Search results for: information recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12086

Search results for: information recognition

11306 Information Asymmetry and Governing Boards in Higher Education: The Heat Map of Information Asymmetry Across Competencies and the Role of Training in Mitigating Information Asymmetry

Authors: Ana Karaman, Dmitriy Gaevoy

Abstract:

Successful and effective governing boards play an essential role in higher education by providing essential oversight and helping to steer the direction of an institution while creating and maintaining a thriving culture of stewardship. A well-functioning board can also help mitigate conflicts of interest, ensure responsible use of an organization's assets, and maintain institutional transparency. However, boards’ functions in higher education are inhibited by the presence of information asymmetry between the board and management. Board members typically have little specific knowledge about the business side of the higher education, in general, and an institution under their oversight in particular. As a result, boards often must rely on the discretion of the institutional upper administration as to what type of pertinent information being disclosed to the board. The phenomenon of information asymmetry is not unique to the higher education and has been studied previously in the context of both corporate and non-for-profit boards. Various board characteristics have been analyzed with respect to mitigating the information asymmetry between an organizational board and management. For example, it has been argued that such board characteristics as its greater size, independence, and a higher proportion of female members tend to reduce information asymmetry by raising levels of information disclosure and organizational transparency. This paper explores the phenomenon of information asymmetry between boards and management in the context of higher education. In our analysis, we propose a heat map of information asymmetry based on the categories of board competencies in higher education. The proposed heat map is based on the assessment of potential risks to both the boards and its institutions. It employs an assumption that a potential risk created by the presence of information asymmetry varies in its magnitude across various areas of boards’ competencies. Then, we explore the role of board members’ training in mitigating information asymmetry between the boards and the management by increasing the level of information disclosure and enhancing transparency in management communication with the boards. The paper seeks to demonstrate how appropriate training can provide board members with an adequate preparation to request a sufficient level of information disclose and transparency by arming them with knowledge of what questions to ask of the management.

Keywords: higher education, governing boards information asymmetry, board competencies, board training

Procedia PDF Downloads 70
11305 Assessing the Current State of Software Engineering and Information Technology in Ghana

Authors: David Yartel

Abstract:

Drawing on the current state of software engineering and information technology in Ghana, the study documents its significant contribution to the development of Ghanaian industries. The study focuses on the application of modern trends in technology and the barriers faced in the area of software engineering and information technology. A thorough analysis of a dozen of interviews with stakeholders in software engineering and information technology via interviews reveals how modern trends in software engineering pose challenges to the industry in Ghana. Results show that to meet the expectation of modern software engineering and information technology trends, stakeholders must have skilled professionals, adequate infrastructure, and enhanced support for technology startups. Again, individuals should be encouraged to pursue a career in software engineering and information technology, as it has the propensity to increase the efficiency and effectiveness of work-related activities. This study recommends that stakeholders in software engineering and technology industries should invest enough in training more professionals by collaborating with international institutions well-versed in the area by organizing frequent training and seminars. The government should also provide funding opportunities for small businesses in the technology sector to drive creativity and development in order to bring about growth and development.

Keywords: software engineering, information technology, Ghana, development

Procedia PDF Downloads 94
11304 Protective Effect of the Histamine H3 Receptor Antagonist DL77 in Behavioral Cognitive Deficits Associated with Schizophrenia

Authors: B. Sadek, N. Khan, D. Łażewska, K. Kieć-Kononowicz

Abstract:

