Search results for: process block
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16183

Search results for: process block

15403 Systems Contextual Integrated Model for Clinical Psychology and Social Work

Authors: Raymond C. Hawkins II, Catherine A. Hawkins

Abstract:

The System Contextual Integrated Model (SCIM), developed as a trans-theoretical framework for selecting measures for psychotherapy process and outcome, is reformulated for behavioral health applications. The SCIM “healing cycle” is an allostatic hedonic affective-cognitive right-hemisphere–left-hemisphere coordinated process involving positive alliesthesia that mitigates traumatic pain and generates psychological flexibility. The SCIM “trauma cycle” is an allostatic overload alliesthesia opponent process with long-lasting pathology sequelae. The social ecological context moderates the “healing cycle” and the “trauma cycle.” Repeated evocation of the “healing cycle” in a therapeutic relationship can gradually relieve trauma sequelae. The SCIM is applied to pain, obese binge eating, and substance use disorders.

Keywords: allostasis, alliesthesia, opponent process, behavioral health, assessment

Procedia PDF Downloads 146
15402 Hot Forging Process Simulation of Outer Tie Rod to Reduce Forming Load

Authors: Kyo Jin An, Bukyo Seo, Young-Chul Park

Abstract:

The current trend in car market is increase of parts of automobile and weight in vehicle. It comes from improvement of vehicle performance. Outer tie rod is a part of component of steering system and it is lighter than the others. But, weight lightening is still required for improvement of car mileage. So, we have presented a model of aluminized outer tie rod, but the process of fabrication has to be checked to manufacture the product. Therefore, we have anticipated forming load, die stress and abrasion to use the program of forging interpretation in the part of hot forging process of outer tie rod in this study. Also, we have implemented the experiments design to use the table of orthogonal arrays to reduce the forming load.

Keywords: forming load, hot forging, orthogonal array, outer tie rod (OTR), multi–step forging

Procedia PDF Downloads 435
15401 The Composting Process from a Waste Management Method to a Remediation Procedure

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa

Abstract:

Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.

Keywords: agriculture, biopile, compost, soil clean-up, waste recycling

Procedia PDF Downloads 314
15400 Internet of Things-Based Electric Vehicle Charging Notification

Authors: Nagarjuna Pitty

Abstract:

It is believed invention “Advanced Method and Process Quick Electric Vehicle Charging” is an Electric Vehicles (EVs) are quickly turning into the heralds of vehicle innovation. This study endeavors to address the inquiries of how module charging process correspondence has been performed between the EV and Electric Vehicle Supply Equipment (EVSE). The energy utilization of gas-powered motors is higher than that of electric engines. An invention is related to an Advanced Method and Process Quick Electric Vehicle Charging. In this research paper, readings on the electric vehicle charging approaches will be checked, and the module charging phases will be described comprehensively.

Keywords: electric, vehicle, charging, notification, IoT, supply, equipment

Procedia PDF Downloads 74
15399 Microstructure and Hardness Changes on T91 Weld Joint after Heating at 560°C

Authors: Suraya Mohamad Nadzir, Badrol Ahmad, Norlia Berahim

Abstract:

T91 steel has been used as construction material for superheater tubes in sub-critical and super critical boiler. This steel was developed with higher creep strength property as compared to conventional low alloy steel. However, this steel is also susceptible to materials degradation due to its sensitivity to heat treatment especially Post Weld Heat Treatment (PWHT) after weld repair process. Review of PWHT process shows that the holding temperature may different from one batch to other batch of samples depending on the material composition. This issue was reviewed by many researchers and one of the potential solutions is the development of weld repair process without PWHT. This process is possible with the use of temper bead welding technique. However, study has shown the hardness value across the weld joint with exception of PWHT is much higher compare to recommended hardness value. Based on the above findings, a study to evaluate the microstructure and hardness changes of T91 weld joint after heating at 560°C at varying duration was carried out. This study was carried out to evaluate the possibility of self-tempering process during in-service period. In this study, the T91 weld joint was heat-up in air furnace at 560°C for duration of 50 and 150 hours. The heating process was controlled with heating rate of 200°C/hours, and cooling rate about 100°C/hours. Following this process, samples were prepared for the microstructure examination and hardness evaluation. Results have shown full tempered martensite structure and acceptance hardness value was achieved after 50 hours heating. This result shows that the thin component such as T91 superheater tubes is able to self-tempering during service hour.

