Search results for: protein structure classification
10991 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.Keywords: overview of porosity classification, reservoir characterization, microporosity, carbonate reservoir
Procedia PDF Downloads 15410990 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: Adesuyi Ayodeji Steve, Zahn Munch
Abstract:
This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.Keywords: change detection, land cover, modis, NDVI
Procedia PDF Downloads 40210989 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 26210988 Whey Protein: A Noval Protective Agent against Oto-Toxicity Induced by Cis-Platin in Male Rat
Authors: Eitedal Daoud, Reda M.Daoud, Khaled Abdel-Wahhab, Maha M.Saber, Lobna Saber
Abstract:
Background: Cis-platin is a widely used chemotherapeutic drug to treat many malignant disorders including head and neck malignancies. Oto-nephrotxicity is an important and dose - limiting side effect of cis - platin therapy. Nowadays, more attention had been paid to oto-toxicity caused with cis-platin. Aim of the Work: This study was designed to investigate the potential protective effect of Whey protein (WP) against cis-platin induced ototoxicity compared to the effect of N-acetylcysteine (NAC) in rats. Methodology: Male albino rats were randomly divided into 6 groups: untreated rats (control), rats orally treated with whey protein (1g/kg b.w/day) for seven executive days, rats treated orally with N-acetylcysteine (500 mg/kgb.w /day) for seven executive days, rates intoxicated intraperitoneal (ip) with cis- platin (10 mg/kgb.w. once), rats treated with whey protein (1g/kgb.w./day) for seven executive days) followed by one injection (ip) of cis-platin(10 mg/kg b.w.) one hour after the last oral administration of whey protein, rats treated with N- acetylcysteine (for seven executive days followed by one injection (ip) of cis-platin (10 mg/kgb.w) one hour after the last oral administration of N-acetylcysteine. The organ of Corti, the stria vascularis and spiral ganglia were visualized by light microscopy at different magnifications. Results: Cis-platin intoxicated animals showed a significant decrease in serum level of total antioxidant capacity (TAC),with inhibition in the activity of serum glutathione-s transferase(GST) and paraoxonnase-1 (PON-1) in comparison with control. Group treated with either NAC or WP with cis-platin showed significant elevation in the activity of both GST & PON-1 with increased serum level of TAC when compared with cis-platin intoxicated rats. Animals treated with NAC or WP with cis-platin compared to those treated with cis-platin alone showed marked degree of improvement towards control rats as there was significant drop in the serum level of cortecosterone, nitric oxide (NO), and melandialdehyde (MDA).Histopathologic, in NAC pretreated group there was no changes in stria vascularis or spiral ganglia. In group pretreated with WP, there was no histopathologic alteration detected in the organ of Corti and Reissers membrane but oedema and haemorrhage were founded in the stria vascularis in small focal manner. Conclusion: Our finding showed that Whey protein is a natural dietary supplement product proved its ability of protection of anti-oxidant system and the cochlea against cis-platin induced ototoxicity.Keywords: anti-oxidant, cis-platin, N-acetylcysteine, ototoxicity, whey protein
Procedia PDF Downloads 52310987 Seismic Performance of a Framed Structure Retrofitted with Damped Cable Systems
Authors: Asad Naeem, Minsung Kim, Jinkoo Kim
Abstract:
In this work, the effectiveness of damped cable systems (DCS) on the mitigation of earthquake-induced response of a framed structure is investigated. The seismic performance of DCS is investigated using fragility analysis and life cycle cost evaluation of an existing building retrofitted with DCS, and the results are compared with those of the structure retrofitted with viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement becomes nearly zero in the structure retrofitted with the DCS. According to the fragility analysis, the structure retrofitted with the DCS has smaller probability of reaching a limit states compared to the structure with viscous dampers. It is also observed that both the initial and life cycle costs of the DCS method required for the seismic retrofit is smaller than those of the structure retrofitted with viscous dampers. Acknowledgment: This research was supported by a grant (17CTAP-C132889-01) from Technology Advancement Research Program (TARP) funded by Ministry of Land, Infrastructure, and Transport of Korean government.Keywords: damped cable system, seismic retrofit, self centering, fragility analysis
Procedia PDF Downloads 45310986 Flap Structure Geometry in Breakthrough Structure: A Case Study from the Southern Tunisian Atlas Example, Orbata Anticline
Authors: Soulef Amamria, Mohamed Sadok Bensalem, Mohamed Ghanmi
Abstract:
The structural and sedimentological study of fault-related- folds in the Southern Tunisian Atlas is distinguished by a special geometry of the gravitational structures. This distinct geometry is observable in the example of a flap structure in Jebel Ben Zannouch with the formation of a stuck syncline. This geometry can be explained by the mechanism of major thrusting in Orbata anticline in the occidental extremity of Gafsa chains, with asymmetrical flank dips and hinge migration kinematics. These kinematics was originally controlled by the Breakthrough structure; the study of this special geometry of gravity flap structure depends on the sedimentation domain, shortening ratios, and erosion speed. This study constitutes one of the complete examples of kinematic model validation on a field scale.Keywords: fault-related-folds, southern Tunisian Atlas, flap structure, breakthrough
Procedia PDF Downloads 10110985 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy
Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu
Abstract:
Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy
Procedia PDF Downloads 25110984 Exploring the Strategy to Identify Seed-Specific Acyl-Hydrolases from Arabidopsis thaliana by Activity-Based Protein Profiling
Authors: M. Latha, Achintya K. Dolui, P. Vijayaraj
Abstract:
Vegetable oils mainly triacylglycerol (TAG) are an essential nutrient in the human diet as well as one of the major global commodity. There is a pressing need to enhance the yield of oil production to meet the world’s growing demand. Oil content is controlled by the balance between synthesis and breakdown in the cells. Several studies have established to increase the oil content by the overexpression of oil biosynthetic enzymes. Interestingly the significant oil accumulation was observed with impaired TAG hydrolysis. Unfortunately, the structural, as well as the biochemical properties of the lipase enzymes, is widely unknown, and so far, no candidate gene was identified in seeds except sugar-dependent1 (SDP1). Evidence has shown that SDP1directly responsible for initiation of oil breakdown in the seeds during germination. The present study is the identification of seed-specific acyl-hydrolases by activity based proteome profiling (ABPP) using Arabidopsis thaliana as a model system. The ABPP reveals that around 8 to 10 proteins having the serine hydrolase domain and are expressed during germination of Arabidopsis seed. The N-term sequencing, as well as LC-MS/MS analysis, was performed for the differentially expressed protein during germination. The coding region of the identified proteins was cloned, and lipases activity was assessed with purified recombinant protein. The enzyme assay was performed against various lipid substrates, and we have observed the acylhydrolase activity towards lysophosphatidylcholine and monoacylglycerol. Further, the functional characteristic of the identified protein will reveal the physiological significance the enzyme in oil accumulation.Keywords: lipase, lipids, vegetable oil, triacylglycerol
Procedia PDF Downloads 18710983 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 1010982 In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents
Authors: Jineetkumar Gawad, Chandrakant Bonde
Abstract:
Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery.Keywords: DprE1 inhibitors, in silico drug designing, imidazo [4, 5-b] pyridine, lead, tuberculosis
Procedia PDF Downloads 15410981 The Application of Artificial Neural Network for Bridge Structures Design Optimization
Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri
Abstract:
This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.Keywords: bridge structures, ANN, optimization, back propagation
Procedia PDF Downloads 37210980 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)
Authors: Ismail Elkhrachy
Abstract:
Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.Keywords: land use, remote sensing, change detection, satellite images, image classification
Procedia PDF Downloads 52310979 Proximate and Mineral Composition of Chicken Giblets from Vojvodina, Northern Serbia
Authors: M. R. Jokanović, V. M. Tomović, M. T. Jović, S. B. Škaljac, B. V. Šojić, P. M. Ikonić, T. A. Tasić
Abstract:
Proximate (moisture, protein, total fat, total ash) and mineral (K, P, Na, Mg, Ca, Zn, Fe, Cu and Mn) composition of chicken giblets (heart, liver and gizzard) were investigated. Phosphorous content, as well as proximate composition, were determined according to recommended ISO methods. The content of all elements, except phosphorus, of the giblets tissues were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES), after dry ashing mineralization. Regarding proximate composition heart was the highest in total fat content, and the lowest in protein content. Liver was the highest in protein and total ash content, while gizzard was the highest in moisture and the lowest in total fat content. Regarding mineral composition liver was the highest for K, P, Ca, Mg, Fe, Zn, Cu, and Mn, while heart was the highest for Na content. The contents of almost all investigated minerals in analysed giblets tissues of chickens from Vojvodina were similar to values reported in the literature, i.e. in national food composition databases of other countries.Keywords: chicken giblets, proximate composition, mineral composition, inductively coupled plasma-optical emission spectrometry (ICP-OES)
