Search results for: multilevel optimization
2621 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology
Authors: Abhimanyu Kumar, Chirag Gupta
Abstract:
This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI
Procedia PDF Downloads 1302620 Revalidation and Hormonization of Existing IFCC Standardized Hepatic, Cardiac, and Thyroid Function Tests by Precison Optimization and External Quality Assurance Programs
Authors: Junaid Mahmood Alam
Abstract:
Revalidating and harmonizing clinical chemistry analytical principles and optimizing methods through quality control programs and assessments is the preeminent means to attain optimal outcome within the clinical laboratory services. Present study reports revalidation of our existing IFCC regularized analytical methods, particularly hepatic and thyroid function tests, by optimization of precision analyses and processing through external and internal quality assessments and regression determination. Parametric components of hepatic (Bilirubin ALT, γGT, ALP), cardiac (LDH, AST, Trop I) and thyroid/pituitary (T3, T4, TSH, FT3, FT4) function tests were used to validate analytical techniques on automated chemistry and immunological analyzers namely Hitachi 912, Cobas 6000 e601, Cobas c501, Cobas e411 with UV kinetic, colorimetric dry chemistry principles and Electro-Chemiluminescence immunoassay (ECLi) techniques. Process of validation and revalidation was completed with evaluating and assessing the precision analyzed Preci-control data of various instruments plotting against each other with regression analyses R2. Results showed that: Revalidation and optimization of respective parameters that were accredited through CAP, CLSI and NEQAPP assessments depicted 99.0% to 99.8% optimization, in addition to the methodology and instruments used for analyses. Regression R2 analysis of BilT was 0.996, whereas that of ALT, ALP, γGT, LDH, AST, Trop I, T3, T4, TSH, FT3, and FT4 exhibited R2 0.998, 0.997, 0.993, 0.967, 0.970, 0.980, 0.976, 0.996, 0.997, 0.997, and R2 0.990, respectively. This confirmed marked harmonization of analytical methods and instrumentations thus revalidating optimized precision standardization as per IFCC recommended guidelines. It is concluded that practices of revalidating and harmonizing the existing or any new services should be followed by all clinical laboratories, especially those associated with tertiary care hospital. This is will ensure deliverance of standardized, proficiency tested, optimized services for prompt and better patient care that will guarantee maximum patients’ confidence.Keywords: revalidation, standardized, IFCC, CAP, harmonized
Procedia PDF Downloads 2692619 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.Keywords: air pollution, linear programming, mining, optimization, treatment technologies
Procedia PDF Downloads 2082618 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards
Authors: José M. Carmona, Diana Puigserver, Jofre Herrero
Abstract:
Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard
Procedia PDF Downloads 1472617 Investigation and Optimization of DNA Isolation Efficiency Using Ferrite-Based Magnetic Nanoparticles
Authors: Tímea Gerzsenyi, Ágnes M. Ilosvai, László Vanyorek, Emma Szőri-Dorogházi
Abstract:
DNA isolation is a crucial step in many molecular biological applications for diagnostic and research purposes. However, traditional extraction requires toxic reagents, and commercially available kits are expensive, this leading to the recently wide-spread method, the magnetic nanoparticle (MNP)-based DNA isolation. Different ferrite containing MNPs were examined and compared in their plasmid DNA isolation efficiency. Among the tested MNPs, one has never been used for the extraction of plasmid molecules, marking a distinct application. pDNA isolation process was optimized for each type of nanoparticle and the best protocol was selected based on different criteria: DNA quantity, quality and integrity. With the best-performing magnetic nanoparticle, which excelled in all aspects, further tests were performed to recover genomic DNA from bacterial cells and a protocol was developed.Keywords: DNA isolation, nanobiotechnology, magnetic nanoparticles, protocol optimization, pDNA, gDNA
Procedia PDF Downloads 92616 Mathematical Modeling and Optimization of Burnishing Parameters for 15NiCr6 Steel
Authors: Tarek Litim, Ouahiba Taamallah
Abstract:
The present paper is an investigation of the effect of burnishing on the surface integrity of a component made of 15NiCr6 steel. This work shows a statistical study based on regression, and Taguchi's design has allowed the development of mathematical models to predict the output responses as a function of the technological parameters studied. The response surface methodology (RSM) showed a simultaneous influence of the burnishing parameters and observe the optimal processing parameters. ANOVA analysis of the results resulted in the validation of the prediction model with a determination coefficient R=90.60% and 92.41% for roughness and hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=10kgf, i=3passes, and f=0.074mm/rev, which favours minimum roughness and maximum hardness. The result was validated by the desirability of D= (0.99 and 0.95) for roughness and hardness, respectively.Keywords: 15NiCr6 steel, burnishing, surface integrity, Taguchi, RSM, ANOVA
Procedia PDF Downloads 1912615 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 3962614 Urban Planning Compilation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hyper-Cycle Theory
Authors: Hong Dongchen, Chen Qiuxiao, Wu Shuang
Abstract:
Systematic science reveals the complex nonlinear mechanisms of behaviour in urban system. However, in China, when the current city planners face with the system, most of them are still taking simple linear thinking to consider the open complex giant system. This paper introduces the hyper-cycle theory, which is one of the basis theories of systematic science, based on the analysis of the reasons why the current urban planning failed, and proposals for optimization ideas that urban planning compilation should change, from controlling quantitative to the changes of relationship, from blueprint planning to progressive planning based on the nonlinear characteristics and from management control to dynamically monitor feedback.Keywords: systematic science, hyper-cycle theory, urban planning, urban management
Procedia PDF Downloads 4052613 Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects
Authors: Aravind G., Arshinder Kaur, Pushpavanam S.
