Search results for: query optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3424

Search results for: query optimization

2644 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology

Authors: Vasu Velagapudi, G. Suresh

Abstract:

PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.

Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate

Procedia PDF Downloads 394
2643 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation

Authors: Sahil Imtiyaz

Abstract:

One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.

Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations

Procedia PDF Downloads 192
2642 A Model Architecture Transformation with Approach by Modeling: From UML to Multidimensional Schemas of Data Warehouses

Authors: Ouzayr Rabhi, Ibtissam Arrassen

Abstract:

To provide a complete analysis of the organization and to help decision-making, leaders need to have relevant data; Data Warehouses (DW) are designed to meet such needs. However, designing DW is not trivial and there is no formal method to derive a multidimensional schema from heterogeneous databases. In this article, we present a Model-Driven based approach concerning the design of data warehouses. We describe a multidimensional meta-model and also specify a set of transformations starting from a Unified Modeling Language (UML) metamodel. In this approach, the UML metamodel and the multidimensional one are both considered as a platform-independent model (PIM). The first meta-model is mapped into the second one through transformation rules carried out by the Query View Transformation (QVT) language. This proposal is validated through the application of our approach to generating a multidimensional schema of a Balanced Scorecard (BSC) DW. We are interested in the BSC perspectives, which are highly linked to the vision and the strategies of an organization.

Keywords: data warehouse, meta-model, model-driven architecture, transformation, UML

Procedia PDF Downloads 158
2641 Remote Monitoring and Control System of Potentiostat Based on the Internet of Things

Authors: Liang Zhao, Guangwen Wang, Guichang Liu

Abstract:

Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems.

Keywords: internet of things, pipe corrosion protection, potentiostat, remote monitoring

Procedia PDF Downloads 145
2640 Global Convergence of a Modified Three-Term Conjugate Gradient Algorithms

Authors: Belloufi Mohammed, Sellami Badreddine

Abstract:

This paper deals with a new nonlinear modified three-term conjugate gradient algorithm for solving large-scale unstrained optimization problems. The search direction of the algorithms from this class has three terms and is computed as modifications of the classical conjugate gradient algorithms to satisfy both the descent and the conjugacy conditions. An example of three-term conjugate gradient algorithm from this class, as modifications of the classical and well known Hestenes and Stiefel or of the CG_DESCENT by Hager and Zhang conjugate gradient algorithms, satisfying both the descent and the conjugacy conditions is presented. Under mild conditions, we prove that the modified three-term conjugate gradient algorithm with Wolfe type line search is globally convergent. Preliminary numerical results show the proposed method is very promising.

Keywords: unconstrained optimization, three-term conjugate gradient, sufficient descent property, line search

Procedia PDF Downloads 374
2639 Development of Construction Cost Optimization System Using Genetic Algorithm Method

Authors: Hyeon-Seung Kim, Young-Hwan Kim, Sang-Mi Park, Min-Seo Kim, Jong-Myeung Shin, Leen-Seok Kang

Abstract:

The project budget at the planned stage might be changed by the insufficient government budget or the design change. There are many cases more especially in the case of a project performed for a long period of time. If the actual construction budget is insufficient comparing with the planned budget, the construction schedule should also be changed to match the changed budget. In that case, most project managers change the planned construction schedule by a heuristic approach without a reasonable consideration on the work priority. This study suggests an optimized methodology to modify the construction schedule according to the changed budget. The genetic algorithm was used to optimize the modified construction schedule within the changed budget. And a simulation system of construction cost histogram in accordance with the construction schedule was developed in the BIM (Building Information Modeling) environment.

Keywords: 5D, BIM, GA, cost optimization

Procedia PDF Downloads 585
2638 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 310
2637 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation

Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou

Abstract:

This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.

Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units

Procedia PDF Downloads 156
2636 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 219
2635 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 98
2634 Searching Linguistic Synonyms through Parts of Speech Tagging

Authors: Faiza Hussain, Usman Qamar

Abstract:

Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.

Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics

Procedia PDF Downloads 306
2633 Cost Reduction Techniques for Provision of Shelter to Homeless

Authors: Mukul Anand

Abstract:

Quality oriented affordable shelter for all has always been the key issue in the housing sector of our country. Homelessness is the acute form of housing need. It is a paradox that in spite of innumerable government initiated programmes for affordable housing, certain section of society is still devoid of shelter. About nineteen million (18.78 million) households grapple with housing shortage in Urban India in 2012. In Indian scenario there is major mismatch between the people for whom the houses are being built and those who need them. The prime force faced by public authorities in facilitation of quality housing for all is high cost of construction. The present paper will comprehend executable techniques for dilution of cost factor in housing the homeless. The key actors responsible for delivery of cheap housing stock such as capacity building, resource optimization, innovative low cost building material and indigenous skeleton housing system will also be incorporated in developing these techniques. Time performance, which is an important angle of above actors, will also be explored so as to increase the effectiveness of low cost housing. Along with this best practices will be taken up as case studies where both conventional techniques of housing and innovative low cost housing techniques would be cited. Transportation consists of approximately 30% of total construction budget. Thus use of alternative local solutions depending upon the region would be covered so as to highlight major components of low cost housing. Government is laid back regarding base line information on use of innovative low cost method and technique of resource optimization. Therefore, the paper would be an attempt to bring to light simpler solutions for achieving low cost housing.