The effects of the non-imidazole histamine H3 receptor (H3R) antagonist DL77 in passive avoidance paradigm (PAP) and novel object recognition (NOR) task in MK801-induced cognitive deficits associated with schizophrenia (CDS) in adult male rats, and applying donepezil (DOZ) as a reference drug were investigated. The results show that acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly improved MK801-induced (0.1 mg/kg, i.p.) memory deficits in PAP. The ameliorating activity of DL77 (5 mg/kg, i.p.) in MK801-induced deficits was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10 mg/kg, i.p.) or with the antimuscarinic antagonist scopolamine (SCO, 0.1 mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10 mg/kg, i.p.). Moreover, the memory enhancing effect of DL77 (5 mg/kg, i.p.) in MK801-induced memory deficits in PAP was strongly reversed when rats were pretreated with a combination of ZOL (10 mg/kg, i.p.) and SCO (1.0 mg/kg, i.p.). Furthermore, the significant ameliorative effect of DL77 (5 mg/kg, i.p.) on MK801-induced long-term memory (LTM) impairment in NOR test was comparable to the DOZ-provided memory-enhancing effect, and was abrogated when animals were pretreated with the histamine H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to provide procognitive effect on MK801-induced short-term memory (STM) impairment in NOR test. In addition, DL77 (5 mg/kg) did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM), demonstrating that improved performances with DL77 (5 mg/kg) in PAP or NOR are unrelated to changes in emotional responding or spontaneous locomotor activity. These results provide evidence for the potential of H3Rs for the treatment of neurodegenerative disorders related to impaired memory function, e.g. CDS.

Keywords: histamine H3 receptor, antagonist, learning, memory impairment, passive avoidance paradigm, novel object recognition

Procedia PDF Downloads 203
11303 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Check, diabetes, neural network, pattern recognition

Procedia PDF Downloads 147
11302 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 150
11301 Guidance for Strengthening Ethics of Entrepreneurs in Information and Communication Technology Professional

Authors: Routsukol Sunalai

Abstract:

The objectives of this paper were to study current problem of ethics of entrepreneurs in information and communication technology professional, and to build their awareness of ethics, which would be useful as guidance for strengthening professional ethics among them. The study employed quantitative research method in order to analyze relationships or differences found in each ethics factor and report in statistics. The sample of this paper was 300 information technology users of Rajabhat Universities in Bangkok. The findings revealed that the ethics factors which gained the highest and high level of opinion included possessing principles of righteousness, having trust in themselves and others, and respecting different opinions of others and accepting the fact that people of different opinions.

Keywords: communication, ethics, information, entrepreneurs

Procedia PDF Downloads 411
11300 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119
11299 Does Stock Markets Asymmetric Information Affect Foreign Capital Flows?

Authors: Farid Habibi Tanha, Mojtaba Jahanbazi, Morteza Foroutan, Rasidah Mohd Rashid

Abstract:

This paper depicts the effects of asymmetric information in determining capital inflows to be captured through stock market microstructure. The model can explain several stylized facts regarding the capital immobility. The first phase of the research involves in collecting and refining 150,000,000 daily data of 11 stock markets over a period of one decade in an effort to minimize the impact of survivorship bias. Three micro techniques were used to measure information asymmetries. The final phase analyzes the model through panel data approach. As a unique contribution, this research will provide valuable information regarding negative effects of information asymmetries in stock markets on attracting foreign investments. The results of this study can be directly considered by policy makers to monitor and control changes of capital flow in order to keep market conditions in a healthy manner, by preventing and managing possible shocks to avoid sudden reversals and market failures.

Keywords: asymmetric information, capital inflow, market microstructure, investment

Procedia PDF Downloads 321
11298 Gender Diversity on the Board and Asymmetry Information: An Empirical Analysis for Spanish Listed Firms

Authors: David Abad, M. Encarnación Lucas-Pérez, Antonio Minguez-Vera, José Yagüe

Abstract:

We examine explicitly the relation between the gender diversity on corporate boards and the levels of information asymmetry in the stock market. Based on prior evidence that suggests that the presence of women on director boards increases the quantity and quality of public disclosure by firms, we expect firms with higher gender diversity on their boards to show lower levels of information asymmetry in the market. Using a Spanish sample for the period 2004-2009, proxies for information asymmetry estimated from high-frequency data, and a system GMM methodology, we find that the gender diversity on boards is negative associated with the level of information asymmetry in the stock market. Our findings support legislative changes implemented to increase the presence of women on boards in several European countries by providing evidence that gender diverse boards have beneficial effects on stock markets.