Keywords: T91, weld-joint, tempered martensite, self-tempering

Procedia PDF Downloads 382
15398 Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process

Authors: A.Chen Chao-Chang, Phong Pham-Quoc

Abstract:

Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process.

Keywords: kinematic modeling, diamond dresser, pad cutting locus, CMP

Procedia PDF Downloads 259
15397 Applicant Perceptions in Admission Process to Higher Education: The Influence of Social Anxiety

Authors: I. Diamant, R. Srouji

Abstract:

Applicant perceptions are attitudes, feelings, and cognitions which individuals have about selection procedures and have been mostly studied in the context of personnel selection. The main aim of the present study is to expand the understanding of applicant perceptions, using the framework of Organizational Justice Theory, in the domain of selection for higher education. The secondary aim is to explore the relationships between individual differences in social anxiety and applicants’ perceptions. The selection process is an accept/reject situation; it was hypothesized that applicants with higher social anxiety would experience negative perceptions and a lower success estimation, especially when subjected to social interaction elements in the process (interview and group simulation). Also, the effects of prior preparation and post-process explanations offered at the end of the selection process were explored. One hundred sixty psychology M.A. program applicants participated in this research, and following the selection process completed questionnaires measuring social anxiety, social exclusion, ratings on several justice dimensions for each of the methods in the selection process, feelings of success, and self-estimation of compatibility. About half of the applicants also received explanations regarding the significance and the aims of the selection process. Results provided support for most of our hypotheses: applicants with higher social anxiety experienced an increased level of social exclusion in the selection process, perceived the selection as less fair and ended with a lower feeling of success relative to those applicants without social anxiety. These relationships were especially salient in the selection procedures which included social interaction. Additionally, preparation for the selection process was positively related to the favorable perception of fairness in the selection process. Finally, contrary to our hypothesis, it was found that explanations did not affect the applicant’s perceptions. The results enhance our understanding of which factors affect applicant perceptions in applicants to higher education studies and contribute uniquely to the understanding of the effect of social anxiety on different aspects of selection experienced by applicants. The findings clearly show that some individuals may be predisposed to react unfavorably to certain selection situations. In an age of increasing awareness towards fairness in evaluation and selection and hiring procedures, these findings may be of relevance and may contribute to the design of future personnel selection methods in general and of higher education selection in particular.

Keywords: applicant perceptions, selection and assessment, organizational justice theory, social anxiety

Procedia PDF Downloads 157
15396 Numerical Determination of Transition of Cup Height between Hydroforming Processes

Authors: H. Selcuk Halkacı, Mevlüt Türköz, Ekrem Öztürk, Murat Dilmec

Abstract:

Various attempts concerning the low formability issue for lightweight materials like aluminium and magnesium alloys are being investigated in many studies. Advanced forming processes such as hydroforming is one of these attempts. In last decades sheet hydroforming process has an increasing interest, particularly in the automotive and aerospace industries. This process has many advantages such as enhanced formability, the capability to form complex parts, higher dimensional accuracy and surface quality, reduction of tool costs and reduced die wear compared to the conventional sheet metal forming processes. There are two types of sheet hydroforming. One of them is hydromechanical deep drawing (HDD) that is a special drawing process in which pressurized fluid medium is used instead of one of the die half compared to the conventional deep drawing (CDD) process. Another one is sheet hydroforming with die (SHF-D) in which blank is formed with the act of fluid pressure and it takes the shape of die half. In this study, transition of cup height according to cup diameter between the processes was determined by performing simulation of the processes in Finite Element Analysis. Firstly SHF-D process was simulated for 40 mm cup diameter at different cup heights chancing from 10 mm to 30 mm and the cup height to diameter ratio value in which it is not possible to obtain a successful forming was determined. Then the same ratio was checked for a different cup diameter of 60 mm. Then thickness distributions of the cups formed by SHF-D and HDD processes were compared for the cup heights. Consequently, it was found that the thickness distribution in HDD process in the analyses was more uniform.

