the town. The neighbourhood has saved money by utilizing renewable energy and rainwater gathering. Furthermore, lower fossil fuel consumption reduces greenhouse gas emissions, which helps to mitigate the effects of climate change. The integrated strategy of installing grid connected rooftop photovoltaic arrays and home rooftop rainwater collecting systems in Himachal Pradesh rural community demonstrates a feasible model for sustainable development. According to “Swaran Jayanti Energy Policy of Himachal Pradesh”, Himachal Pradesh is planned 10 GW from rooftop mode from Solar Power. Government of India provides 40% subsidy on solar panel of 1-3 kw and subsidy of Rs 6,000 per kw per year to encourage domestic consumers of Himachal Pradesh. This effort solves energy and water concerns, improves economic well-being, and helps to conserve the environment. Such integrated systems can serve as a model for sustainable development in rural areas not only in Himachal Pradesh, but also in other parts of the world where resource scarcity is a major concern. Long-term performance and scalability of such integrated systems should be the focus of future study. Efforts should also be made to duplicate this approach in other rural areas and examine its socioeconomic and environmental implications over time.

Keywords: renewable energy, photovoltaic arrays, rainwater harvesting, sustainability, rural development, Himachal Pradesh, India

Procedia PDF Downloads 98
8426 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics

Authors: Namasivayam Navaranjan, Eric Dimla

Abstract:

The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.

Keywords: bioplastics, plastics, renewable resources, biomass

Procedia PDF Downloads 307
8425 90-Day Strength Training Intervention Decreases Incidence of Sarcopenia: A Pre- and Posttest Pilot Study of Older Adults in a Skilled Nursing Facility

Authors: Donna-Marie Phyllis Lanton

Abstract:

Sarcopenia is a well-known geriatric syndrome characterized by the progressive and generalized loss of muscle quantity or quality. The incidence of sarcopenia increases with age and is associated with adverse outcomes such as the increased risk of falls, cognitive impairment, loss of independence, diminished quality of life, increased health costs, need for care in a skilled nursing facility, and increased mortality. Physical activity, including resistance training, is the most prevalent recommendation for treating and preventing sarcopenia. Residents (N = 23) of a skilled nursing facility in East Orlando, Florida, participated in a 90-day strength training program designed using the PARIHS framework to improve measures of muscle mass, muscle strength, physical performance, and quality of life. Residents engaged in both resistance and balance exercises for 1 hour two times a week. Baseline data were collected and compared to data at Days 30, 60, and 90. T tests indicated significant gains on all measures from baseline to 90 days: muscle mass increased by 1.2 (t[22] = 2.85, p = .009), grip strength increased by 4.02 (t[22] = 8.15, p < .001), balance increased by 2.13 (t[22] = 18.64, p < .001), gait speed increased by 1.83 (t[22] = 17.84, p < .001), chair speed increased 1.87 (t[22] = 16.36, p < .001), and quality of life score increased by 17.5 (t[22] = 19.26, p < .001). For residents with sarcopenia in skilled nursing facilities, a 90-day strength training program with resistance and balance exercises may provide an option for decreasing the incidence of sarcopenia among that population

Keywords: muscle mass, muscle strength, older adults, PARIHS framework

Procedia PDF Downloads 87
8424 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 133
8423 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 606