Procedia PDF Downloads 45110978 Thermal Method Production of the Hydroxyapatite from Bone By-Products from Meat Industry
Authors: Agnieszka Sobczak-Kupiec, Dagmara Malina, Klaudia Pluta, Wioletta Florkiewicz, Bozena Tyliszczak
Abstract:
Introduction: Request for compound of phosphorus grows continuously, thus, it is searched for alternative sources of this element. One of these sources could be by-products from meat industry which contain prominent quantity of phosphorus compounds. Hydroxyapatite, which is natural component of animal and human bones, is leading material applied in bone surgery and also in stomatology. This is material, which is biocompatible, bioactive and osteoinductive. Methodology: Hydroxyapatite preparation: As a raw material was applied deproteinized and defatted bone pulp called bone sludge, which was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Hydroxyapatite was received in calcining process in chamber kiln with electric heating in air atmosphere in two stages. In the first stage, material was calcining in temperature 600°C within 3 hours. In the next stage unified material was calcining in three different temperatures (750°C, 850°C and 950°C) keeping material in maximum temperature within 3.0 hours. Bone sludge: Bone sludge was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Pork bones coming from the partition of meat were used as a raw material for the production of the protein hydrolysate. After disintegration, a mixture of bone pulp and water with a small amount of lactic acid was boiled at temperature 130-135°C and under pressure4 bar. After 3-3.5 hours boiled-out bones were separated on a sieve, and the solution of protein-fat hydrolysate got into a decanter, where bone sludge was separated from it. Results of the study: The phase composition was analyzed by roentgenographic method. Hydroxyapatite was the only crystalline phase observed in all the calcining products. XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Conclusion: The researches were shown that phosphorus content is around 12%, whereas, calcium content amounts to 28% on average. The conducted researches on bone-waste calcining at the temperatures of 750-950°C confirmed that thermal utilization of deproteinized bone-waste was possible. X-ray investigations were confirmed that hydroxyapatite is the main component of calcining products, and also XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Contents of calcium and phosphorus were distinctly increased with calcining temperature, whereas contents of phosphorus soluble in acids were decreased. It could be connected with higher crystallization degree of material received in higher temperatures and its stable structure. Acknowledgements: “The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER//037/481/L-5/13/NCBR/2014) for providing financial support to this project”.Keywords: bone by-products, bone sludge, calcination, hydroxyapatite
Procedia PDF Downloads 28610977 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects
Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour
Abstract:
One of the main problems of the design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnel projects in which there is a number of tunnels and different professional teams involved. In this regard, comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels, such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate, and so forth, can be calculated and reported in a standard format.Keywords: engineering geology, rock mass classification, rock mechanic, tunnel
Procedia PDF Downloads 8010976 A Greener Approach for the Recovery of Proteins from Meat Industries
Authors: Jesus Hernandez, Zead Elzoeiry, Md. S. Islam, Abel E. Navarro
Abstract:
The adsorption of bovine serum albumin (BSA) and human hemoglobin (Hb) on naturally-occurring adsorbents was studied to evaluate the potential recovery of proteins from meat industry residues. Spent peppermint tea (PM), powdered purple corn cob (PC), natural clay (NC) and chemically-modified clay (MC) were investigated to elucidate the effects of pH, adsorbent dose, initial protein concentration, presence of salts and heavy metals. Equilibrium data were fitted according to isotherm models, reporting a maximum adsorption capacity at pH 8 of 318 and 344 mg BSA/g of PM and NC, respectively. Moreover, Hb displayed maximum adsorption capacity at pH 5 of 125 and 143 mg/g of PM and PC, respectively. Hofmeister salt effect was only observed for PM/Hb system. Salts tend to decrease protein adsorption, and the presence of Cu(II) ions had negligible impacts on the adsorption onto NC and PC. Desorption experiments confirmed that more than 85% of both proteins can be recovered with diluted acids and bases. SEM, EDX, and TGA analyses demonstrated that the adsorbents have favorable morphological and mechanical properties. The long-term goal of this study aims to recover soluble proteins from industrial wastewaters to produce animal food or any protein-based product.Keywords: adsorption, albumin, clay, hemoglobin, spent peppermint leaf