Keywords: finite element analysis, HDD, hydroforming sheet metal forming, SHF-D

Procedia PDF Downloads 433
15395 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes

Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono

Abstract:

Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, though a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.

Keywords: trouble prevention, knowledge structure, structured knowledge, reusable knowledge

Procedia PDF Downloads 371
15394 Investigating the Flavin-Dependent Thymidylate Synthase (FDTS) Enzyme from Clostridioides Difficile (C. diff)

Authors: Sidra Shaw, Sarenna Shaw, Chae Joon Lee, Irimpan Mathews, Eric Koehn

Abstract:

One of the biggest public health concerns of our time is increasing antimicrobial resistance. As of 2019, the CDC has documented more than 2.8 million serious antibiotic resistant infections in the United States. Currently, antibiotic resistant infections are directly implicated in over 750,000 deaths per year globally. On our current trajectory, British economist Jim O’Neill predicts that by 2050, an additional 10 million people (about half the population of New York) will die annually due to drug resistant infections. As a result, new biochemical pathways must be targeted to generate next generation antibiotic drugs that will be effective against drug resistant bacteria. One enticing target is the biosynthesis of DNA within bacteria, as few drugs interrupt this essential life process. Thymidylate synthase enzymes are essential for life as they catalyze the synthesis of a DNA building block, 2′-deoxythymidine-5′-monophosphate (dTMP). In humans, the thymidylate synthase enzyme (TSase) has been shown to be distinct from the flavin-dependent thymidylate synthase (FDTS) produced by many pathogenic bacteria. TSase and FDTS have distinct structures and mechanisms of catalysis, which should allow selective inhibition of FDTS over human TSase. Currently, C. diff is one of the most antibiotic resistant bacteria, and no drugs that target thymine biosynthesis exist for C. diff. Here we present the initial biochemical characterization of FDTS from C. diff. Specifically, we examine enzyme kinetics and binding features of this enzyme to determine the nature of interaction with ligands/inhibitors and understand the molecular mechanism of catalysis. This research will provide more insight into the targetability of the C. diff FDTS enzyme for novel antibiotic drugs.

Keywords: flavin-dependent thymidylate synthase, FDTS, clostridioides difficile, C. diff, antibiotic resistance, DNA synthesis, enzyme kinetics, binding features

Procedia PDF Downloads 108
15393 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 311
15392 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications

Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel

Abstract:

An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.

Keywords: RFIC, PAE, RF CMOS, impedance matching

Procedia PDF Downloads 230
15391 Best Resource Recommendation for a Stochastic Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.

Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model

Procedia PDF Downloads 392
15390 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman Electricity Transmission Company

Authors: Rahma Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS dept. This paper will describe in detail the GIS data submission process and the journey to develop the current process. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting, and data alterations salso aided to reduce the missing attributes of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the year 2017 and the year 2021. Overall, concluding that by governance, asset information & GIS department can control GIS data process; collect, properly record, and manage asset data and information within OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, geodatabase, NOC, CMMS

Procedia PDF Downloads 211
15389 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.

Keywords: 3D Printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength

Procedia PDF Downloads 200
15388 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets

Authors: Song Hyok Choe

Abstract:

This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.

Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling

Procedia PDF Downloads 52
15387 Reduced Tillage and Bio-stimulant Application Can Improve Soil Microbial Enzyme Activity in a Dryland Cropping System

Authors: Flackson Tshuma, James Bennett, Pieter Andreas Swanepoel, Johan Labuschagne, Stephan van der Westhuizen, Francis Rayns

Abstract:

Amongst other things, tillage and synthetic agrochemicals can be effective methods of seedbed preparation and pest control. Nonetheless, frequent and intensive tillage and excessive application of synthetic agrochemicals, such as herbicides and insecticides, can reduce soil microbial enzyme activity. A decline in soil microbial enzyme activity can negatively affect nutrient cycling and crop productivity. In this study, the effects of four tillage treatments; continuous mouldboard plough; shallow tine-tillage to a depth of about 75 mm; no-tillage; and tillage rotation (involving shallow tine-tillage once every four years in rotation with three years of no-tillage), and two rates of synthetic agrochemicals (standard: with regular application of synthetic agrochemicals; and reduced: fewer synthetic agrochemicals in combination with bio-chemicals/ or bio-stimulants) on soil microbial enzyme activity were investigated between 2018 and 2020 in a typical Mediterranean climate zone in South Africa. Four different bio-stimulants applied contained: Trichoderma asperellum, fulvic acid, silicic acid, and Nereocystis luetkeana extracts, respectively. The study was laid out as a complete randomised block design with four replicated blocks. Each block had 14 plots, and each plot measured 50 m x 6 m. The study aimed to assess the combined impact of tillage practices and reduced rates of synthetic agrochemical application on soil microbial enzyme activity in a dryland cropping system. It was hypothesised that the application of bio-stimulants in combination with minimum soil disturbance will lead to a greater increase in microbial enzyme activity than the effect of applying either in isolation. Six soil cores were randomly and aseptically collected from each plot for microbial enzyme activity analysis from the 0-150 mm layer of a field trial under a dryland crop rotation system in the Swartland region. The activities of four microbial enzymes, β-glucosidase, acid phosphatase, alkaline phosphatase and urease, were assessed. The enzymes are essential for the cycling of glucose, phosphorus, and nitrogen, respectively. Microbial enzyme activity generally increased with a reduction of both tillage intensity and synthetic agrochemical application. The use of the mouldboard plough led to the least (P<0.05) microbial enzyme activity relative to the reduced tillage treatments, whereas the system with bio-stimulants (reduced synthetic agrochemicals) led to the highest (P<0.05) microbial enzyme activity relative to the standard systems. The application of bio-stimulants in combination with reduced tillage, particularly no-tillage, could be beneficial for enzyme activity in a dryland farming system.

Keywords: bio-stimulants, soil microbial enzymes, synthetic agrochemicals, tillage

Procedia PDF Downloads 87
15386 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design

Procedia PDF Downloads 181
15385 Diagnosis of Logistics Processes: Bibliometric Review and Analysis

Authors: S. F. Bayona, J. Nunez, D. Paez

Abstract:

The diagnostic processes have been consolidated as fundamental tools in the adequate knowledge of organizations and their processes. The diagnosis is related to the interpretation of the data, findings and the relevant information, to determine problems, causes, or the simple state and behavior of a process, without including a solution to the problems detected. The objective of this work is to identify the necessary stages to diagnose the logistic processes in a metalworking company, from the literary revision of different disciplines. A total of 62 articles were chosen to identify, through bibliometric analysis, the most cited articles, as well as the most frequent authors and journals. The results allowed to identify the two fundamental stages in the diagnostic process: a primary phase (general) based on the logical subjectivity of the knowledge of the person who evaluates, and the secondary phase (specific), related to the interpretation of the results, findings or data. Also, two phases were identified, one related to the definition of the scope of the actions to be developed and the other, as an initial description of what was observed in the process.

Keywords: business, diagnostic, management, process

Procedia PDF Downloads 160
15384 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.

Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation

Procedia PDF Downloads 330
15383 An E-Assessment Website to Implement Hierarchical Aggregate Assessment

Authors: M. Lesage, G. Raîche, M. Riopel, F. Fortin, D. Sebkhi

Abstract:

This paper describes a Web server implementation of the hierarchical aggregate assessment process in the field of education. This process describes itself as a field of teamwork assessment where teams can have multiple levels of hierarchy and supervision. This process is applied everywhere and is part of the management, education, assessment and computer science fields. The E-Assessment website named “Cluster” records in its database the students, the course material, the teams and the hierarchical relationships between the students. For the present research, the hierarchical relationships are team member, team leader and group administrator appointments. The group administrators have the responsibility to supervise team leaders. The experimentation of the application has been performed by high school students in geology courses and Canadian army cadets for navigation patrols in teams. This research extends the work of Nance that uses a hierarchical aggregation process similar as the one implemented in the “Cluster” application.

