Search results for: oil extraction
1197 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2531196 Audio Information Retrieval in Mobile Environment with Fast Audio Classifier
Authors: Bruno T. Gomes, José A. Menezes, Giordano Cabral
Abstract:
With the popularity of smartphones, mobile apps emerge to meet the diverse needs, however the resources at the disposal are limited, either by the hardware, due to the low computing power, or the software, that does not have the same robustness of desktop environment. For example, in automatic audio classification (AC) tasks, musical information retrieval (MIR) subarea, is required a fast processing and a good success rate. However the mobile platform has limited computing power and the best AC tools are only available for desktop. To solve these problems the fast classifier suits, to mobile environments, the most widespread MIR technologies, seeking a balance in terms of speed and robustness. At the end we found that it is possible to enjoy the best of MIR for mobile environments. This paper presents the results obtained and the difficulties encountered.Keywords: audio classification, audio extraction, environment mobile, musical information retrieval
Procedia PDF Downloads 5451195 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding
Authors: Aiman Alshare, Sahar Qaadan
Abstract:
A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm
Procedia PDF Downloads 3621194 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3421193 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)
Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss
Abstract:
In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.Keywords: recognition, handwriting, Arabic text, HMMs, embedded training
Procedia PDF Downloads 3541192 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 871191 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy
Authors: Grishma D. Solanki, Karshan Kandoriya
Abstract:
In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.Keywords: copy-move image forgery, digital forensics, image forensics, image forgery
Procedia PDF Downloads 2881190 Dependence of Autoignition Delay Period on Equivalence Ratio for i-Octane, Primary Reference Fuel
Authors: Sunil Verma
Abstract:
In today’s world non-renewable sources are depleting quickly, so there is a need to produce efficient and unconventional engines to minimize the use of fuel. Also, there are many fatal accidents happening every year during extraction, distillation, transportation and storage of fuel. Reason for explosions of gaseous fuel is unwanted autoignition. Autoignition characterstics of fuel are mandatory to study to build efficient engines and to avoid accidents. This report is concerned with study of autoignition delay characteristics of iso-octane by using rapid compression machine. The paper clearly explains the dependence of ignition delay characteristics on variation of equivalence ratios from lean to rich mixtures. The equivalence ratio is varied from 0.3 to 1.2.Keywords: autoignition, iso-octane, combustion, rapid compression machine, equivalence ratio, ignition delay
Procedia PDF Downloads 4461189 Plantation Forests Height Mapping Using Unmanned Aerial System
Authors: Shiming Li, Qingwang Liu, Honggan Wu, Jianbing Zhang
Abstract:
Plantation forests are useful for timber production, recreation, environmental protection and social development. Stands height is an important parameter for the estimation of forest volume and carbon stocks. Although lidar is suitable technology for the vertical parameters extraction of forests, but high costs make it not suitable for operational inventory. With the development of computer vision and photogrammetry, aerial photos from unmanned aerial system can be used as an alternative solution for height mapping. Structure-from-motion (SfM) photogrammetry technique can be used to extract DSM and DEM information. Canopy height model (CHM) can be achieved by subtraction DEM from DSM. Our result shows that overlapping aerial photos is a potential solution for plantation forests height mapping.Keywords: forest height mapping, plantation forests, structure-from-motion photogrammetry, UAS
Procedia PDF Downloads 2781188 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement
Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh
Abstract:
This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable rangeof multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.Keywords: DNA, nanopore, amplifier, ADC, multichannel
Procedia PDF Downloads 4531187 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1881186 Life Cycle Datasets for the Ornamental Stone Sector
Authors: Isabella Bianco, Gian Andrea Blengini
Abstract:
The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector.Keywords: life cycle assessment, LCA datasets, ornamental stone, stone environmental impact
Procedia PDF Downloads 2331185 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5131184 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 3461183 Impact of Collieries on Groundwater in Damodar River Basin
Authors: Rajkumar Ghosh
Abstract:
The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.Keywords: coal mining, groundwater, soil subsidence, water table, damodar river
Procedia PDF Downloads 801182 Use of Low-Cost Hydrated Hydrogen Sulphate-Based Protic Ionic Liquids for Extraction of Cellulose-Rich Materials from Common Wheat (Triticum Aestivum) Straw
Authors: Chris Miskelly, Eoin Cunningham, Beatrice Smyth, John. D. Holbrey, Gosia Swadzba-Kwasny, Emily L. Byrne, Yoan Delavoux, Mantian Li.
