Search results for: optical wireless communication (OWC)
5444 Influence of Language Hybridization on the Environmental Friendliness of Cross-Cultural Communication Parameters
Authors: Elena Kovalevich, Irina Tomasheva
Abstract:
The research relevance is caused by the importance of studying features of cross-cultural communication in the system of intensive language contacts, on the one hand, and on the other – by the need of control over the language situation as cross-cultural contacts often reflect emotionally intense reality, destructive for national culture and language and also for health and mentality of the individual. The objective consists in systematization of requirements imposed by the globalized society on ethics, aesthetics and emotive component of cross-cultural communication under conditions of language hybridization of modern Russian-speaking society. Problems connected with establishing the criteria differentiating eco-friendly and eco-unfriendly communication; identifying the specifics of the eco-unfriendly communication containing language hybrids; justifying the negative impact of language hybridization on ethics and esthetics of cross-cultural communication are considered, taking into account the category of emotivity. The study makes a contribution to the development of key problems of modern linguistics connected with exploration of basics in the theory of language personality, ecology of language, emotive linguistics. The results can be used by specialists in the fields of sociolinguistics, cross-cultural communication, the national language policy.Keywords: cross-cultural communication, eco-linguistics, ethics and aesthetics, emotivity, language hybrids
Procedia PDF Downloads 1835443 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance
Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien
Abstract:
Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.Keywords: waveguide, surface plasmons, electromagnetic theory
Procedia PDF Downloads 4805442 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite
Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci
Abstract:
Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure
Procedia PDF Downloads 1365441 Impact of Unusual Dust Event on Regional Climate in India
Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad
Abstract:
A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer
Procedia PDF Downloads 3825440 Telemedicine for Telerehabilitation in Areas Affected by Social Conflicts in Colombia
Authors: Lilia Edit Aparicio Pico, Paulo Cesar Coronado Sánchez, Roberto Ferro Escobar
Abstract:
This paper presents the implementation of telemedicine services for physiotherapy, occupational therapy, and speech therapy rehabilitation, utilizing telebroadcasting of audiovisual content to enhance comprehensive patient recovery in rural areas of San Vicente del Caguán municipality, characterized by high levels of social conflict in Colombia. The region faces challenges such as dysfunctional problems, physical rehabilitation needs, and a high prevalence of hearing diseases, leading to neglect and substandard health services. Limited access to healthcare due to communication barriers and transportation difficulties exacerbates these issues. To address these challenges, a research initiative was undertaken to leverage information and communication technologies (ICTs) to improve healthcare quality and accessibility for this vulnerable population. The primary objective was to develop a tele-rehabilitation system to provide asynchronous online therapies and teleconsultation services for patient follow-up during the recovery process. The project comprises two components: Communication systems and human development. A technological component involving the establishment of a wireless network connecting rural centers and the development of a mobile application for video-based therapy delivery. Communications systems will be provided by a radio link that utilizes internet provided by the Colombian government, located in the municipality of San Vicente del Caguán to connect two rural centers (Pozos and Tres Esquinas) and a mobile application for managing videos for asynchronous broadcasting in sidewalks and patients' homes. This component constitutes an operational model integrating information and telecommunications technologies. The second component involves pedagogical and human development. The primary focus is on the patient, where performance indicators and the efficiency of therapy support were evaluated for the assessment and monitoring of telerehabilitation results in physical, occupational, and speech therapy. They wanted to implement a wireless network to ensure audiovisual content transmission for tele-rehabilitation, design audiovisual content for tele-rehabilitation based on services provided by the ESE Hospital San Rafael in physiotherapy, occupational therapy, and speech therapy, develop a software application for fixed and mobile devices enabling access to tele-rehabilitation audiovisual content for healthcare personnel and patients and finally to evaluate the technological solution's contribution to the ESE Hospital San Rafael community. The research comprised four phases: wireless network implementation, audiovisual content design, software application development, and evaluation of the technological solution's impact. Key findings include the successful implementation of virtual teletherapy, both synchronously and asynchronously, and the assessment of technological performance indicators, patient evolution, timeliness, acceptance, and service quality of tele-rehabilitation therapies. The study demonstrated improved service coverage, increased care supply, enhanced access to timely therapies for patients, and positive acceptance of teletherapy modalities. Additionally, the project generated new knowledge for potential replication in other regions and proposed strategies for short- and medium-term improvement of service quality and care indicatorsKeywords: e-health, medical informatics, telemedicine, telerehabilitation, virtual therapy
Procedia PDF Downloads 675439 Innovating Electronics Engineering for Smart Materials Marketing
Authors: Muhammad Awais Kiani
Abstract:
The field of electronics engineering plays a vital role in the marketing of smart materials. Smart materials are innovative, adaptive materials that can respond to external stimuli, such as temperature, light, or pressure, in order to enhance performance or functionality. As the demand for smart materials continues to grow, it is crucial to understand how electronics engineering can contribute to their marketing strategies. This abstract presents an overview of the role of electronics engineering in the marketing of smart materials. It explores the various ways in which electronics engineering enables the development and integration of smart features within materials, enhancing their marketability. Firstly, electronics engineering facilitates the design and development of sensing and actuating systems for smart materials. These systems enable the detection and response to external stimuli, providing valuable data and feedback to users. By integrating sensors and actuators into materials, their functionality and performance can be significantly enhanced, making them more appealing to potential customers. Secondly, electronics engineering enables the creation of smart materials with wireless communication capabilities. By incorporating wireless technologies such as Bluetooth or Wi-Fi, smart materials can seamlessly interact with other devices, providing real-time data and enabling remote control and monitoring. This connectivity enhances the marketability of smart materials by offering convenience, efficiency, and improved user experience. Furthermore, electronics engineering plays a crucial role in power management for smart materials. Implementing energy-efficient systems and power harvesting techniques ensures that smart materials can operate autonomously for extended periods. This aspect not only increases their market appeal but also reduces the need for constant maintenance or battery replacements, thus enhancing customer satisfaction. Lastly, electronics engineering contributes to the marketing of smart materials through innovative user interfaces and intuitive control mechanisms. By designing user-friendly interfaces and integrating advanced control systems, smart materials become more accessible to a broader range of users. Clear and intuitive controls enhance the user experience and encourage wider adoption of smart materials in various industries. In conclusion, electronics engineering significantly influences the marketing of smart materials by enabling the design of sensing and actuating systems, wireless connectivity, efficient power management, and user-friendly interfaces. The integration of electronics engineering principles enhances the functionality, performance, and marketability of smart materials, making them more adaptable to the growing demand for innovative and connected materials in diverse industries.Keywords: electronics engineering, smart materials, marketing, power management
Procedia PDF Downloads 655438 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects
Authors: H. Triki, Y. Hamaizi, A. El-Akrmi
Abstract:
We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution
Procedia PDF Downloads 6395437 Review on Low Actuation Voltage RF Mems Switches
Authors: Hassan Saffari, Reza Askari Moghadam
Abstract:
In modern communication systems, it is highly demanded to achieve high performance with minimal power consumption. Low actuation voltage RF MEMS (Micro-Electro-Mechanical Systems) switches represent a significant advancement in this regard. These switches, with their ability to operate at lower voltages, offer promising solutions for enhancing connectivity while minimizing energy consumption. Microelectromechanical switches are good alternatives for electronic and mechanical switches due to their low insertion loss, high isolation, and fast switching speeds. They have attracted more attention in recent years. Most of the presented RF MEMS switches use electrostatic actuators due to their low power consumption. Low actuation voltage RF MEMS switches are among the important issues that have been investigated in research articles. The actuation voltage can be reduced by different methods. One usually implemented method is low spring constant structures. However, despite their numerous benefits, challenges remain in the widespread adoption of low-actuation voltage RF MEMS switches. Issues related to reliability, durability, and manufacturing scalability need to be addressed to realize their full potential in commercial applications. While overcoming certain challenges, their exceptional performance characteristics and compatibility with miniaturized electronic systems make them a promising choice for next-generation wireless communication and RF applications. In this paper, some previous works that proposed low-voltage actuation RF MEMS switches are investigated and analyzed.Keywords: RF MEMS switches, low actuation voltage, small spring constant structures, electrostatic actuation
Procedia PDF Downloads 525436 Psychological Biases as Obstacles to Environmental Communication
Authors: De Biase Ilaria, Della Rocca Mattia
Abstract:
Our work aims to highlight the role played by cognitive biases in the reception of environmental information, including scientific communication from expert to the lay public, especially in relationship with environmental data coming from biological and biotechnological recording. Some alternative strategies are suggested in order to maximize public awareness on environmental changes.Keywords: science communication, environment and psychology, cognitive biases, environmental awareness
Procedia PDF Downloads 1175435 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 1405434 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics
Procedia PDF Downloads 865433 Social Media Creating Communication Gap among Individuals
Authors: Muneeza Anwar, Muniba Raza, Zunahs Khalid
Abstract:
The study discusses the communication gap that has been created due to excessive use of social networking websites such as Facebook, WhatsApp, Viber etc. In this growing world of technology and awareness among people about social media it has also increased its usage. The objective of this study is to measure the ways the internet is affecting the communications among individuals through social media and to check whether this is affecting the society in a positive manner. The study signifies the theoretical and practical aspects of communication gaps among the individuals through social media. The study is conducted to check whether social networking websites are the main causes of creating communication gap among individuals. In this world of fast growing technology every day, there is a new invention, affecting the lives of people both directly and indirectly. Moreover with the usage of technology people keep updating about themselves, about different events happening around their surrounding by creating events, uploading pictures, checking in different place, and creating awareness among people who are not aware of people about what is happening. From the study, we deduced how social media is affecting individual’s life. The findings suggest that social media is although creating communication gaps among people but is also bridging them. Showing that social media is one of the causes that is creating communication gap among the individuals. Communication gap has although increased on a daily basis but on average it has remained the same as they are communicating on social networking websites but eventually decreasing the communication on personal grounds.Keywords: communication gaps, usage of social networking websites, interaction with friends and family, social media
Procedia PDF Downloads 4865432 Distributed Acoustic Sensing Signal Model under Static Fiber Conditions
Authors: G. Punithavathy
Abstract:
The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber.Keywords: distributed acoustic sensing, optical fiber devices, optical time domain reflectometry, Rayleigh scattering
Procedia PDF Downloads 735431 Internet-Based Architecture for Machine-to-Machine Communication of a Public Security Network
Authors: Ogwueleka Francisca Nonyelum, Jiya Muhammad
Abstract:
Poor communication between the victims of the burglaries, road and fire accidents and the agencies, and lack of quick emergency response by the agencies is solved through Machine-to-Machine (M2M) communication. A distress caller is expected to make a call through a network to the respective agency for emergency response but due to some challenges, this often becomes arduous and futile. This research puts forth an Internet-based architecture for Machine-to-Machine (M2M) communication to enhance information dissemination in National Public Security Communication System (NPSCS) network. M2M enables the flow of data between machines and machines and ultimately machines and people with information flowing from a machine over a network, and then through a gateway to a system where it is reviewed and acted on. The research findings showed that Internet-based architecture for M2M communication is most suitable for deployment of a public security network which will allow machines to use Internet to talk to each other.Keywords: machine-to-machine (M2M), internet-based architecture, network, gateway
Procedia PDF Downloads 4905430 Overview of Wireless Body Area Networks
Authors: Rashi Jain
Abstract:
The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.Keywords: vehicular networks, sensors, MicroController 8085, LTE
Procedia PDF Downloads 2655429 Creative Peace Diplomacy Model by the Perspective of Dialogue Management for International Relations
Authors: Bilgehan Gültekin, Tuba Gültekin
Abstract:
Peace diplomacy is the most important international tool to keep peace all over the world. The study titled “peace diplomacy for international relations” is consist of three part. In the first part, peace diplomacy is going to be introduced as a tool of peace communication and peace management. And, in this part, peace communication will be explained by international communication perspective. In the second part of the study,public relations events and communication campaigns will be developed originally for peace diplomacy. In this part, it is aimed original public communication dialogue management tools for peace diplomacy. the aim of the final part of the study, is to produce original public communication model for international relations. The model includes peace modules, peace management projects, original dialogue procedures and protocols, dialogue education, dialogue management strategies, peace actors, communication models, peace team management and public diplomacy steps. The creative part of the study aims to develop a model used for international relations for all countries. Creative Peace Diplomacy Model will be developed in the case of Turkey-Turkey-France and Turkey-Greece relations. So, communication and public relations events and campaigns are going to be developed as original for only this study.Keywords: peace diplomacy, public communication model, dialogue management, international relations
Procedia PDF Downloads 5455428 Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts
Authors: Virgil-Florin Duma, Dorin Demian
Abstract:
Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297.Keywords: laser signals, laser systems, optical choppers, optomechatronics, transfer functions, eclipse choppers, choppers with shafts
Procedia PDF Downloads 1935427 Crossing Borders: In Research and Business Communication
Authors: Edith Podhovnik
Abstract:
Cultures play a role in business communication and in research. At the example of language in international business, this paper addresses the issue of how the research cultures of management research and linguistics as well as cultures as such can be linked. After looking at existing research on language in international business, this paper approaches communication in international business from a linguistic angle and attempts to explain communication issues in businesses based on linguistic research. Thus, the paper makes a step into cross-disciplinary research combining management research with linguistics.Keywords: language in international business, sociolinguistics, ethnopragmatics, cultural scripts
Procedia PDF Downloads 6385426 Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali
Authors: C. Benhamideche
Abstract:
Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission.Keywords: fluoride glass, aluminium fluoride, thermal properties, density, proprieties elastic
Procedia PDF Downloads 2445425 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals
Authors: N. Renuka, R. Ramesh Babu, N. Vijayan
Abstract:
Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer
Procedia PDF Downloads 2565424 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass
Authors: Demet Tatar, Bahattin Düzgün
Abstract:
In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis
Procedia PDF Downloads 3915423 The Role and Effects of Communication on Occupational Safety: A Review
Authors: Pieter A. Cornelissen, Joris J. Van Hoof
Abstract:
The interest in improving occupational safety started almost simultaneously with the beginning of the Industrial Revolution. Yet, it was not until the late 1970’s before the role of communication was considered in scientific research regarding occupational safety. In recent years the importance of communication as a means to improve occupational safety has increased. Not only as communication might have a direct effect on safety performance and safety outcomes, but also as it can be viewed as a major component of other important safety-related elements (e.g., training, safety meetings, leadership). And while safety communication is an increasingly important topic in research, its operationalization is often vague and differs among studies. This is not only problematic when comparing results, but also in applying these results to practice and the work floor. By means of an in-depth analysis—building on an existing dataset—this review aims to overcome these problems. The initial database search yielded 25.527 articles, which was reduced to a research corpus of 176 articles. Focusing on the 37 articles of this corpus that addressed communication (related to safety outcomes and safety performance), the current study will provide a comprehensive overview of the role and effects of safety communication and outlines the conditions under which communication contributes to a safer work environment. The study shows that in literature a distinction is commonly made between safety communication (i.e., the exchange or dissemination of safety-related information) and feedback (i.e. a reactive form of communication). And although there is a consensus among researchers that both communication and feedback positively affect safety performance, there is a debate about the directness of this relationship. Whereas some researchers assume a direct relationship between safety communication and safety performance, others state that this relationship is mediated by safety climate. One of the key findings is that despite the strongly present view that safety communication is a formal and top-down safety management tool, researchers stress the importance of open communication that encourages and allows employees to express their worries, experiences, views, and share information. This raises questions with regard to other directions (e.g., bottom-up, horizontal) and forms of communication (e.g., informal). The current review proposes a framework to overcome the often vague and different operationalizations of safety communication. The proposed framework can be used to characterize safety communication in terms of stakeholders, direction, and characteristics of communication (e.g., medium usage).Keywords: communication, feedback, occupational safety, review
Procedia PDF Downloads 3045422 Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties
Authors: Mouad Ouafi, Lahoucine Atourki, Larbi Laanab, Erika Vega, Miguel Mollar, Bernabe Marib, Boujemaa Jaber
Abstract:
Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C.Keywords: hot air flow, crystallinity, surface coverage, perovskite morphology
Procedia PDF Downloads 1665421 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm
Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian
Abstract:
Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system
Procedia PDF Downloads 1185420 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 2575419 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, impulsive noise, SSRLS, BER
Procedia PDF Downloads 4615418 Impact of Hybrid Optical Amplifiers on 16 Channel Wavelength Division Multiplexed System
Authors: Inderpreet Kaur, Ravinder Pal Singh, Kamal Kant Sharma
Abstract:
This paper addresses the different configurations used of optical amplifiers with 16 channels in Wavelength Division Multiplexed system. The systems with 16 channels have been simulated for evaluation of various parameters; Bit Error Rate, Quality Factor, for threshold values for a range of wavelength from 1471 nm to 1611 nm. Comparison of various combination of configurations have been analyzed with EDFA and FRA but EDFA-FRA configuration performance has been found satisfactory in terms of performance indices and stable region. The paper also compared various parameters quantized with different configurations individually. It has been found that Q factor has high value with less value of BER and high resolution for EDFA-FRA configuration.Keywords: EDFA, FRA, WDM, Q factor, BER
Procedia PDF Downloads 3585417 MEMS based Vibration Energy Harvesting: An overview
Authors: Gaurav Prabhudesai, Shaurya Kaushal, Pulkit Dubey, B. D. Pant
Abstract:
The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones.Keywords: energy harvesting, WSN, MEMS, piezoelectrics
Procedia PDF Downloads 5065416 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3
Authors: Mouna Mesbahi, M. Loutfi Benkhedir
Abstract:
In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K
Procedia PDF Downloads 5645415 The Batteryless Wi-Fi Backscatter System and Method for Improving the Transmission Range
Authors: Young-Min Ko, Seung-Jun Yu, Seongjoo Lee, Hyoung-Kyu Song
Abstract:
The Internet of things (IoT) system has attracted attention. IoT is a technology to connect all the objects to the internet as well as computer. IoT makes it possible for providing more data interoperability methods for an application purpose. Among the IoT technology, the research of devices so that they can communicate without power supply has been actively conducted. Batteryless system permits us to communicate without power supply devices. In this paper, batteryless backscatter system is used as a tag. And mobile devices which are embedded wireless fidelity (Wi-Fi) chipset are used as a reader. The backscatter tag can be obtained Internet connectivity from the reader. Conventional Wi-Fi backscatter system has limitation in the transmission range. In this paper, the proposed algorithm can be obtained improved reliability as well as overcoming the limitation about transmission range.Keywords: Ambient RF, Backscatter, Batteryless communication, Energy-harvesting, IoT, RFID, Tag, Wi-Fi
Procedia PDF Downloads 392