Keywords: corporate board, female directors, gender diversity, information asymmetry, market microstructure

Procedia PDF Downloads 468
11297 Beyond Recognition: Beliefs, Attitudes, and Help-Seeking for Depression and Schizophrenia in Ghana

Authors: Peter Adu

Abstract:

Background: There is a paucity of mental health research in Ghana. Little is known about the beliefs and attitudes regarding specific mental disorders in Ghana. Method: A vignette study was conducted to examine the relationship between causal attributions, help-seeking, and stigma towards depression and schizophrenia using lay Ghanaians (N = 410). This adapted questionnaire presented two unlabelled vignettes about a hypothetical person with the above disorders for participants to provide their impressions. Next, participants answered questions on beliefs and attitudes regarding this person. Results: The results showed that causal beliefs about mental disorders were related to treatment options and stigma: spiritual causal attributions associated positively with spiritual help-seeking and perceived stigma for the mental disorders, whilst biological and psychosocial causal attribution of the mental disorders was positively related with professional help-seeking. Finally, contrary to previous literature, belonging to a particular religious group did not negatively associate with professional help-seeking for mental disorders. Conclusion: In conclusion, results suggest that Ghanaians may benefit from exposure to corrective information about depression and schizophrenia. Our findings have implications for mental health literacy and anti-stigma campaigns in Ghana and other developing countries in the region.

Keywords: stigma, mental health literacy, depression, schizophrenia, spirituality, religion

Procedia PDF Downloads 145
11296 Selection of Relevant Servers in Distributed Information Retrieval System

Authors: Benhamouda Sara, Guezouli Larbi

Abstract:

Nowadays, the dissemination of information touches the distributed world, where selecting the relevant servers to a user request is an important problem in distributed information retrieval. During the last decade, several research studies on this issue have been launched to find optimal solutions and many approaches of collection selection have been proposed. In this paper, we propose a new collection selection approach that takes into consideration the number of documents in a collection that contains terms of the query and the weights of those terms in these documents. We tested our method and our studies show that this technique can compete with other state-of-the-art algorithms that we choose to test the performance of our approach.

Keywords: distributed information retrieval, relevance, server selection, collection selection

Procedia PDF Downloads 312
11295 Features for Measuring Credibility on Facebook Information

Authors: Kanda Runapongsa Saikaew, Chaluemwut Noyunsan

Abstract:

Nowadays social media information, such as news, links, images, or VDOs, is shared extensively. However, the effectiveness of disseminating information through social media lacks in quality: less fact checking, more biases, and several rumors. Many researchers have investigated about credibility on Twitter, but there is no the research report about credibility information on Facebook. This paper proposes features for measuring credibility on Facebook information. We developed the system for credibility on Facebook. First, we have developed FB credibility evaluator for measuring credibility of each post by manual human’s labelling. We then collected the training data for creating a model using Support Vector Machine (SVM). Secondly, we developed a chrome extension of FB credibility for Facebook users to evaluate the credibility of each post. Based on the usage analysis of our FB credibility chrome extension, about 81% of users’ responses agree with suggested credibility automatically computed by the proposed system.

Keywords: facebook, social media, credibility measurement, internet

Procedia PDF Downloads 356
11294 Fair Value Implementation of Financial Asset: Evidence in Indonesia’s Banking Sector

Authors: Alhamdi Alfi Fajri

Abstract:

The purpose of this study is to analyze and to give empirical proof about the effect of fair value implementation on financial asset against information asymmetry in Indonesia’s banking sector. This research tested the effect of fair value implementation on financial asset based on Statement of Financial Accounting Standard (PSAK) No. 55 and the fair value reliability measurement based on PSAK No. 60 against level of information asymmetry. The scope of research is Indonesia’s banking sector. The test’s result shows that the use of fair value based on PSAK No. 55 is significantly associated with information asymmetry. This positive relation is higher than the amortized cost implementation on financial asset. In addition, the fair value hierarchy based on PSAK No. 60 is significantly associated with information asymmetry. This research proves that the more reliable measurement of fair value on financial asset, the more observable fair value measurement and reduces level of information asymmetry.