Abstract:
Recently, the use of ionic liquids (ILs) for the preparation of lignocellulose derived cellulosic materials as alternatives to petrochemical feedstocks has been the focus of considerable research interest. While the technical viability of IL-based lignocellulose treatment methodologies has been well established, the high cost of reagents inhibits commercial feasibility. This work aimed to assess the technoeconomic viability of the preparation of cellulose rich materials (CRMs) using protic ionic liquids (PILs) synthesized from low cost alkylamines and sulphuric acid. For this purpose, the tertiary alkylamines, triethylamine, and dimethylbutylamine were selected. Bulk scale production cost of the synthesized PILs, triethylammonium hydrogen sulphate and dimetheylbutylammonium hydrogen sulphate, was reported as $0.78 kg-1 to $1.24 kg-1. CRMs were prepared through the treatment of common wheat (Triticum aestivum) straw with these PILs. By controlling treatment parameters, CRMs with a cellulose content of ≥ 80 wt% were prepared. This was achieved using a T. aestivum straw to PIL loading ratio of 1:15 w/w, a treatment duration of 180 minutes, and ethanol as a cellulose antisolvent. Infrared spectra data and decreased onset degradation temperature of CRMs (ΔTONSET ~ 70 °C) suggested the formation of cellulose sulphate esters during treatment. Chemical derivatisation can aid the dispersion of prepared CRMs in non-polar polymer/ composite matrices, but act as a barrier to thermal processing at temperatures above 150 °C. It was also shown that treatment increased the crystallinity of CRMs (ΔCrI ~ 40 %) without altering the native crystalline structure or crystallite size (~ 2.6 nm) of cellulose; peaks associated with the cellulose I crystalline planes (110), (200), and (004) were observed at Bragg angles 16.0 °, 22.5 ° and 35.0 ° respectively. This highlighted the inability of assessed PILs to dissolve crystalline cellulose and was attributed to the high acidity (pKa ~ - 1.92 to - 6.42) of sulphuric acid derived anions. Electron micrographs revealed that the stratified multilayer tissue structure of untreated T. aestivum straw was significantly modified during treatment. T. aestivum straw particles were disassembled during treatment, with prepared CRMs adopting a golden-brown film-like appearance. This work demonstrated the degradation of non-cellulosic fractions of lignocellulose without dissolution of cellulose. It is the first to report on the derivatisation of cellulose during treatment with protic hydrogen sulphate ionic liquids, and the potential implications of this with reference to biopolymer feedstock preparation.Keywords: cellulose, extraction, protic ionic liquids, esterification, thermal stability, waste valorisation, biopolymer feedstock
Procedia PDF Downloads 361181 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 4071180 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing
Procedia PDF Downloads 3201179 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 741178 Chemical Analysis of Particulate Matter (PM₂.₅) and Volatile Organic Compound Contaminants
Authors: S. Ebadzadsahraei, H. Kazemian
Abstract:
The main objective of this research was to measure particulate matter (PM₂.₅) and Volatile Organic Compound (VOCs) as two classes of air pollutants, at Prince George (PG) neighborhood in warm and cold seasons. To fulfill this objective, analytical protocols were developed for accurate sampling and measurement of the targeted air pollutants. PM₂.₅ samples were analyzed for their chemical composition (i.e., toxic trace elements) in order to assess their potential source of emission. The City of Prince George, widely known as the capital of northern British Columbia (BC), Canada, has been dealing with air pollution challenges for a long time. The city has several local industries including pulp mills, a refinery, and a couple of asphalt plants that are the primary contributors of industrial VOCs. In this research project, which is the first study of this kind in this region it measures physical and chemical properties of particulate air pollutants (PM₂.₅) at the city neighborhood. Furthermore, this study quantifies the percentage of VOCs at the city air samples. One of the outcomes of this project is updated data about PM₂.₅ and VOCs inventory in the selected neighborhoods. For examining PM₂.