Procedia PDF Downloads 10310975 The Impact of Nutritional Education for Peritoneal Dialysis Patients in Mongolia
Authors: Sanchir Erdenebayar, Namuuntsetseg Oyunbaatar
Abstract:
Objectives: Peritoneal dialysis treatment is one of the important forms of kidney replacement therapy, and it has recently developed instantly in Mongolia for the past five years. Currently, more than 120 patients undergo peritoneal dialysis nationwide. These patients lack nutritional education, which predisposes them to protein deficiency and further impairs their quality of life. However, there is no study which is conducted among those about their dietary in Mongolia. Therefore, integrated nutrition information and educating them about dietary patterns to follow are urgently needed for PD patients. Methods: A cross-sectional study was carried out on 45 patients aged between 18 and 60 years who were undergoing CAPD at the biggest Medvic dialysis center in Ulaanbaatar. The knowledge of nutrition and food intake is assessed by interview based on a validated questionnaire prepared from KDIGO guidelines, semi-FFQ and a 24-hour dietary recall method. In addition, a biochemical blood test that includes total protein, albumin, calcium, phosphorus, potassium, and hemoglobin is used for an assessment of the patient’s current nutritional status. Results: Knowledge of nutritional status for CAPD was great, with 21.4% of patients and 78.65% having poor nutrition knowledge. The rate of mild to moderate malnutrition was 48.8% among research participants. Serum albumin was 38.4 ± 4.7 g/L, and total protein was 67.3±7.5g/l. Patients met 62.5± 26.5% of their daily intake nutritional requirement for calories and 72±40% of their nutritional requirement for protein. All patients’ energy intake was significantly /1328±304kcal/ lower than the energy requirement (2124±378kcal). Only 14.2% met the recommended dietary protein intake recommended to them of greater than 1.2 g/kg. Conclusions: As was established before, nutritional education has a vital positive impact on the health and nutritional status of peritoneal dialysis patients. The results of this study show that nutritional education programs are not enough adequate in peritoneal dialysis patients. There is a crucial priority to establish nutritional educational programs and guidelines for PD patients in Mongolia.Keywords: renal diet, peritoneal dialysis, nutrition education, CKD diet
Procedia PDF Downloads 6210974 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 9310973 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach
Authors: Nuri Başpınar, Abdullah Başoğlu, Özgür Özdemir, Çağlayan Özel, FundaTerzi, Özgür Yaman
Abstract:
Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness.Keywords: high protein and energy diet, boron, metabolomics, transcriptomic
Procedia PDF Downloads 62710972 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin
Authors: Osama K. Abou-Zied, Saba A. Sulaiman
Abstract:
We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption
Procedia PDF Downloads 33210971 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 18010970 Testing the Capital Structure Behavior of Malaysian Firms: Shariah vs. Non-Shariah Compliant
Authors: Asyraf Abdul Halim, Mohd Edil Abd Sukor, Obiyathulla Ismath Bacha
Abstract:
This paper attempts to investigate the capital structure behavior of Shariah compliant firms of various levels as well those firms who are consistently Shariah non-compliant in Malaysia. The paper utilizes a unique dataset of firms of the heterogeneous level of Shariah-compliancy status over a 20 year period from the year 1997 to 2016. The paper focuses on the effects of dynamic forces behind capital structure variation such as the optimal capital structure behavior based on the trade-off, pecking order, market timing and firmly fixed effect models of capital structure. This study documents significant evidence in support of the trade-off theory with a high speed of adjustment (SOA) as well as for the time-invariant firm fixed effects across all Shariah compliance group.Keywords: capital structure, market timing, trade-off theory, equity risk premium, Shariah-compliant firms
Procedia PDF Downloads 31210969 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 8710968 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 16310967 The Overexpression of Horsegram MURLK Improves Regulation of Cell Death and Defense Responses to Microbial Pathogens
Authors: Shikha Masand, Sudesh Kumar Yadav
Abstract:
Certain protein kinases have been shown to be crucial for plant cell signaling pathways associated with plant immune responses. Here we identified a horsegram [Macrotyloma uniflorum (Lam.) Verdc.] malectin-like leucine rich receptor-like protein kinase (RLK) gene MuRLK. The functional MuRLK protein preferentially binds to mannose and N-acetyl glucosamine residues. MuRLK exists in the cytoplasm and also localizes to the plasma membrane of plant cells via its N-terminus. Over-expression of MuRLK in Arabidopsis enhances the basal resistance to infection with Pseudomonas syringae pv. tomato, Alternaria brassicicola and Hyaloperonospora arabidopsidis, are associated with elevated ROS bursts, MAPK activation, thus ultimately leading to hypersensitive cell death. Moreover, salicylic acid-dependent and jasmonic acid-dependent defense responses are also enhanced in the MuRLK-overexpressed plants that lead to HR-induced cell death. Together, these results suggest that MuRLK plays a key role in the regulation of plant cell death, early and late defense responses after the recognition of microbial pathogens.Keywords: horsegram, Pseudomonas syringae pv. tomato, MuRLK, ROS burst, cell death, plant defense