Keywords: fair value, PSAK No. 55, PSAK No. 60, information asymmetry, bank

Procedia PDF Downloads 354
11293 The Impact of Board Director Characteristics on the Quality of Information Disclosure

Authors: Guo Jinhong

Abstract:

The purpose of this study is to explore the association between board member functions and information disclosure levels. Based on the literature variables, such as the characteristics of the board of directors in the past, a single comprehensive indicator is established as a substitute variable for board functions, and the information disclosure evaluation results published by the Securities and Foundation are used to measure the information disclosure level of the company. This study focuses on companies listed on the Taiwan Stock Exchange from 2006 to 2010 and uses descriptive statistical analysis, univariate analysis, correlation analysis and ordered normal probability (Ordered Probit) regression for empirical analysis. The empirical results show that there is a significant positive correlation between the function of board members and the level of information disclosure. This study also conducts a sensitivity test and draws similar conclusions, showing that boards with better board member functions have higher levels of information disclosure. In addition, this study also found that higher board independence, lower director shareholding pledge ratio, higher director shareholding ratio, and directors with rich professional knowledge and practical experience can help improve the level of information disclosure. The empirical results of this study provide strong support for the "relative regulations to improve the level of information disclosure" formulated by the competent authorities in recent years.

Keywords: function of board members, information disclosure, securities, foundation

Procedia PDF Downloads 97
11292 A Novel Image Steganography Scheme Based on Mandelbrot Fractal

Authors: Adnan H. M. Al-Helali, Hamza A. Ali

Abstract:

Growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC) and Image Fidelity (IF) over the previous techniques.

Keywords: fractal image, information hiding, Mandelbrot et fractal, steganography

Procedia PDF Downloads 541
11291 Global Communication: Trends and Impact of Unbalanced Information in Nigerian Society

Authors: Uchenna Patricia Ekwugha, Cornelius Aghadiegwu Ukwueze

Abstract:

Global communication has changed life at the international scene affecting on the whole social, cultural and political life of individuals in a global community. It has brought about a changing trend in the field of communication and allowed people to learn, create and process information through mainline media and new media technologies. The paper debates that music is an integral form of global communication that cannot be overlooked because it is a beautiful and powerful tool in relating information to the people which they gladly imbibe. It is worrisome that through global communication there has been consistent clash of values on information’s disseminated to the global community of which the developing countries like Nigerians are the sufferers. Particularly involved in this vicious social dogma are the Nigerian youths, who learn defiant behaviour through global communication and lose touch of African cultural values.

Keywords: global communication, trends, impact, unbalanced information

Procedia PDF Downloads 508
11290 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 378
11289 Health Information Seeking Estonians Aged ≥ 50 Years during the COVID-19 Pandemic

Authors: Marianne Paimre

Abstract:

The COVID-19 crisis has prompted older people to adopt new technologies to facilitate their daily life. This study explored the relationships between socioeconomic indicators, technology acceptance, online health information seeking (OHIS), and health behavior (HB), including readiness for COVID-19 vaccination among Estonian older adults. A cross-sectional survey was conducted among 501 people aged ≥ 50 in 2020. Its findings indicate that the more recurrent the need for health information was (rho = .11, p<.05), and the more regularly one searched for it (rho = .14, p<.01), the more willing a person was to get vaccinated. Also, interest in digital applications corresponded to vaccination readiness (rho = .25, p<.001). However, this relationship did not emerge in the case of other health behaviors such as healthy diet and exercise. Differences in health information behavior (HIB) should be considered when developing effective means of health communication designed especially for crisis situations.

