Search results for: prewitt edge detection algorithm
6457 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh
Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun
Abstract:
Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization
Procedia PDF Downloads 1856456 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem
Authors: Guilherme Baldo Carlos
Abstract:
The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling
Procedia PDF Downloads 1476455 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 1436454 Investigation of the Stability of the F* Iterative Algorithm on Strong Peudocontractive Mappings and Its Applications
Authors: Felix Damilola Ajibade, Opeyemi O. Enoch, Taiwo Paul Fajusigbe
Abstract:
This paper is centered on conducting an inquiry into the stability of the F* iterative algorithm to the fixed point of a strongly pseudo-contractive mapping in the framework of uniformly convex Banach spaces. To achieve the desired result, certain existing inequalities in convex Banach spaces were utilized, as well as the stability criteria of Harder and Hicks. Other necessary conditions for the stability of the F* algorithm on strong pseudo-contractive mapping were also obtained. Through a numerical approach, we prove that the F* iterative algorithm is H-stable for strongly pseudo-contractive mapping. Finally, the solution of the mixed-type Volterra-Fredholm functional non-linear integral equation is estimated using our results.Keywords: stability, F* -iterative algorithm, pseudo-contractive mappings, uniformly convex Banach space, mixed-type Volterra-Fredholm integral equation
Procedia PDF Downloads 1056453 An Efficient Resource Management Algorithm for Mobility Management in Wireless Mesh Networks
Authors: Mallikarjuna Rao Yamarthy, Subramanyam Makam Venkata, Satya Prasad Kodati
Abstract:
The main objective of the proposed work is to reduce the overall network traffic incurred by mobility management, packet delivery cost and to increase the resource utilization. The proposed algorithm, An Efficient Resource Management Algorithm (ERMA) for mobility management in wireless mesh networks, relies on pointer based mobility management scheme. Whenever a mesh client moves from one mesh router to another, the pointer is set up dynamically between the previous mesh router and current mesh router based on the distance constraints. The algorithm evaluated for signaling cost, data delivery cost and total communication cost performance metrics. The proposed algorithm is demonstrated for both internet sessions and intranet sessions. The proposed algorithm yields significantly better performance in terms of signaling cost, data delivery cost, and total communication cost.Keywords: data delivery cost, mobility management, pointer forwarding, resource management, wireless mesh networks
Procedia PDF Downloads 3686452 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set
Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny
Abstract:
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques
Procedia PDF Downloads 4196451 Comparison of Parallel CUDA and OpenMP Implementations of Memetic Algorithms for Solving Optimization Problems
Authors: Jason Digalakis, John Cotronis
Abstract:
Memetic algorithms (MAs) are useful for solving optimization problems. It is quite difficult to search the search space of the optimization problem with large dimensions. There is a challenge to use all the cores of the system. In this study, a sequential implementation of the memetic algorithm is converted into a concurrent version, which is executed on the cores of both CPU and GPU. For this reason, CUDA and OpenMP libraries are operated on the parallel algorithm to make a concurrent execution on CPU and GPU, respectively. The aim of this study is to compare CPU and GPU implementation of the memetic algorithm. For this purpose, fourteen benchmark functions are selected as test problems. The obtained results indicate that our approach leads to speedups up to five thousand times higher compared to one CPU thread while maintaining a reasonable results quality. This clearly shows that GPUs have the potential to acceleration of MAs and allow them to solve much more complex tasks.Keywords: memetic algorithm, CUDA, GPU-based memetic algorithm, open multi processing, multimodal functions, unimodal functions, non-linear optimization problems
Procedia PDF Downloads 1036450 Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database
Authors: Ahmed Ait Hou
Abstract:
The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center.Keywords: thermochchemicals calculations, HSC software, oxidation and chloridation, wings in space
Procedia PDF Downloads 1256449 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia
Authors: Ali A. Aldosari
Abstract:
Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.Keywords: spatial analysis, geographical information system, change detection
Procedia PDF Downloads 4046448 Hate Speech Detection in Tunisian Dialect
Authors: Helmi Baazaoui, Mounir Zrigui
Abstract:
This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation
Procedia PDF Downloads 166447 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7
Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit
Abstract:
In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety
Procedia PDF Downloads 686446 Creation of S-Box in Blowfish Using AES
Authors: C. Rekha, G. N. Krishnamurthy
Abstract:
This paper attempts to develop a different approach for key scheduling algorithm which uses both Blowfish and AES algorithms. The main drawback of Blowfish algorithm is, it takes more time to create the S-box entries. To overcome this, we are replacing process of S-box creation in blowfish, by using key dependent S-box creation from AES without affecting the basic operation of blowfish. The method proposed in this paper uses good features of blowfish as well as AES and also this paper demonstrates the performance of blowfish and new algorithm by considering different aspects of security namely Encryption Quality, Key Sensitivity, and Correlation of horizontally adjacent pixels in an encrypted image.Keywords: AES, blowfish, correlation coefficient, encryption quality, key sensitivity, s-box
Procedia PDF Downloads 2266445 Undirected Endo-Cayley Digraphs of Cyclic Groups of Order Primes
Authors: Chanon Promsakon, Sayan Panma
Abstract:
Let S be a finite semigroup, A a subset of S and f an endomorphism on S. The endo-Cayley digraph of a semigroup S corresponding to a connecting set A and an endomorphism f, denoted by endo − Cayf (S, A) is a digraph whose vertex set is S and a vertex u is adjacent to a vertex v if and only if v = f(u)a for some a ∈ A. A digraph D is called undirected if any edge uv in D, there exists an edge vu in D. We consider the undirectedness of an endo-Cayley of a cyclic group of order prime, Zp. In this work, we investigate conditions for connecting sets and endomorphisms to make endo-Cayley digraphs of cyclic groups of order primes be undirected. Moreover, we give some conditions for an undirected endo-Cayley of cycle group of any order.Keywords: endo-Cayley graph, undirected digraphs, cyclic groups, endomorphism
Procedia PDF Downloads 3536444 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm
Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes
Abstract:
In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction
Procedia PDF Downloads 1446443 3D Mesh Coarsening via Uniform Clustering
Authors: Shuhua Lai, Kairui Chen
Abstract:
In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.Keywords: coarsening, mesh clustering, shape approximation, mesh simplification
Procedia PDF Downloads 3826442 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 1736441 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water
Authors: Temesgen Geremew
Abstract:
The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.
Procedia PDF Downloads 816440 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1506439 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods
Authors: Bin Liu
Abstract:
Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)
Procedia PDF Downloads 1646438 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA
Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata
Abstract:
We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time
Procedia PDF Downloads 5586437 Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses
Authors: Dinesh Gundavaram
Abstract:
This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement.Keywords: bridge, damage, dynamic responses, detection
Procedia PDF Downloads 2746436 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model
Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König
Abstract:
In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.Keywords: fire detection, label annotation, foundation models, object detection, segmentation
Procedia PDF Downloads 176435 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection
Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud
Abstract:
A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique
Procedia PDF Downloads 1776434 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam
Authors: Pajaree Donkhampa, Fuangfa Unob
Abstract:
Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye
Procedia PDF Downloads 1696433 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 346432 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori
Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh
Abstract:
An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)
Procedia PDF Downloads 2676431 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 4996430 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices
Authors: Kaustav Mukherjee
Abstract:
In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parametersKeywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss
Procedia PDF Downloads 1336429 Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation
Authors: Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, Emmanuel Lévêque
Abstract:
Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface.Keywords: algorithm coupling, finite volume formulation, grid refinement, Lattice Boltzmann method
Procedia PDF Downloads 3806428 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design
Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler
Abstract:
When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing
Procedia PDF Downloads 82