Search results for: reinforced concrete beams
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2859

Search results for: reinforced concrete beams

2079 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber

Authors: Humayun R. H. Kabir

Abstract:

A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.

Keywords: dome, strengthening program, carbon fiber, load test

Procedia PDF Downloads 256
2078 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.

Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability

Procedia PDF Downloads 330
2077 Observation and Experience of Using Mechanically Activated Fly Ash in Concrete

Authors: Rudolf Hela, Lenka Bodnarova

Abstract:

Paper focuses on experimental testing of possibilities of mechanical activation of fly ash and observation of influence of specific surface and granulometry on final properties of fresh and hardened concrete. Mechanical grinding prepared various fineness of fly ash, which was classed by specific surface in accordance with Blain and their granulometry was determined by means of laser granulometer. Then, sets of testing specimens were made from mix designs of identical composition with 25% or Portland cement CEM I 42.5 R replaced with fly ash with various specific surface and granulometry. Mix design with only Portland cement was used as reference. Mix designs were tested on consistency of fresh concrete and compressive strength after 7, 28, 60, and 90 days.

Keywords: concrete, fly ash, latent hydraulicity, mechanically activated fly ash

Procedia PDF Downloads 212
2076 Pull-Out Behavior of Mechanical Anchor Bolts by Cyclic Loading

Authors: Yoshinori Kitsutaka, Kusumi Shingo, Matsuzawa Koichi, Kunieda Yoichiro, Yagisawa Yasuei

Abstract:

In this study, the pull-out properties of various mechanical anchor bolts embedded in concrete were investigated. Five kinds of mechanical anchor bolts were selected which were ordinarily used for concrete anchoring. Tensile tests for mechanical anchor bolts embedded in φ300mm x 100mm size concrete were conducted to measure the load - load displacement curves. The loading conditions were a monotonous loading and a repeating loading. The fracture energy for each mechanical anchor bolts was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the types of mechanical anchor bolts on the pull-out properties of concrete subjected in monotonous loading and a repeating loading was cleared.

Keywords: concrete, cyclic loading, mechanical anchor bolt, pull-out strength

Procedia PDF Downloads 262
2075 Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC

Authors: M. Hadji, N. Chiker, Y. Hadji, A. Haddad

Abstract:

In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix.

Keywords: MAX phase, microstructures, composites, hardness, SEM

Procedia PDF Downloads 347
2074 Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology

Authors: Xiang Wang

Abstract:

In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure.

Keywords: acoustic emission technology, concrete beam, parameter analysis, wave analysis, positioning

Procedia PDF Downloads 141
2073 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 15
2072 Suitability of Quarry Dust as Replacement of Sand in Medium Grade Concrete

Authors: Popoola M. Oyenola

Abstract:

Concrete plays the important role and a huge percentage of concrete is being utilized in every construction practices. Natural river sand is one of the major ingredients of concrete, is becoming expensive due to excessive cost of accessibility from sources. Also large scale depletion of sources creates environmental problems. Therefore, there is a need of economic alternative materials. Quarry dust is a waste obtained during quarrying process. It has been rampantly used in different construction practices and could be used as an effective fine aggregate instead of river sand. Partial and total replacement of fine aggregate in conventional concrete with quarry dust has been empirically conducted with the view to examining primarily the compressive strength of the resulting composite and possible total utilization of quarry dust as fine aggregate in the production of medium grade concrete. The results of the study showed that its specific gravity, porosity and water absorption showed satisfactory performance. The percentage replacement of natural river sand with quarry dust for a designed strength of 25N/mm2 varied at intervals of 10% up to a maximum value of 100%. A total of 132 cubes of 150 x 150 x 150mm were cast and tested at 7, 14 and 28 days of hydration. Compressive strength increases with curing age in all the mixes. Compressive strength decreases with increase in percentage of quarry dust. Generally the compressive strength of concrete incorporating quarry dust attained strength of 22.47 N/mm2 after 28 days which makes it a suitable aggregate for the production medium grade concrete.

Keywords: quarry dust, concrete, aggregates, compressive strength

Procedia PDF Downloads 243
2071 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs

Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam

Abstract:

The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4 ˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.

Keywords: Concrete, iron ore, ice rink, energy saving

Procedia PDF Downloads 342
2070 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft

Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik

Abstract:

The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.

Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement

Procedia PDF Downloads 303
2069 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 298
2068 Hybrid Concrete Construction (HCC) for Sustainable Infrastructure Development in Nigeria

Authors: Muhammad Bello Ibrahim, M. Auwal Zakari, Aliyu Usman

Abstract:

Hybrid concrete construction (HCC) combines all the benefits of pre-casting with the advantages of cast in-situ construction. Merging the two, as a hybrid structure, results in even greater construction speed, value, and the overall economy. Its variety of uses has gained popularity in the United States and in Europe due to its distinctive benefits. However, the increase of its application in some countries (including Nigeria) has been relatively slow. Several researches have shown that hybrid construction offers an ultra-high performance concrete that offers superior strength, durability and aesthetics with design flexibility and within sustainability credentials, based on the available and economically visible technologies. This paper examines and documents the criterion that will help inform the process of deciding whether or not to adopt hybrid concrete construction (HCC) technology rather than more traditional alternatives. It also the present situation of design, construction and research on hybrid structures.

Keywords: hybrid concrete construction, Nigeria, sustainable infrastructure development, design flexibility

Procedia PDF Downloads 561
2067 Non-linear Model of Elasticity of Compressive Strength of Concrete

Authors: Charles Horace Ampong

Abstract:

Non-linear models have been found to be useful in modeling the elasticity (measure of degree of responsiveness) of a dependent variable with respect to a set of independent variables ceteris paribus. This constant elasticity principle was applied to the dependent variable (Compressive Strength of Concrete in MPa) which was found to be non-linearly related to the independent variable (Water-Cement ratio in kg/m3) for given Ages of Concrete in days (3, 7, 28) at different levels of admixtures Superplasticizer (in kg/m3), Blast Furnace Slag (in kg/m3) and Fly Ash (in kg/m3). The levels of the admixtures were categorized as: S1=Some Plasticizer added & S0=No Plasticizer added; B1=some Blast Furnace Slag added & B0=No Blast Furnace Slag added; F1=Some Fly Ash added & F0=No Fly Ash added. The number of observations (samples) used for the research was one-hundred and thirty-two (132) in all. For Superplasticizer, it was found that Compressive Strength of Concrete was more elastic with regards to Water-Cement ratio at S1 level than at S0 level for the given ages of concrete 3, 7and 28 days. For Blast Furnace Slag, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for concrete ages 3, 7 and 28 days. For Fly Ash, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for Ages 3, 7 and 28 days. The research also tested for different combinations of the levels of Superplasticizer, Blast Furnace Slag and Fly Ash. It was found that Compressive Strength elasticity with regards to Water-Cement ratio was lowest (Elasticity=-1.746) with a combination of S0, B0 and F0 for concrete age of 3 days. This was followed by Elasticity of -1.611 with a combination of S0, B0 and F0 for a concrete of age 7 days. Next, the highest was an Elasticity of -1.414 with combination of S0, B0 and F0 for a concrete age of 28 days. Based on preceding outcomes, three (3) non-linear model equations for predicting the output elasticity of Compressive Strength of Concrete (in %) or the value of Compressive Strength of Concrete (in MPa) with regards to Water to Cement was formulated. The model equations were based on the three different ages of concrete namely 3, 7 and 28 days under investigation. The three models showed that higher elasticity translates into higher compressive strength. And the models revealed a trend of increasing concrete strength from 3 to 28 days for a given amount of water to cement ratio. Using the models, an increasing modulus of elasticity from 3 to 28 days was deduced.

Keywords: concrete, compressive strength, elasticity, water-cement

Procedia PDF Downloads 293
2066 Mixing Time: Influence on the Compressive Strength

Authors: J. Alvarez Muñoz, Dominguez Lepe J. A.

Abstract:

A suitable mixing time of the concrete, allows form a homogeneous mass, quality that leads to greater compressive strength and durability. Although there are recommendations as ASTM C94 standard these mention the time and the number of minimum and maximum speed for a ready-mix concrete of good quality, the specific behavior that would have a concrete mixed on site to variability of the mixing time is unknown. In this study was evaluated the behavior a design of mixture structural of f´c=250 kg/cm2, elaborate on site with limestone aggregate in warm sub-humid climate, subjected to different mixing times. Based on the recommendation for ready-mixed concrete ASTM C94, different times were set at 70, 90, 100, 110, 120, 140 total revolutions. A field study in which 14 works were observed where structural concrete made on site was used, allowed to set at 24 the number of revolutions to the reference mixture. For the production of concrete was used a hand feed concrete mixer with drum speed 28 RPM, the ratio w/c was 0.36 corrected, with a slump of 5-6 cm, for all mixtures. The compressive strength tests were performed at 3, 7, 14, and 28 days. The most outstanding results show increases in resistance in the mixtures of 24 to 70 revolutions between 8 and 17 percent and 70 to 90 revolutions of 3 to 8 percent. Increasing the number of revolutions at 110, 120 and 140, there was a reduction of the compressive strength of 0.5 to 8 percent. Regarding mixtures consistencies, they had a slump of 5 cm to 24, 70 and 90 rpm and less than 5 cm from 100 revolutions. Clearly, those made with more than 100 revolutions mixtures not only decrease the compressive strength but also the workability.