₅ chemical composition, an elemental analysis methodology was developed to measure major trace elements including but not limited to mercury and lead. The toxicity of inhaled particulates depends on both their physical and chemical properties; thus, an understanding of aerosol properties is essential for the evaluation of such hazards, and the treatment of such respiratory and other related diseases. Mixed cellulose ester (MCE) filters were selected for this research as a suitable filter for PM₂.₅ air sampling. Chemical analyses were conducted using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for elemental analysis. VOCs measurement of the air samples was performed using a Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) allowing for quantitative measurement of VOC molecules in sub-ppb levels. In this study, sorbent tube (Anasorb CSC, Coconut Charcoal), 6 x 70-mm size, 2 sections, 50/100 mg sorbent, 20/40 mesh was used for VOCs air sampling followed by using solvent extraction and solid-phase micro extraction (SPME) techniques to prepare samples for measuring by a GC-MS/FID instrument. Air sampling for both PM₂.₅ and VOC were conducted in summer and winter seasons for comparison. Average concentrations of PM₂.₅ are very different between wildfire and daily samples. At wildfire time average of concentration is 83.0 μg/m³ and daily samples are 23.7 μg/m³. Also, higher concentrations of iron, nickel and manganese found at all samples and mercury element is found in some samples. It is able to stay too high doses negative effects.Keywords: air pollutants, chemical analysis, particulate matter (PM₂.₅), volatile organic compound, VOCs
Procedia PDF Downloads 1421177 Effect of Interference and Form Defect on the Cohesion of the Shrink-Fit Assembly
Authors: Allal Bedlaoui, Hamid Boutoutaou
Abstract:
Due to its superior economics, shrink-fit assembly is one of the best mechanical assembly methods. There are simply two components, the axis and hub. It is used in many different industries, including the production of trains, cars, and airplanes. The outer radius of the inner cylinder must be greater than the inner radius of the outer cylinder for this operation; this difference is referred to as the "interference" between the two cylinders. There are three ways to accomplish this: heating the outer cylinder to cause it to expand; cooling the cylinder's inside to cause it to contract; and third, finishing the fitting under a press. At the intersection of the two matched parts, a contact pressure and friction force are generated. We consider interference and form defects in this article because they prevent the connection between the axis and the hub from having a perfect form surface and because we will be looking at how they affect the assembly. Numerical simulation is used to ascertain if interference and form defects have a beneficial or negative influence in the distribution of stresses, assembly resistance, and plasticity.Keywords: shrink-fit, interference, form defect, plasticity, extraction force
Procedia PDF Downloads 781176 Authentication Based on Hand Movement by Low Dimensional Space Representation
Authors: Reut Lanyado, David Mendlovic
Abstract:
Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.Keywords: authentication, feature extraction, hand recognition, security, signal processing
Procedia PDF Downloads 1271175 Anabasine Intoxication and its Relation to Plant Development Stages
Authors: Thaís T. Valério Caetano, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein
Abstract:
Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil for a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.Keywords: nicotiana glauca graham, global invasive species database, alkaloids, toxic
Procedia PDF Downloads 881174 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion
Authors: M. Sari Yilmaz, N. Karamahmut Mermer
Abstract:
Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence (XRF) spectroscopy and X-ray diffraction (XRD). The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry (ICP-OES).Keywords: extraction, fly ash, fusion, XRD
Procedia PDF Downloads 3221173 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder
Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi
Abstract:
With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor
Procedia PDF Downloads 1541172 Anabasine Intoxication and Its Relation to Plant Develoment Stages
Authors: Thaís T. Valério Caetano, Lívia de Carvalho Ferreira, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein
Abstract:
Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil during a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.Keywords: alkaloid production, invasive species, nicotiana glauca, plant phenology
Procedia PDF Downloads 831171 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems
Authors: Niharika Kaushal, Minni Singh
Abstract:
Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins
Procedia PDF Downloads 801170 Implementation of a PDMS Microdevice for the Improved Purification of Circulating MicroRNAs
Authors: G. C. Santini, C. Potrich, L. Lunelli, L. Vanzetti, S. Marasso, M. Cocuzza, C. Pederzolli
Abstract:
The relevance of circulating miRNAs as non-invasive biomarkers for several pathologies is nowadays undoubtedly clear, as they have been found to have both diagnostic and prognostic value able to add fundamental information to patients’ clinical picture. The availability of these data, however, relies on a time-consuming process spanning from the sample collection and processing to the data analysis. In light of this, strategies which are able to ease this procedure are in high demand and considerable effort have been made in developing Lab-on-a-chip (LOC) devices able to speed up and standardise the bench work. In this context, a very promising polydimethylsiloxane (PDMS)-based microdevice which integrates the processing of the biological sample, i.e. purification of extracellular miRNAs, and reverse transcription was previously developed in our lab. In this study, we aimed at the improvement of the miRNA extraction performances of this micro device by increasing the ability of its surface to absorb extracellular miRNAs from biological samples. For this purpose, we focused on the modulation of two properties of the material: roughness and charge. PDMS surface roughness was modulated by casting with several templates (terminated with silicon oxide coated by a thin anti-adhesion aluminum layer), followed by a panel of curing conditions. Atomic force microscopy (AFM) was employed to estimate changes at the nanometric scale. To introduce modifications in surface charge we functionalized PDMS with different mixes of positively charged 3-aminopropyltrimethoxysilanes (APTMS) and neutral poly(ethylene glycol) silane (PEG). The surface chemical composition was characterized by X-ray photoelectron spectroscopy (XPS) and the number of exposed primary amines was quantified with the reagent sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (s-SDTB). As our final end point, the adsorption rate of all these different conditions was assessed by fluorescence microscopy by incubating a synthetic fluorescently-labeled miRNA. Our preliminary analysis identified casting on thermally grown silicon oxide, followed by a curing step at 85°C for 1 hour, as the most efficient technique to obtain a PDMS surface roughness in the nanometric scaleable to trap miRNA. In addition, functionalisation with 0.1% APTMS and 0.9% PEG was found to be a necessary step to significantly increase the amount of microRNA adsorbed on the surface, therefore, available for further steps as on-chip reverse transcription. These findings show a substantial improvement in the extraction efficiency of our PDMS microdevice, ultimately leading to an important step forward in the development of an innovative, easy-to-use and integrated system for the direct purification of less abundant circulating microRNAs.Keywords: circulating miRNAs, diagnostics, Lab-on-a-chip, polydimethylsiloxane (PDMS)
Procedia PDF Downloads 3181169 Microfluidic Synthesis of Chlorophyll Extraction–Loaded PCL Composite Microparticles Developed as Health Food
Authors: Ching-Ju Hsiao, Mao-Chen Huang, Pei-Fan Chen, Ruo-Yun Chung, Jiun-Hua Chou, Chih-Hui Yang, Keng-Shiang Huang, Jei-Fu Shaw
Abstract:
Chlorophyll has many benefits for human body. It is known to improve the health of the circulatory, digestive, immune and detoxification systems of the body. However, Chl can’t be preserved at the environment of high temperature and light exposure for a long time due to it is chemical structure is easily degradable. This characteristic causes that human body is difficult to absorb Chl effective components. In order to solve this problem, we utilize polycaprolactone (PCL) polymer encapsulation technology to increase the stability of Chl. In particular, we also established a microfluidic platform provide the control of composite beads diameter. The new composite beads is potential to be a health food. Result show that Chl effective components via the microfludic platform can be encapsulated effectively and still preserve its effective components.Keywords: chlorophyll, PCL, PVA, microfluidic
Procedia PDF Downloads 5561168 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus
Authors: Majid Forghani, Michael Khachay
Abstract:
In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition
Procedia PDF Downloads 156