Abstract:
There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study.Keywords: life cycle assessment, lithium-ion battery recycling, multi-objective optimization, network design, reverse supply chain
Procedia PDF Downloads 1572612 Decision Support System for Optimal Placement of Wind Turbines in Electric Distribution Grid
Authors: Ahmed Ouammi
Abstract:
This paper presents an integrated decision framework to support decision makers in the selection and optimal allocation of wind power plants in the electric grid. The developed approach intends to maximize the benefice related to the project investment during the planning period. The proposed decision model considers the main cost components, meteorological data, environmental impacts, operation and regulation constraints, and territorial information. The decision framework is expressed as a stochastic constrained optimization problem with the aim to identify the suitable locations and related optimal wind turbine technology considering the operational constraints and maximizing the benefice. The developed decision support system is applied to a case study to demonstrate and validate its performance.Keywords: decision support systems, electric power grid, optimization, wind energy
Procedia PDF Downloads 1532611 Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental
Authors: Friday Godwin Okibe, Elaoyi David Paul, Oladayo Thomas Ojekunle
Abstract:
In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time.Keywords: nitrogen and phosphorous co-doped Zno, p-nitrophenol, photocatalytic degradation, optimization, factorial design of experimental
Procedia PDF Downloads 5242610 Artificial Intelligent-Based Approaches for Task Offloading, Resource Allocation and Service Placement of Internet of Things Applications: State of the Art
Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib
Abstract:
In order to support the continued growth, critical latency of IoT applications, and various obstacles of traditional data centers, mobile edge computing (MEC) has emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. By adopting a MEC structure, IoT applications could be executed locally, on an edge server, different fog nodes, or distant cloud data centers. However, we are often faced with wanting to optimize conflicting criteria such as minimizing energy consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge devices and trying to keep high performance (reducing response time, increasing throughput and service availability) at the same time. Achieving one goal may affect the other, making task offloading (TO), resource allocation (RA), and service placement (SP) complex processes. It is a nontrivial multi-objective optimization problem to study the trade-off between conflicting criteria. The paper provides a survey on different TO, SP, and RA recent multi-objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications.Keywords: mobile edge computing, multi-objective optimization, artificial intelligence approaches, task offloading, resource allocation, service placement
Procedia PDF Downloads 1152609 Curriculum System Optimization under Outstanding Engineers Training Mode of Mechanical and Electronic Engineering
Authors: El Miloudi Djelloul
Abstract:
Teaching program of `A plan for educating and training outstanding engineers' is divided into intramural teaching program and enterprise practice teaching program. Based on analyzing the basic principles of teaching plans which teaching plan follows for undergraduate mechanical and electrical engineering, major contents of specialty teaching project are studied amply. The study contents include the system optimization and reform of common curriculum, specialty curriculum and practice curriculum. The practice indicated that under outstanding engineers training mode, the optimized curriculum system have practicability, and achieve the training objectives.Keywords: curriculum system, mechanical and electronic engineering, outstanding engineers, teaching program
Procedia PDF Downloads 5262608 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis
Authors: Saeed Karimi, Ali Behbahaninia
Abstract:
In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic
Procedia PDF Downloads 932607 Optimization of the Conditions of Oligomerization and Polymerization Processes of Selected Olefins with the Use of Complex Compounds of Transition Metal Ions
Authors: Joanna Drzeżdżon, Marzena Białek
Abstract:
Polyolefins are a group of materials used today in all areas of life. They are used in the food, domestic and other industries. In particular, polyethylene and polypropylene have found application in the production of packaging materials, pipes, containers, car parts as well as elements of medical equipment, e.g. syringes. Optimization of the polymerization and oligomerization processes of selected olefins is a very important stage before the technological implementation of polyolefin production. The purpose of the studies is to determine the conditions for ethylene polymerization as well as 3-buten-2-ol and 2-chloro-2-propen-1-ol oligomerization with the use of oxovanadium(IV) dipicolinate complexes with N-heterocyclic ligands. Additionally, the studies aims to determine the catalytic activities of the dipicolinate oxovanadium(IV) complexes with N-heterocyclic ligands in the studied polymerization and oligomerization processes.Keywords: buten-2-ol, dipicolinate, ethylene, polymerization, oligomerization, vanadium