Keywords: older adults, technology acceptance, health information behavior, health behavior, COVID-19 pandemic

Procedia PDF Downloads 92
11288 Collect Meaningful Information about Stock Markets from the Web

Authors: Saleem Abuleil, Khalid S. Alsamara

Abstract:

Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.

Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market

Procedia PDF Downloads 393
11287 Drug and Poison Information Centers: An Emergent Need of Health Care Professionals in Pakistan

Authors: Asif Khaliq, Sayeeda A. Sayed

Abstract:

The drug information centers provide drug related information to the requesters that include physicians, pharmacist, nurses and other allied health care professionals. The International Pharmacist Federation (FIP) describes basic functions of a drug and poison information centers as drug evaluation, therapeutic counseling, pharmaceutical advice, research, pharmaco-vigilence and toxicology. Continuous advancement in the field of medicine has expanded the medical literature, which has increased demand of a drug and poison information center for the guidance, support and facilitation of physicians. The objective of the study is to determine the need of drug and poison information centers in public and private hospitals of Karachi, Pakistan. A cross sectional study was conducted during July 2013 to April 2014 using a self-administered, multi-itemed questionnaire. Non Probability Convenient sampling was used to select the study participants. A total of 307 physicians from public and private hospitals of Karachi participated in the study. The need for 24/7 Drug and poison information center was highlighted by 92 % of physicians and 67% physicians suggested opening a drug information center at the hospital. It was reported that 70% physicians take at least 15 minutes for searching the information about the drug while managing a case. Regarding the poisoning case management, 52% physicians complaint about the unavailability of medicines in hospitals; and mentioned the importance of medicines for safe and timely management of patients. Although 73% physicians attended continued medical education (CME) sessions, 92 % physicians insisted on the need of 24/7 Drug and poison information center. The scarcity of organized channel for obtaining the information about drug and poisons is one of the most crucial problems for healthcare workers in Pakistan. The drug and poison information center is an advisory body that assists health care professional and patients in provision of appropriate drug and hazardous substance information. Drug and poison information center is one of the integral needs for running an effective health care system. Provision of a 24 /7 drug information centers with specialized staff offer multiple benefits to the hospitals while reducing treatment delays, addressing awareness gaps of all stakeholders and ensuring provision of quality health care.

Keywords: drug and poison information centers, Pakistan, physicians, public and private hospitals

Procedia PDF Downloads 328
11286 Book Recommendation Using Query Expansion and Information Retrieval Methods

Authors: Ritesh Kumar, Rajendra Pamula

Abstract:

In this paper, we present our contribution for book recommendation. In our experiment, we combine the results of Sequential Dependence Model (SDM) and exploitation of book information such as reviews, tags and ratings. This social information is assigned by users. For this, we used CLEF-2016 Social Book Search Track Suggestion task. Finally, our proposed method extensively evaluated on CLEF -2015 Social Book Search datasets, and has better performance (nDCG@10) compared to other state-of-the-art systems. Recently we got the good performance in CLEF-2016.

Keywords: sequential dependence model, social information, social book search, query expansion

Procedia PDF Downloads 289
11285 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 143
11284 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 444
11283 An Introduction to Giulia Annalinda Neglia Viewpoint on Morphology of the Islamic City Using Written Content Analysis Approach

Authors: Mohammad Saber Eslamlou

Abstract:

Morphology of Islamic cities has been extensively studied by researchers of Islamic cities and different theories could be found about it. In this regard, there exist much difference in method of analysis, classification, recognition, confrontation and comparative method of urban morphology. The present paper aims to examine the previous methods, approaches and insights and that how Dr. Giulia Annalinda Neglia dealt with the analysis of morphology of Islamic cities. Neglia is assistant professor in University of Bari, Italy (UNIBA) who has published numerous papers and books on Islamic cities. I introduce her works in the field of morphology of Islamic cities. And then, her thoughts, insights and research methodologies are presented and analyzed in critical perspective. This is a qualitative research on her written works, which have been classified in three major categories. The first category consists mainly of her works on morphology and physical shape of Islamic cities. The results of her works’ review suggest that she has used Moratoria typology in investigating morphology of Islamic cities. Moreover, overall structure of the cities under investigation is often described linear; however, she’s against to define a single framework for the recognition of morphology in Islamic cities. She states that ‘to understand the physical complexity and irregularities in Islamic cities, it is necessary to study the urban fabric by typology method, focusing on transformation processes of the buildings’ form and their surrounding open spaces’ and she believes that fabric of each region in the city follows from the principles of an specific period or urban pattern, in particular, Hellenistic and Roman structures. Furthermore, she believes that it is impossible to understand the morphology of a city without taking into account the obvious and hidden developments associated with it, because form of building and their surrounding open spaces are written history of the city.

Keywords: city, Islamic city, Giulia Annalinda Neglia, morphology

Procedia PDF Downloads 97
11282 A Novel Image Steganography Method Based on Mandelbrot Fractal

Authors: Adnan H. M. Al-Helali, Hamza A. Ali

Abstract:

The growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC), and Image Fidelity (IF) over the pervious techniques.

Keywords: fractal image, information hiding, Mandelbrot set fractal, steganography

Procedia PDF Downloads 618
11281 The Factors that Effect to User Satisfaction of Information System in Bangkok Hospital

Authors: Somchai Buaroong

Abstract:

This research attempted to study information system success in dimensions of the user satisfaction level and to find the association between the independent factors of the user experiences, user knowledge, and user attitude. The study sample was selected using simple random sampling that comprised of 190 users who had used the Bangkok HIS. The data were reported from 165 questionnaires. The results found that the user satisfaction was at a moderate level, user satisfaction on the information quality and system quality was at a moderate level, while satisfaction on service quality was at a high level. The computer knowledge of the user was at a moderate level, and the user attitude was at a positive level. The participation of the user was at a low level and the participation in decision and in evaluation was at a low level; however participation in implementation and in benefit was at a moderate.

Keywords: information system success, hospital information system, user attitude, user satisfaction

Procedia PDF Downloads 320
11280 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques

Authors: Mei-Yi Wu, Shang-Ming Huang

Abstract:

The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.

Keywords: mobile image retrieval, text mining, product information service system, online marketing

Procedia PDF Downloads 359
11279 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 374
11278 Building Information Models Utilization for Design Improvement of Infrastructure

Authors: Keisuke Fujioka, Yuta Itoh, Masaru Minagawa, Shunji Kusayanagi

Abstract:

In this study, building information models of the underground temporary structures and adjacent embedded pipes were constructed to show the importance of the information on underground pipes adjacent to the structures to enhance the productivity of execution of construction. Next, the bar chart used in actual construction process were employed to make the Gantt chart, and the critical pass analysis was carried out to show that accurate information on the arrangement of underground existing pipes can be used for the enhancement of the productivity of the construction of underground structures. In the analyzed project, significant construction delay was not caused by unforeseeable existence of underground pipes by the management ability of the construction manager. However, in many cases of construction executions in the developing countries, the existence of unforeseeable embedded pipes often causes substantial delay of construction. Design change based on uncertainty on the position information of embedded pipe can be also important risk for contractors in domestic construction. So CPM analyses were performed by a project-management-software to the situation that influence of the tasks causing construction delay was assumed more significant. Through the analyses, the efficiency of information management on underground pipes and BIM analysis in the design stage for workability improvement was indirectly confirmed.

Keywords: building-information modelling, construction information modelling, design improvement, infrastructure

Procedia PDF Downloads 308
11277 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays

Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner

Abstract:

Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.

Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation

Procedia PDF Downloads 292