Keywords: construction, cost, housing, optimization, shelter

Procedia PDF Downloads 444
2632 Case Study: Optimization of Contractor’s Financing through Allocation of Subcontractors

Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.

Keywords: cash flow optimization, payment plan, procurement management, subcontracting plan

Procedia PDF Downloads 129
2631 Web Page Design Optimisation Based on Segment Analytics

Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi

Abstract:

In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.

Keywords: analytics, design optimization, visual block trees, vision based technology

Procedia PDF Downloads 265
2630 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency

Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee

Abstract:

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.

Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system

Procedia PDF Downloads 432
2629 Parallel Random Number Generation for the Modern Supercomputer Architectures

Authors: Roman Snytsar

Abstract:

Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.

Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing

Procedia PDF Downloads 118
2628 FTIR Spectroscopy for in vitro Screening in Microbial Biotechnology

Authors: V. Shapaval, N. K. Afseth, D. Tzimorotas, A. Kohler

Abstract:

Globally there is a dramatic increase in the demand for food, energy, materials and clean water since natural resources are limited. As a result, industries are looking for ways to reduce rest materials and to improve resource efficiency. Microorganisms have a high potential to be used as bio factories for the production of primary and secondary metabolites that represent high-value bio-products (enzymes, polyunsaturated fatty acids, bio-plastics, glucans, etc.). In order to find good microbial producers, to design suitable substrates from food rest materials and to optimize fermentation conditions, rapid analytical techniques for quantifying target bio products in microbial cells are needed. In the EU project FUST (R4SME, Fp7), we have developed a fully automated high-throughput FUST system based on micro-cultivation and FTIR spectroscopy that facilitates the screening of microorganisms, substrates and fermentation conditions for the optimization of the production of different high-value metabolites (single cell oils, bio plastics). The automated system allows the preparation of 100 samples per hour. Currently, The FUST system is in use for screening of filamentous fungi in order to find oleaginous strains with the ability to produce polyunsaturated fatty acids, and the optimization of cheap substrates, derived from food rest materials, and the optimization of fermentation conditions for the high yield of single cell oil.

Keywords: FTIR spectroscopy, FUST system, screening, biotechnology

Procedia PDF Downloads 442
2627 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 111
2626 Identifying Promoters and Their Types Based on a Two-Layer Approach

Authors: Bin Liu

Abstract:

Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.

Keywords: promoter, promoter type, random forest, sequence information

Procedia PDF Downloads 183
2625 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 346
2624 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller

Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu

Abstract:

This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.

Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression

Procedia PDF Downloads 144
2623 Optimization of Tangential Flow Filtration Process for Purifying DNA Vaccine

Authors: Piyakajornkul T., Noppiboon S., Hochareon L., Kitsubun P.

Abstract:

Nowadays, DNA vaccines become an interesting subject in the third vaccine generation. The platform of DNA vaccines production has been developed and its downstream process becomes challenging due to the quality of the products in terms of purity and percentage of supercoiled DNA. To overcome these challenges, tangential flow filtration (TFF), which is involved in the purification process, could be used since it provides effective separation of impurity prior to performing further purification steps. However, operating conditions of TFF is varied based on several factors such as sizes of target particle and impurities, a concentration of solution as well as a concentration polarization on the membrane surface. In this study, pVAX1/lacZ was used as a model of TFF optimization in order to prevent a concentration polarization that can lead to the membrane fouling and also minimize a diafiltration volume while maintaining the maximum permeate flux resulting in proper operating times and buffer volume. By using trans membrane pressure (TMP) excursion method, feed flow rates and TMP were varied. The results showed a correlation of permeate flux with TMP where the maximum volume concentration factor reached 2.5 times of the initial volume when feed flow rate and TMP were 7 liters/m²/min and 1 bar, respectively. It was optimal operating conditions before TFF system undergone pressure independent regime. In addition, the diafiltration volume was 14 times of the concentrated volume prior to performing a further anion chromatography process.