Keywords: e-learning, e-assessment, teamwork assessment, hierarchical aggregate assessment

Procedia PDF Downloads 371
15382 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 441
15381 The Influences of Accountants’ Potential Performance on Their Working Process: Government Savings Bank, Northeast, Thailand

Authors: Prateep Wajeetongratana

Abstract:

The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses. The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.

Keywords: influence, potential performance, success, working process

Procedia PDF Downloads 232
15380 The Simple Two-Step Polydimethylsiloxane (PDMS) Transferring Process for High Aspect Ratio Microstructures

Authors: Shaoxi Wang, Pouya Rezai

Abstract:

High aspect ratio is the necessary parts of complex microstructures. Some methods available to achieve high aspect ratio requires expensive materials or complex process; others is difficult to research simple high aspect ratio structures. The paper presents a simple and cheap two-step Polydimethylsioxane (PDMS) transferring process to get high aspect ratio single pillars, which only requires covering the PDMS mold with Brij@52 surface solution. The experimental results demonstrate the method efficiency and effective.

Keywords: high aspect ratio, microstructure, PDMS, Brij

Procedia PDF Downloads 267
15379 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application

Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.

Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery

Procedia PDF Downloads 248
15378 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 312
15377 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 132
15376 A Cooperative Transmission Scheme Using Two Sources Based on OFDM System

Authors: Bit-Na Kwon, Dong-Hyun Ha, Hyoung-Kyu Song

Abstract:

In wireless communication, space-time block code (STBC), cyclic delay diversity (CDD) and space-time cyclic delay diversity (STCDD) are used as the spatial diversity schemes and have been widely studied for the reliable communication. If these schemes are used, the communication system can obtain the improved performance. However, the quality of the system is degraded when the distance between a source and a destination is distant in wireless communication system. In this paper, the cooperative transmission scheme using two sources is proposed and improves the performance of the wireless communication system.

Keywords: OFDM, Cooperative communication, CDD, STBC, STCDD

Procedia PDF Downloads 470
15375 Vertically Grown P–Type ZnO Nanorod on Ag Thin Film

Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung

Abstract:

A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using a ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.

Keywords: hydrothermal process, Ag–doped ZnO nanorods, p–type ZnO

Procedia PDF Downloads 469
15374 High Titer Cellulosic Ethanol Production Achieved by Fed-Batch Prehydrolysis Simultaneous Enzymatic Saccharification and Fermentation of Sulfite Pretreated Softwood

Authors: Chengyu Dong, Shao-Yuan Leu

Abstract:

Cellulosic ethanol production from lignocellulosic biomass can reduce our reliance on fossil fuel, mitigate climate change, and stimulate rural economic development. The relative low ethanol production (60 g/L) limits the economic viable of lignocellulose-based biorefinery. The ethanol production can be increased up to 80 g/L by removing nearly all the non-cellulosic materials, while the capital of the pretreatment process increased significantly. In this study, a fed-batch prehydrolysis simultaneously saccharification and fermentation process (PSSF) was designed to converse the sulfite pretreated softwood (~30% residual lignin) to high concentrations of ethanol (80 g/L). The liquefaction time of hydrolysis process was shortened down to 24 h by employing the fed-batch strategy. Washing out the spent liquor with water could eliminate the inhibition of the pretreatment spent liquor. However, the ethanol yield of lignocellulose was reduced as the fermentable sugars were also lost during the process. Fed-batch prehydrolyzing the while slurry (i.e. liquid plus solid fraction) pretreated softwood for 24 h followed by simultaneously saccharification and fermentation process at 28 °C can generate 80 g/L ethanol production. Fed-batch strategy is very effectively to eliminate the “solid effect” of the high gravity saccharification, so concentrating the cellulose to nearly 90% by the pretreatment process is not a necessary step to get high ethanol production. Detoxification of the pretreatment spent liquor caused the loss of sugar and reduced the ethanol yield consequently. The tolerance of yeast to inhibitors was better at 28 °C, therefore, reducing the temperature of the following fermentation process is a simple and valid method to produce high ethanol production.

Keywords: cellulosic ethanol, sulfite pretreatment, Fed batch PSSF, temperature

Procedia PDF Downloads 370