Keywords: compressive strength, concrete, mixing time, workability

Procedia PDF Downloads 400
2065 Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications

Authors: I. O. Oladele, J. A. Omotoyinbo, A. M. Okoro, A. G. Okikiola, J. L. Olajide

Abstract:

This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible.

Keywords: biomedical, composites, cow bone, mechanical properties, polyester, reinforcement

Procedia PDF Downloads 279
2064 Concrete Performance Evaluation of Coarse Aggregate Replacement by Civil Construction Waste

Authors: Juliane P. De Oliveira, Carlos H. Dos Santos, Marcia Shoji, Maria E. C. Ferreira, Natalia U. Yamaguchi

Abstract:

The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. Traces 50% and 100% obtained good results by comparing the actual specific mass, because the material used is lighter to the natural coarse aggregate. It was concluded that the concrete produced with recycled aggregates, even with inferior results, can be used where it is not needed a structural function, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources.

Keywords: green concrete, recycled aggregate, recycling, sustainable development

Procedia PDF Downloads 153
2063 Effect of Reinforcement Steel Ratio on the Behavior of R. C. Columns Exposed to Fire

Authors: Hatem Ghith

Abstract:

This research paper experimentally investigates the effect of burning by fire flame from one face on the behavior and load carrying capacity for reinforced columns. Residual ultimate load carrying capacity, axial deformation, crack pattern and maximum crack width for column specimens with and without burning were recorded and discussed. Tested six reinforced concrete columns were divided into control specimen and two groups. The first group was exposed to a fire with a different temperature (300, 500, 700 °C) for an hour with reinforcement ratio 0.89% and the second group was exposed to a fire with a temperature 500 °C for an hour with different reinforcement ratio (0.89%, 2.18%, and 3.57%), then all columns were tested under short-term axial loading. From the obtained results, it could be concluded that the fire parameters significantly influence the fire resistance of R.C columns. The fire parameters cause axial deformation and moment on the column due to the eccentricity that generated from the difference in temperature and consequently the compressive stresses of both faces of the columns but the increased reinforcement ratio enhanced the resistance of columns for axial deformation and moment on the column due to the eccentricity.

Keywords: columns, reinforcement ratio, strength, time exposure

Procedia PDF Downloads 246
2062 Prospective Future of Frame Fire Tests

Authors: Chung-Hao Wu, Tung-Dju Lin, Ming-Chin Ho, Minehiro Nishiyama

Abstract:

This paper discusses reported fire tests of concrete beams and columns, future fire tests of beam/column frames, and an innovative concept for designing a beam/column furnace. The proposed furnace could be designed to maximize the efficiency of fire test procedures and minimize the cost of furnace construction and fuel consumption. ASTM E119 and ISO 834 standards were drafted based on prescriptive codes and have several weaknesses. The first involves a provision allowing the support regions of a test element to be protected from fire exposure. The second deals with the L/30 deflection end point instead of the structural end point (collapse) in order to protect the hydraulic rams from fire damage. Furthermore, designers commonly use the measured fire endurances of interior columns to assess fire ratings of edge and corner columns of the same building. The validity of such an engineering practice is theoretically unsound. Performance-Based Codes (PBC) require verification tests of structural frames including the beam/column joints to overcome these weaknesses but allow the use of element test data as reference only. In the last 30 years, PBC have gained global popularity because the innovative design and flexibility in achieving an ultimate performance goal.

Keywords: fire resistance, concrete structure, beam/column frame, fire tests

Procedia PDF Downloads 330
2061 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation

Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy

Abstract:

Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).

Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation

Procedia PDF Downloads 151
2060 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 78
2059 Reliability of Cores Test Result at Elevated Temperature in Case of High Strength Concrete (HSC)

Authors: Waqas Ali

Abstract:

Concrete is broadly used as a structural material in the construction of buildings. When the concrete is exposed to elevated temperature, its strength evaluation is very necessary in the existing structure. In this study, the effect of temperature and the reliability of the core test has been evaluated. For this purpose, the cylindrical cores were extracted from High strength concrete (HSC) specimens that were exposed to the temperature ranging from 300 ℃ to 900 ℃ with a constant duration of 4 hr. This study compares the difference between the standard heated cylinders and the cores taken from them after curing of 90 days. The difference of cylindrical control and binary mix samples and extracted cores revealed that there is 12.19 and 12.38% difference at 300℃, while this difference was found to increase up to 12.89%, 13.03% at 500 ℃. Furthermore, this value is recorded as 12.99%, 13.57% and 14.40%, 14.38% at 700 ℃ and 900 ℃, respectively. A total of four equations were developed through a regression model for the prediction of the strength of concrete for both standard cylinders and extracted cores whose R square values were 0.9733, 0.9627 and 0.9473, 0.9452, respectively.

Keywords: high strength, temperature, core, reliability

Procedia PDF Downloads 73
2058 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 418
2057 Incorporation of Coarse Rubber Aggregates in the Formulation of Self-Compacting Concrete: Optimization and Characterization

Authors: Zaoiai Said, Makani Abdelkadir, Tafraoui Ahmed

Abstract:

Concrete material suffers from a relatively low tensile strength and deformation capacity is limited. Such defects of the concrete are very fragile and sensitive to shrinkage cracking materials. The Self- Compacting Concrete (SCC) are highly fluid concretes whose implementation without vibration. This material replaces traditional vibrated concrete mainly seen techno-economic interest it presents. The SCC has several advantages which are at the origin of their development crunching. The research is therefore to conduct a comparison in terms of rheological and mechanical performance between different formulations to find the optimal dosage for rubber granulates. Through this research, we demonstrated that it is possible to make different settings SCC composition having good rheological and mechanical properties. This study also showed that the substitution of natural coarse aggregates (NA) by coarse rubber aggregates (RA) in the composition of the SCC, contributes to a slight variation of workability in the fresh state parameters still remaining in the field of SCC required by the AFGC recommendations. The experimental results show that the compressive strengths of SCC decreased slightly by substituting NA by RA. Finally, the decrease in free shrinkage is proportional to the percentage of RA incorporated into the composition of concrete. This reduction is mainly due to the improvement of the deformability of these materials.

Keywords: self-compacting concrete, coarse rubber aggregate, rheological characterization, mechanical performance, shrinkage

Procedia PDF Downloads 287
2056 Structural Behavior of Composite Hollow RC Column under Combined Loads

Authors: Abdul Qader Melhm, Hussein Elrafidi

Abstract:

This paper is dealing with studying the structural behavior of a steel-composite hollow reinforced concrete (RC) column model under combined eccentric loading. The composite model consists of an inner steel tube surrounded via a concrete core with longitudinal and circular transverse reinforcement. The radius of gyration according to American and Euro specifications be calculated, in order to calculate the thinnest ratio for this type of composite column model, in addition to the flexural rigidity. Formulas for interaction diagram is given for this type of model, which is a general loading conditions in which an element is exposed to an axial load with bending at the same time. The structural capacity of this model, elastic, plastic loads and strains will be computed and compared with experimental results. The total eccentric axial load of the column model is calculated based on the effective length KL available from several relationships provided in the paper. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength will be investigated.

Keywords: column, composite, eccentric, inner tube, interaction, reinforcement

Procedia PDF Downloads 192
2055 Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

Authors: Yeşim Tosun, Remzi Şahin

Abstract:

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly.

Keywords: capillary water absorption, compressive strength, recycled concrete aggregates

Procedia PDF Downloads 312
2054 Geochemical Modeling of Mineralogical Changes in Rock and Concrete in Interaction with Groundwater

Authors: Barbora Svechova, Monika Licbinska

Abstract:

Geochemical modeling of mineralogical changes of various materials in contact with an aqueous solution is an important tool for predicting the processes and development of given materials at the site. The modeling focused on the mutual interaction of groundwater at the contact with the rock mass and its subsequent influence on concrete structures. The studied locality is located in Slovakia in the area of the Liptov Basin, which is a significant inter-mountain lowland, which is bordered on the north and south by the core mountains belt of the Tatras, where in the center the crystalline rises to the surface accompanied by Mesozoic cover. Groundwater in the area is bound to structures with complicated geological structures. From the hydrogeological point of view, it is an environment with a crack-fracture character. The area is characterized by a shallow surface circulation of groundwater without a significant collector structure, and from a chemical point of view, groundwater in the area has been classified as calcium bicarbonate with a high content of CO2 and SO4 ions. According to the European standard EN 206-1, these are waters with medium aggression towards the concrete. Three rock samples were taken from the area. Based on petrographic and mineralogical research, they were evaluated as calcareous shale, micritic limestone and crystalline shale. These three rock samples were placed in demineralized water for one month and the change in the chemical composition of the water was monitored. During the solution-rock interaction there was an increase in the concentrations of all major ions, except nitrates. There was an increase in concentration after a week, but at the end of the experiment, the concentration was lower than the initial value. Another experiment was the interaction of groundwater from the studied locality with a concrete structure. The concrete sample was also left in the water for 1 month. The results of the experiment confirmed the assumption of a reduction in the concentrations of calcium and bicarbonate ions in water due to the precipitation of amorphous forms of CaCO3 on the surface of the sample.Vice versa, it was surprising to increase the concentration of sulphates, sodium, iron and aluminum due to the leaching of concrete. Chemical analyzes from these experiments were performed in the PHREEQc program, which calculated the probability of the formation of amorphous forms of minerals. From the results of chemical analyses and hydrochemical modeling of water collected in situ and water from experiments, it was found: groundwater at the site is unsaturated and shows moderate aggression towards reinforced concrete structures according to EN 206-1a, which will affect the homogeneity and integrity of concrete structures; from the rocks in the given area, Ca, Na, Fe, HCO3 and SO4. Unsaturated waters will dissolve everything as soon as they come into contact with the solid matrix. The speed of this process then depends on the physicochemical parameters of the environment (T, ORP, p, n, water retention time in the environment, etc.).

Keywords: geochemical modeling, concrete , dissolution , PHREEQc

Procedia PDF Downloads 197
2053 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 287
2052 Some Aspects of Study the Leaching and Acid Corrosion of Concrete

Authors: Alena Sicakova, Adriana Estokova

Abstract:

Although properly made concrete is inherently a durable material, there are many physical and chemical forces in the environment which can contribute to its deterioration. This paper deals with two aspects of concrete durability in chemical aggressive environment: degradation effect of particular aggressive exposure and role of particular mineral additives. Results of the study of leaching and acid corrosion processes in samples prepared with specific dosage of microsilica and zeolite are given in the paper. Corrosion progress after 60-day exposition is manifested by increasing rate of both Ca and Si release, what is identified by XRF method. Kind and dosage of additions used in experiment was found to be helpful for stabilization of concrete microstructure. The lowest concentration of mean elements in leachates was observed for mixture V1 (microsilica only) unlike the V2 (microsilica + zeolite). It is surprising in the terms of recommendations of zeolite application for acid exposure. Using microsilica only seems to be more effective.

Keywords: sustainability, durability, concrete, acid corrosion, leaching

Procedia PDF Downloads 417
2051 Shoring System Selection for Deep Excavation

Authors: Faouzi Ahtchi-Ali, Marcus Vitiello

Abstract:

A study was conducted in the east region of the Middle East to assess the constructability of a shoring system for a 12-meter deep excavation. Several shoring systems were considered in this study including secant concrete piling, contiguous concrete piling, and sheet-piling. The excavation was carried out in a very dense sand with the groundwater level located at 3 meters below ground surface. The study included conducting a pilot test for each shoring system listed above. The secant concrete piling included overlapping concrete piles to a depth of 16 meters. Drilling method with full steel casing was utilized to install the concrete piles. The verticality of the piles was a concern for the overlap. The contiguous concrete piling required the installation of micro-piles to seal the gap between the concrete piles. This method revealed that the gap between the piles was not fully sealed as observed by the groundwater penetration to the excavation. The sheet-piling method required pre-drilling due to the high blow count of the penetrated layer of saturated sand. This study concluded that the sheet-piling method with pre-drilling was the most cost effective and recommended a method for the shoring system.

Keywords: excavation, shoring system, middle east, Drilling method

Procedia PDF Downloads 468
2050 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects. 

Keywords: concrete, durability, pumice, SCC, transport, zeolite

Procedia PDF Downloads 187