Procedia PDF Downloads 1962606 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology
Authors: Vasu Velagapudi, G. Suresh
Abstract:
PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate
Procedia PDF Downloads 3952605 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation
Authors: Sahil Imtiyaz
Abstract:
One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations
Procedia PDF Downloads 1942604 Global Convergence of a Modified Three-Term Conjugate Gradient Algorithms
Authors: Belloufi Mohammed, Sellami Badreddine
Abstract:
This paper deals with a new nonlinear modified three-term conjugate gradient algorithm for solving large-scale unstrained optimization problems. The search direction of the algorithms from this class has three terms and is computed as modifications of the classical conjugate gradient algorithms to satisfy both the descent and the conjugacy conditions. An example of three-term conjugate gradient algorithm from this class, as modifications of the classical and well known Hestenes and Stiefel or of the CG_DESCENT by Hager and Zhang conjugate gradient algorithms, satisfying both the descent and the conjugacy conditions is presented. Under mild conditions, we prove that the modified three-term conjugate gradient algorithm with Wolfe type line search is globally convergent. Preliminary numerical results show the proposed method is very promising.Keywords: unconstrained optimization, three-term conjugate gradient, sufficient descent property, line search
Procedia PDF Downloads 3752603 Development of Construction Cost Optimization System Using Genetic Algorithm Method
Authors: Hyeon-Seung Kim, Young-Hwan Kim, Sang-Mi Park, Min-Seo Kim, Jong-Myeung Shin, Leen-Seok Kang
Abstract:
The project budget at the planned stage might be changed by the insufficient government budget or the design change. There are many cases more especially in the case of a project performed for a long period of time. If the actual construction budget is insufficient comparing with the planned budget, the construction schedule should also be changed to match the changed budget. In that case, most project managers change the planned construction schedule by a heuristic approach without a reasonable consideration on the work priority. This study suggests an optimized methodology to modify the construction schedule according to the changed budget. The genetic algorithm was used to optimize the modified construction schedule within the changed budget. And a simulation system of construction cost histogram in accordance with the construction schedule was developed in the BIM (Building Information Modeling) environment.Keywords: 5D, BIM, GA, cost optimization
Procedia PDF Downloads 5882602 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3112601 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation
Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou
Abstract:
This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units
Procedia PDF Downloads 1572600 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming
Authors: Derkaoui Orkia, Lehireche Ahmed
Abstract:
The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation
Procedia PDF Downloads 2222599 Cost Reduction Techniques for Provision of Shelter to Homeless
Authors: Mukul Anand
Abstract:
Quality oriented affordable shelter for all has always been the key issue in the housing sector of our country. Homelessness is the acute form of housing need. It is a paradox that in spite of innumerable government initiated programmes for affordable housing, certain section of society is still devoid of shelter. About nineteen million (18.78 million) households grapple with housing shortage in Urban India in 2012. In Indian scenario there is major mismatch between the people for whom the houses are being built and those who need them. The prime force faced by public authorities in facilitation of quality housing for all is high cost of construction. The present paper will comprehend executable techniques for dilution of cost factor in housing the homeless. The key actors responsible for delivery of cheap housing stock such as capacity building, resource optimization, innovative low cost building material and indigenous skeleton housing system will also be incorporated in developing these techniques. Time performance, which is an important angle of above actors, will also be explored so as to increase the effectiveness of low cost housing. Along with this best practices will be taken up as case studies where both conventional techniques of housing and innovative low cost housing techniques would be cited. Transportation consists of approximately 30% of total construction budget. Thus use of alternative local solutions depending upon the region would be covered so as to highlight major components of low cost housing. Government is laid back regarding base line information on use of innovative low cost method and technique of resource optimization. Therefore, the paper would be an attempt to bring to light simpler solutions for achieving low cost housing.Keywords: construction, cost, housing, optimization, shelter
Procedia PDF Downloads 4452598 Case Study: Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.Keywords: cash flow optimization, payment plan, procurement management, subcontracting plan
Procedia PDF Downloads 1312597 Web Page Design Optimisation Based on Segment Analytics