Procedia PDF Downloads 24810966 ELISA Based hTSH Assessment Using Two Sensitive and Specific Anti-hTSH Polyclonal Antibodies
Authors: Maysam Mard-Soltani, Mohamad Javad Rasaee, Saeed Khalili, Abdol Karim Sheikhi, Mehdi Hedayati
Abstract:
Production of specific antibody responses against hTSH is a cumbersome process due to the high identity between the hTSH and the other members of the glycoprotein hormone family (FSH, LH and HCG) and the high identity between the human hTSH and host animals for antibody production. Therefore, two polyclonal antibodies were purified against two recombinant proteins. Four possible ELISA tests were designed based on these antibodies. These ELISA tests were checked against hTSH and other glycoprotein hormones, and their sensitivity and specificity were assessed. Bioinformatics tools were used to analyze the immunological properties. After the immunogen region selection from hTSH protein, c terminal of B hTSH was selected and applied. Two recombinant genes, with these cut pieces (first: two repeats of C terminal of B hTSH, second: tetanous toxin+B hTSH C terminal), were designed and sub-cloned into the pET32a expression vector. Standard methods were used for protein expression, purification, and verification. Thereafter, immunizations of the white New Zealand rabbits were performed and the serums of them were used for antibody titration, purification and characterization. Then, four ELISA tests based on two antibodies were employed to assess the hTSH and other glycoprotein hormones. The results of these assessments were compared with standard amounts. The obtained results indicated that the desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for in vivo immunization. The raised antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum. Among the four designed tests, the test in which the antibody against first protein was used as capture antibody, and the antibody against second protein was used as detector antibody did not show any hook effect up to 50 miu/l. Both proteins have the ability to induce highly sensitive and specific antibody responses against the hTSH. One of the antibody combinations of these antibodies has the highest sensitivity and specificity in hTSH detection.Keywords: hTSH, bioinformatics, protein expression, cross reactivity
Procedia PDF Downloads 18910965 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers
Authors: C. V. Aravinda, H. N. Prakash
Abstract:
In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages
Procedia PDF Downloads 49410964 Music Genre Classification Based on Non-Negative Matrix Factorization Features
Authors: Soyon Kim, Edward Kim
Abstract:
In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)
Procedia PDF Downloads 30310963 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan
Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal
Abstract:
Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization
Procedia PDF Downloads 48510962 The Role of Micro-Ribonucleic Acid-182 and Micro-Ribonucleic Acid-214 in Cisplatin Resistance of Triple-Negative Breast Cancer Cells
Authors: Bahadir Batar, Elif Serdal, Berna Erdal, Hasan Ogul
Abstract:
Micro-ribonucleic acids (miRNAs) are small short non-coding ribonucleic acid molecules about 22 nucleotides long. miRNAs play a key role in response to chemotherapeutic agents. WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor protein. Loss or reduction of Wwox protein is observed in many breast cancer cases. WWOX protein deficiency is increased in triple-negative breast cancer (TNBC). TNBC is a heterogeneous, highly aggressive, and difficult to treat tumor type. WWOX loss contributes to resistance to cisplatin therapy in patients with TNBC. Here, the aim of the study was to investigate the potential role of miRNAs in cisplatin therapy resistance of WWOX-deficient TNBC cells. This was a cell culture study. miRNA expression profiling was analyzed by LightCycler 480 system. miRNA Set Enrichment Analysis tool was used to integrate experimental data with literature-based biological knowledge to infer a new hypothesis. Increased miR-182 and decreased miR-214 were significantly correlated with cisplatin resistance in WWOX-deficient TNBC cells. miR-182 and miR-214 may involve in cisplatin resistance of WWOX-deficient TNBC cells by deregulating the DNA repair, apoptosis, or protein kinase B signaling pathways. These data highlight the mechanism by which WWOX regulates cisplatin resistance of TNBC and the potential use of WWOX as a predictor biomarker for cisplatin resistance.Keywords: cisplatin, microRNA, triple-negative breast cancer, WWOX
Procedia PDF Downloads 131