Keywords: concentration polarization, DNA vaccines, optimization, permeate flux, pressure dependent, tangential flow filtration (TFF), trans membrane pressure (TMP)

Procedia PDF Downloads 156
2622 A Resilience Process Model of Natural Gas Pipeline Systems

Authors: Zhaoming Yang, Qi Xiang, Qian He, Michael Havbro Faber, Enrico Zio, Huai Su, Jinjun Zhang

Abstract:

Resilience is one of the key factors for system safety assessment and optimization, and resilience studies of natural gas pipeline systems (NGPS), especially in terms of process descriptions, are still being explored. Based on the three main stages, which are function loss process, recovery process, and waiting process, the paper has built functions and models which are according to the practical characteristics of NGPS and mainly analyzes the characteristics of deterministic interruptions. The resilience of NGPS also considers the threshold of the system function or users' satisfaction. The outcomes, which quantify the resilience of NGPS in different evaluation views, can be combined with the max flow and shortest path methods, help with the optimization of extra gas supplies and gas routes as well as pipeline maintenance strategies, the quick analysis of disturbance effects and the improvement of NGPS resilience evaluation accuracy.

Keywords: natural gas pipeline system, resilience, process modeling, deterministic disturbance

Procedia PDF Downloads 124
2621 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: Wuthichai Wongthatsanekorn, Nuntana Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: bee colony optimization, ready mixed concrete problem, ruck scheduling, multiple construction sites

Procedia PDF Downloads 384
2620 New Approaches to the Determination of the Time Costs of Movements

Authors: Dana Kristalova

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes

Procedia PDF Downloads 460
2619 Multi-Objective Optimization for the Green Vehicle Routing Problem: Approach to Case Study of the Newspaper Distribution Problem

Authors: Julio C. Ferreira, Maria T. A. Steiner

Abstract:

The aim of this work is to present a solution procedure referred to here as the Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP) to provide solutions for a case study. The proposed methodology consists of three stages to resolve Scenario A. Stage 1 consists of the “treatment” of data; Stage 2 consists of applying mathematical models of the p-Median Capacitated Problem (with the objectives of minimization of distances and homogenization of demands between groups) and the Asymmetric Traveling Salesman Problem (with the objectives of minimizing distances and minimizing time). The weighted method was used as the multi-objective procedure. In Stage 3, an analysis of the results is conducted, taking into consideration the environmental aspects related to the case study, more specifically with regard to fuel consumption and air pollutant emission. This methodology was applied to a (partial) database that addresses newspaper distribution in the municipality of Curitiba, Paraná State, Brazil. The preliminary findings for Scenario A showed that it was possible to improve the distribution of the load, reduce the mileage and the greenhouse gas by 17.32% and the journey time by 22.58% in comparison with the current scenario. The intention for future works is to use other multi-objective techniques and an expanded version of the database and explore the triple bottom line of sustainability.

Keywords: Asymmetric Traveling Salesman Problem, Green Vehicle Routing Problem, Multi-objective Optimization, p-Median Capacitated Problem

Procedia PDF Downloads 110
2618 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 408
2617 X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications

Authors: Guohua Cao, Xu Dong

Abstract:

X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future.

Keywords: molecular imaging, X-ray fluorescence, chemical sensitivity, X-ray scattering

Procedia PDF Downloads 184
2616 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages

Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang

Abstract:

Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.

Keywords: dielectric analysis, electronic packages, epoxy molding compounds, transfer molding process

Procedia PDF Downloads 379
2615 On the convergence of the Mixed Integer Randomized Pattern Search Algorithm

Authors: Ebert Brea

Abstract:

We propose a novel direct search algorithm for identifying at least a local minimum of mixed integer nonlinear unconstrained optimization problems. The Mixed Integer Randomized Pattern Search Algorithm (MIRPSA), so-called by the author, is based on a randomized pattern search, which is modified by the MIRPSA for finding at least a local minimum of our problem. The MIRPSA has two main operations over the randomized pattern search: moving operation and shrinking operation. Each operation is carried out by the algorithm when a set of conditions is held. The convergence properties of the MIRPSA is analyzed using a Markov chain approach, which is represented by an infinite countable set of state space λ, where each state d(q) is defined by a measure of the qth randomized pattern search Hq, for all q in N. According to the algorithm, when a moving operation is carried out on the qth randomized pattern search Hq, the MIRPSA holds its state. Meanwhile, if the MIRPSA carries out a shrinking operation over the qth randomized pattern search Hq, the algorithm will visit the next state, this is, a shrinking operation at the qth state causes a changing of the qth state into (q+1)th state. It is worthwhile pointing out that the MIRPSA never goes back to any visited states because the MIRPSA only visits any qth by shrinking operations. In this article, we describe the MIRPSA for mixed integer nonlinear unconstrained optimization problems for doing a deep study of its convergence properties using Markov chain viewpoint. We herein include a low dimension case for showing more details of the MIRPSA, when the algorithm is used for identifying the minimum of a mixed integer quadratic function. Besides, numerical examples are also shown in order to measure the performance of the MIRPSA.

Keywords: direct search, mixed integer optimization, random search, convergence, Markov chain

Procedia PDF Downloads 467