Authors: Varsha V. Rohini, P. R. Shreya, B. Renukadevi
Abstract:
In the web analytics the information delivery and the web usage is optimized and the analysis of data is done. The analytics is the measurement, collection and analysis of webpage data. Page statistics and user metrics are the important factor in most of the web analytics tool. This is the limitation of the existing tools. It does not provide design inputs for the optimization of information. This paper aims at providing an extension for the scope of web analytics to provide analysis and statistics of each segment of a webpage. The number of click count is calculated and the concentration of links in a web page is obtained. Its user metrics are used to help in proper design of the displayed content in a webpage by Vision Based Page Segmentation (VIPS) algorithm. When the algorithm is applied on the web page it divides the entire web page into the visual block tree. The visual block tree generated will further divide the web page into visual blocks or segments which help us to understand the usage of each segment in a page and its content. The dynamic web pages and deep web pages are used to extend the scope of web page segment analytics. Space optimization concept is used with the help of the output obtained from the Vision Based Page Segmentation (VIPS) algorithm. This technique provides us the visibility of the user interaction with the WebPages and helps us to place the important links in the appropriate segments of the webpage and effectively manage space in a page and the concentration of links.Keywords: analytics, design optimization, visual block trees, vision based technology
Procedia PDF Downloads 2662596 The Effect of per Pupil Expenditure on Student Academic Achievement: A Meta-Analysis of Correlation Research
Authors: Ting Shen
Abstract:
Whether resource matters to school has been a topic of intense debate since 1960s. Educational researchers and policy makers have been particularly interested in knowing the return or payoff of Per-Pupil Expenditure (PPE) on improving students’ achievement. However, the evidence on the effect of PPE has been mixed and the size of the effect is also unknown. With regard to the methods, it is well-known that meta-analysis study is superior to individual study and it is also preferred to vote counting method in terms of scientifically weighting the evidence by the sample size. This meta-analysis study aims to provide a synthesized evidence on the correlation between PPE and student academic achievement using recent study data from 1990s to 2010s. Meta-analytical approach of fixed- and random-effects models will be utilized in addition to a meta regression with predictors of year, location, region and school type. A preliminary result indicates that by and large there is no statistically significant relationship between per pupil expenditure and student achievement, but location seems to have a mediating effect.Keywords: per pupil expenditure, student academic achievement, multilevel model, meta-analysis
Procedia PDF Downloads 2382595 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency
Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee
Abstract:
Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system
Procedia PDF Downloads 4342594 Parallel Random Number Generation for the Modern Supercomputer Architectures
Authors: Roman Snytsar
Abstract:
Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing
Procedia PDF Downloads 1202593 FTIR Spectroscopy for in vitro Screening in Microbial Biotechnology
Authors: V. Shapaval, N. K. Afseth, D. Tzimorotas, A. Kohler
Abstract:
Globally there is a dramatic increase in the demand for food, energy, materials and clean water since natural resources are limited. As a result, industries are looking for ways to reduce rest materials and to improve resource efficiency. Microorganisms have a high potential to be used as bio factories for the production of primary and secondary metabolites that represent high-value bio-products (enzymes, polyunsaturated fatty acids, bio-plastics, glucans, etc.). In order to find good microbial producers, to design suitable substrates from food rest materials and to optimize fermentation conditions, rapid analytical techniques for quantifying target bio products in microbial cells are needed. In the EU project FUST (R4SME, Fp7), we have developed a fully automated high-throughput FUST system based on micro-cultivation and FTIR spectroscopy that facilitates the screening of microorganisms, substrates and fermentation conditions for the optimization of the production of different high-value metabolites (single cell oils, bio plastics). The automated system allows the preparation of 100 samples per hour. Currently, The FUST system is in use for screening of filamentous fungi in order to find oleaginous strains with the ability to produce polyunsaturated fatty acids, and the optimization of cheap substrates, derived from food rest materials, and the optimization of fermentation conditions for the high yield of single cell oil.Keywords: FTIR spectroscopy, FUST system, screening, biotechnology
Procedia PDF Downloads 4432592 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays
Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir
Abstract:
Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis
Procedia PDF Downloads 113